
1H Nuclear magnetic resonance-based metabolomic study for
Cabernet Sauvignon wines in different vintages

An 1H NMR-based metabolomic study was used to characterize 2009, 2010, 2011, and

2012 vintages of Cabernet Sauvignon wines from Ningxia that were vinified in the same

fermentation technique. The pattern recognition methods of principal component analysis

(PCA) and partial least squares discriminant analysis (PLS-DA) clearly distinguished

vintages of wine, driven by the following metabolites: valine,2,3-butanediol, ethyl acetate,

proline, succinic acid, lactic acid, acetic acid, glycerol, gallic acid and choline. The PLS-DA

loading plots also differentiated between the metabolites of different vintages. The highest

levels of valine, 2,3-butanediol, gallic acid and proline were found in the 2009 vintage

wines. The 2011 vintage wines contained the highest levels of lactic acid, and the highest

levels of ethyl acetate, succinic acid, glycerol and choline were detected in the 2012

vintage wines. A total of 8 metabolites were selected from the 1H NMR spectra and

quantified according to their peak areas, yielding concentrations in a greement with the

PLS-DA results.
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ABSTRACT 15 

An 1H NMR-based metabolomic study was used to characterize 2009, 2010, 2011, and 2012 16 

vintages of Cabernet Sauvignon wines from NingxXia that were vinified in the same 17 

fermentation technique. The pattern recognition methods of principal component analysis (PCA) 18 

and partial least squares discriminant analysis (PLS-DA) clearly distinguished vintages of wine, 19 

driven by the following metabolites: valine, 2,3-butanediol, ethyl acetate, proline, succinic acid, 20 

lactic acid, acetic acid, glycerol, gallic acid and choline. The PLS-DA loading plots also 21 

differentiated between the metabolites of different vintages. In the 2009 vintage wines we found 22 

gallic acid , valine, proline and 2,3-butanediol provide the highest levels. The 2011 vintage wines 23 

contained the highest level of lactic acid, and the highest levels of ethyl acetate, succinic acid, 24 

glycerol and choline were detected in the 2012 vintage wines. We picked out 8 metabolites from 25 

the 1H NMR spectra, quantified according to the peak areas in total, concentrations in agreement 26 

with the PLS-DA results. 27 

Subjects Food Science and Technology, Metabolomic 28 

Keywords Wine, Metabolomics, NMR, Pattern recognition 29 

INTRODUCTION 30 

Wine obtains several metabolites from grape berries during fermentation. Many factors, including 31 

the soil, climate, winemaking process, and vintage, contribute to the metabolites composition and 32 

content of wines (Son et al., 2009; Rochfort et al., 2010; Forveffle, Vercauteren & Rutledge, 33 

1996; Hu et al., 2015). So far, most studies about wines have focused on the characterization and 34 

evaluation of the biological activity of selected extractable components, and the lack of research 35 

on the metabolites in wines. The common parameters to evaluate the quality of wine are total 36 

soluble solids, alcohol concentration, total acids and total phenols. These basic parameters are 37 

significant, while the classical analytical methods can easily detect a great deal of other important 38 

compounds. (Son et al., 2008, 2009; Pereira et al., 2005; Amaral & Caro, 2005). These 39 

parameters only reflect the health of the wine, cannot fully explain the quality of the wine. 40 

Therefore, the analysis of metabolites in wine quality assessment and powerful advanced analysis 41 
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methods are needed to determine the metabolites in wines. (Sun et al., 2013; Son et al., 2008) 42 

1H NMR-based metabolomics one pair of potential information extraction and classification 43 

of samples provides a great new method to evaluate the metabolic functions. Between proton 44 

nuclear magnetic resonance (1H NMR) spectroscopy combined with PCA and PLS-DA has been 45 

used to distinguish the wines vinified by same species growing in different geographical regions 46 

(Son et al., 2008, 2009; Papotti et al., 2012) and between different cultivars grown in the same 47 

geographic region (Rochfort et al., 2010), etc.  48 

In our study, we use PCA and PLS-DA to distinguish different vintages of Cabernet 49 

Sauvignon wines. 50 

MATERIALS AND METHODS 51 

We are making it clear that no specific permissions were required for activities and the field studies 52 

did not involve protected species. 53 

All wine samples were vinified in Ningxia province (Northwest China). The grapes were grown 54 

non-grafted in a single vineyard of uniform soil type (containing gravels main of light sierozem, 55 

organic matter content 0.4~1.0 %) in the Helan Mountains of Ningxia Province, located in warm 56 

temperate in the northern hemisphere have a dry continental climate with dry summers and severe 57 

winters in the last forty years, the average temperature was 15.24 °C, rainfall of 264.45 mm and 58 

evaporation was 1312.0 mm during the growth vintage (March-October period). Little changes in 59 

climate were registered in 2009 to 2012.Its climate information shown in Table 1. The vineyard 60 

start planted in 1994.Planted in the north-south line in a single hole, the line spacing is 2.5 meters 61 

spacing 1.2m~1.5m, using standardized management.  62 

Table 1. Climate information during growth vintage (March-October period) in 2009-2012 of the vineyard. 63 

Vintages Average temperature (°C) Rainfall (mm) Evaporation (mm) 

2009 17.65 243.5 1562.1 

2010 17.11 233.6 1398.7 

2011 15.24 262.2 1423.6 

2012 16.52 251.4 1266.7 
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Sample Origin 64 

Samples were obtained from 2009, 2010, 2011, and 2012 vintages of Cabernet Sauvignon wines, 65 

were named S1, S2, S3, S4 respectively,6 samples per year, every sample has 3 parallel. The 66 

wines were vinified in the same fermentation technique and same yeast (Lalvin CY 3079), 67 

without other chemical adjustment except for potassium metabisulfite (50 mg/L) and not aged in 68 

oak barrels. After fermentation, stored the wines in fermenting tank (50 t).  69 

We got 3 parallel samples of each wine from the sampling mouth, every replicate sample was 70 

funneled in a brown glass bottle (750 mL), then sealed it with a cork and transported to the 71 

laboratory storage(-4°C). The grapes of each vintages were harvested at similar concentrations of 72 

reducing sugar and titrable acidity (Table 2). The chemical and physical features of wines meet 73 

the China national test standard (GB/T 15038-2006), are shown in Table 3. 74 

Table 2. Grape composition at harvest. 75 

Harvest Date Cultivar 

Reducing Sugar 

(g/L) 

Titrable Acidity     

(g/L) 

pH 

2009.8.15 

Cabernet Sauvignon 

232.7 7.67 3.73 

2010.8.16 228.8 6.98 3.88 

2011.8.22 220.2 8.32 3.23 

2012.8.18 225.61 7.72 3.54 

Table 3. Physical and chemical features of the wines. 76 

Index 

Vintages 

2009 2010 2011 2012 

Alcohol content % Vol 13.2 12.9 12.4 12.8 

Residual sugar g/L 2.20 2.55 3.10 2.50 

Total acid g/L 6.4 6.7 6.1 5.8 

Volatile acid g/L 0.42 0.45 0.46 0.43 

Dry extract g/L 27.9 28.9 27.6 29.1 

pH 3.47 3.22 3.56 3.73 
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Total SO2 mg/L 86 88 82 85 

Free SO2 mg/L 31 28 32 33 

Methanol mg/L 205 220 214 206 

Fe3+ mg/L 2.2 1.9 2.1 2.0 

Cu2+ mg/L 0.055 0.053 0.065 0.059 

K+ mg/L 946 936 957 955 

Ca2+ mg/L 103 97 99 102 

Tartaric acid g/L 2.64 2.28 2.32 2.44 

Citric acid g/l 0.31 0.28 0.29 0.26 

Lactic acid g/L 2.66 2.64 2.73 2.53 

Colour tone 12.5 12.8 12.3 12.7 

Colour tint 0.83 0.82 0.80 0.81 

*Methods of determination of physical and chemical features meet China National Test Standard GB/T15038–2006 

NMR Sample Preparation 77 

Ten milliliters of wine was centrifuged at 4000 rpm for 20 min. 3 mL supernatants were frozen at 78 

-70°C for 12 h, and then lyophilized for 48 h. The lyophilized wine was dissolved in 400 μL of 79 

oxalate buffer (pH =4.0), mixed with 140 μL of D2O and 60 μL of a 0.75% DSS in D2O solution, 80 

and then in 13000 rpm centrifuged for 20 min. Placed 500 μL supernatants in 5 mm NMR tubes. 81 

The chemical shift of DSS provided reference (δ=0) and internal standard quantitative analysis.  82 

1H NMR Spectroscopy 83 

1H NMR spectra were recorded on a Bruker AVANCE 600 spectrometer, operating at 600.13 84 

MHz 1H frequency and a temperature of 298 K, using a 1H {13C/15N} probe. A NOESYPRESAT 85 

pulse sequence was used to suppress the residual water signal. A total of 256 transients were 86 

collected into 32,000 complex data points with a spectral width of 7183.9 Hz, an acquisition time 87 

of 2.3 s, a mixing time of 100 ms and a relaxation delay of 2 s. The NMR spectra were processed 88 

with a line-broadening factor of 0.3 Hz prior to Fourier transformation. 89 

NMR Data Reduction 90 
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The NMR spectral data were reduced into 0.005 ppm spectral buckets. The regions corresponding 91 

to water (4.6-4.8 ppm), incompletely removed DSS (-0.5–0.5 ppm, 1.74–1.84 ppm and 2.90–2.95 92 

ppm) and ethanol (1.18–1.22 ppm and 3.57–3.72 ppm) were removed by AMIX software. The 93 

dataset was then imported into SIMCA-P 12.0 for multivariate statistical analysis. 94 

Pattern Recognition 95 

We used PCA and PLS-DA to check the intrinsic variability of the dataset, and to maximize 96 

separate out different vintage wines, respectively. After orthogonal signal correction was applied 97 

to eliminate the information that did not contribute to the discrimination, PLS-DA score plots 98 

from the 1H NMR spectra of different vintage wines were generated in pairwise comparisons 99 

(Nicholson, Lindon & Holmes, 1999; Anastasiadi et al., 2009; Lee, Hong & Lee, 2009a).  100 

Chemicals 101 

All chemical reagents were analytical grade. D2O (99.9%) and DSS were purchased from 102 

SIGMA-ALDRICH. 103 

RESULTS 104 

Metabolite Differences in Wines from Different Vintages 105 

The PCA score plot shows a clear differentiation of the Cabernet Sauvignon wines in different 106 

vintages, with good adaptability and high predictive of the model has high statistical values of 107 

R2X (0.867) and Q2 (0.789) (Fig 1). 108 
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 109 

Figure 1 PCA score plot of Cabernet Sauvignon wines of different vintages. 110 

PLS-DA models produces increase comparing the different vintages wines. As shown in 111 

Figure 2A the PLS-DA score plots derived from the 1H NMR spectra of the 2009 and 2010 112 

vintages Cabernet Sauvignon wines, has the highest values pairwise comparison of R2X and Q2. 113 

It has a clear separation between the 2009 and 2010 vintages of wines (Fig 2A). Complementary 114 

load plot gives the contribution of metabolites differentiation (Fig 2B). The loading plot 115 

represents that metabolites of 2009 vintages is higher than that of 2010. The loading plot revealed 116 

a high-level of valine, glycerol, 2,3-butanediol, α-glucose, acetic acid, proline, succinic acid, 117 

sucrose, tartaric acid, gallic acid, and tyrosine in the 2009 vintages, while ethyl acetate, lactic 118 

acid, choline, β-glucose, and α-D-glucuronic acid were lower level relative in the 2010 vintages. 119 
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 120 

Figure 2A PLS-DA score plot chart from 1H NMR spectra of 2009 and 2010 vintage Cabernet 121 

Sauvignon wines. 122 

 123 

Figure 2B PLS-DA loading plot chart from 1H NMR spectra of 2009 and 2010 vintage Cabernet 124 

Sauvignon wines. 125 

The PLS-DA score plot based on the 2009 and 2011 vintages of the Cabernet Sauvignon 126 
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wines showed a clear discrimination (Fig 3A), and the loading plot provids the contributed 127 

metabolites that to this discrimination (Fig 3B). Higher levels of 2,3-butanediol, ethyl acetate, 128 

proline, succinic acid, glycerol, α-glucose, tartaric acid, choline, and sucrose and lower levels of 129 

lactate and α-D-glucuronic acid were detected in the 2009 compared to the 2011 vintages. 130 

 131 

Figure 3A PLS-DA score plot chart from 1H NMR spectra of 2009 and 2011 vintage Cabernet 132 

Sauvignon wines. 133 

 134 
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Figure 3B PLS-DA loading plot chart from 1H NMR spectra of 2009 and 2011 vintage Cabernet 135 

Sauvignon wines. 136 

The PCA score plot between the 2009 and 2012 vintage Cabernet Sauvignon wines also 137 

showed clear separation (Fig 4A) identified by higher levels of valine, 2,3-butanediol, proline, 138 

succinic acid, D-sucrose, tartaric acid, gallic acid, α-glucose, and β-glucose and lower levels of 139 

lactate, ethyl acetate, acetic acid, glycerol, α-D-glucuronic acid, and choline in the 2009 vintages 140 

(Fig 4B). 141 

 142 

Figure 4A PLS-DA score plot chart from 1H NMR spectra of 2009 and 2012 vintage Cabernet 143 

Sauvignon wines. 144 
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 145 

Figure 4B PLS-DA loading plot chart from 1H NMR spectra of 2009 and 2012 vintage Cabernet 146 

Sauvignon wines. 147 

The PCA score plot between 2010 and 2011 vintage Cabernet Sauvignon wines also showed 148 

significant separation (Fig 5A). The loading plot illustrates that choline, proline, and 2,3-149 

butanediol in higher levels and valine, lactic acid, succinic acid, and glycerol in lower levels 150 

compared to those in the 2010 vintages and 2011 vintages (Fig 5B). 151 
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 152 

Figure 5A PLS-DA score plot chart from 1H NMR spectra of 2010 and 2011 vintage Cabernet 153 

Sauvignon wines. 154 

 155 

Figure 5B PLS-DA loading plot chart from 1H NMR spectra of 2010 and 2011 vintage Cabernet 156 

Sauvignon wines. 157 

The PCA score plot also showed significant differentiation between the Cabernet Sauvignon 158 
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wines vinified in 2010 and 2012 vintages (Fig 6A). Relatively higher levels of valine and 2,3-159 

butanediol and lower levels of lactic acid, proline, acetic acid, succinic acid, choline, glycerol, 160 

and ethyl acetate in Cabernet Sauvignon wines vinified in 2010 vintages, compared to those 161 

vinified in 2012 vintages, can be observed in the PLS-DA loading plot (Fig 6B).  162 

 163 

Figure 6A PLS-DA score plot chart from 1H NMR spectra of 2010 and 2012 vintage Cabernet 164 

Sauvignon wines. 165 
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 166 

Figure 6B PLS-DA loading plot chart from 1H NMR spectra of 2010 and 2012 vintage Cabernet 167 

Sauvignon wines. 168 

The PLS-DA score plot showed clear separation between the 2011 and 2012 vintage 169 

Cabernet Sauvignon wines based on the first component (Fig 7A). The corresponding loading 170 

plot showed relatively high load levels of valine, lactic acid, and succinic acid, with low levels of 171 

2,3-butanediol, proline, acetic acid, choline, glycerol, D-sucrose, acetate, α-glucose, gallic acid, 172 

and tyrosine in the 2011 vintages, compared with the 2012 vintages (Fig 7B). 173 
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 174 

Figure 7A PLS-DA score plot chart from 1H NMR spectra of 2011 and 2012 vintage Cabernet 175 

Sauvignon wines. 176 

 177 

 178 

Figure 7B PLS-DA loading plot chart from 1H NMR spectra of 2011 and 2012 vintage Cabernet 179 

Sauvignon wines. 180 
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Quantitative Analysis 181 

The PLS-DA analysis revealed small differences in the metabolite compositions and large 182 

differences in the metabolite concentrations in the Cabernet Sauvignon wines vinified from 2009 183 

to 2012 vintages. The abbreviations S1-S4 represent the 2009-2012 vintages, respectively. The 184 

concentration of valine in the four vintages in order from high to low was S1>S3>S2>S4; the 185 

concentration of 2,3-butanediol from high to low in the order of four vintages was 186 

S1>S2>S4>S3; the concentration of glycerol in the four vintages in order from high to low was 187 

S4>S1>S3>S2; the concentration of ethyl acetate in the four vintages in order from high to low 188 

was S4>S2>S1>S3; the concentration of succinic acid in the four vintages in order from high to 189 

low was S4>S3>S1>S2; the concentration of lactate in the four vintages in order from high to 190 

low was S3>S4>S1>S2; the concentration of choline in the four vintages in order from high to 191 

low was S4>S2>S1>S3; the concentration of gallic acid in the four vintages in order from high to 192 

low was S1>S4>S3>S2. 193 

From the 1H NMR spectra totally selected 8 metabolites, and calculated concentrations 194 

according to their peak areas. The results of this quantitative analysis (Fig 8) agree with the PLS-195 

DA results. 196 

 197 
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   198 

 199 

 200 

Figure 8 Comparison of the main metabolite concentrations in the 2009-2012 vintage wines. 201 

* Error bars means standard deviations. 202 

DISCUSSION 203 
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Polyols and Ethyl Acetate 204 

In the present study, ethanol composes a large proportion of the wines, and the difference in the 205 

ethanol content of each wine is quite small. Ethanol signals of the samples were so intense in the 206 

spectra that they cover the other components signals less abundant. Therefore, ethanol was not a 207 

major discriminating compound. 208 

2,3-Butanediol is a by-product of fermentation in wine, probably from the reduction of 209 

acetoin or pyruvic acid (Romano et al., 2003; Son et al., 2009). Because the taste threshold of 210 

2,3-butanediol is 150 mg/L, it does not usually affect the flavor. However, the average content of 211 

2,3-butanediol in each wine was approximately 0.243 g/L, which will make the wine slightly 212 

bitter and sticky feeling. In our study, the 2011 vintage wines contained the highest levels of 2,3-213 

butanediol. 214 

Glycerol is formed as a by-product of alcohol fermentation. The pH, sulfite concentration, 215 

grape variety, fermentation temperature, yeast, and nitrogen composition of the wine influence 216 

the level of glycerol (Radler & Schutz, 1982; Vineyardner, Rodrigue & Champagne, 1993; Son et 217 

al., 2009). In our study, the winemaking conditions, such as the sulfite concentration, 218 

fermentation temperature, and yeast, were nearly the same. Therefore, the glycerol contents may 219 

have resulted from the sugar contents in the grape berries. 220 

Organic Acids 221 

Tartaric acid, malic acid and citric acid in wine mostly derive from the grape berries. The 222 

concentration of tartaric acid in grape berries usually remains stable despite increases in berry 223 

volume during maturation. The concentration of tartaric acid in grape berries usually remains 224 

stable. Precipitation is related to the brewing conditions, including fermentation temperature, pH 225 

and concentration of potassium and calcium (Viggiani & Morelli, 2008; Son et al., 2009). 226 

Therefore, tartaric acid in wines cannot be revineyarded as a biomarker for describing the 227 

characteristics of wines. 228 

The lactate contents in wines higher show that malolactic fermentation has occurred, in 229 

which bacteria completely transformed into lactic acid, citric acid and malic acid (Avenoza et al., 230 
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2006; Larsen, Van Den Berg & Engelsen, 2006). So we cannot detect malic acid or citric acid in 231 

dry red wine. 232 

Succinic acid is the main nonvolatile organic acid present during alcoholic fermentation and 233 

MLF (Son et al., 2009). Succinic acid is very stable and does not change with age, as one of the 234 

major metabolic products. 235 

Amino Acids 236 

The wine amino acids have different origins. Released from dead yeast or at the end of 237 

fermentation some are indigenous to the grape can be partially or fully metabolized by yeast; 238 

others are vinified by proteins enzymatic degradation of (Košir & Kidrič, 2002). Classically, 239 

alanine used in the growth of yeast in wine, so little is detected in the finished wine product. 240 

Proline is not a nutrient used by yeast and can therefore be used as a biological marker of wine. 241 

Lee et al. (2009b) states that the proline content in wine depends on environmental factors and 242 

grape varieties. Among the 4 different vintages of Cabernet Sauvignon wine tested, the 2009 243 

vintage had the highest proline content, and the 2011 vintage had the lowest level of proline. This 244 

pattern may have resulted from the longer sunshine and less rainfall in 2009.  245 

Another amino acid biomarker, valine, was also revealed by the PLS-DA analysis. Valine is 246 

used by yeast during fermentation and appears with yeast autolysis. 247 

Choline 248 

Choline is precursor of glycine betaine, and betaine is related to homocysteine. The average level 249 

of choline in wines is 5.6 mg/100 g (Zeisel et al., 1991; Mickelbart, Chapman & Collier-250 

Christian, 2006). In our study, the 2012 vintage Cabernet Sauvignon wines had the highest levels 251 

of choline, whereas the 2011 vintage had the lowest levels. 252 

Carbohydrates 253 

Glucose and fructose are the main sugars in the grape. When grape maturity begins, the glucose 254 

content in the grape is higher than the fructose content, and as the grape matures, both contents 255 

become nearly equal by harvest time. Dry wine refers to wine with a sugar level less than or 256 
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equal to 4.0 g/L and we detected sucrose, α-glucose and β-glucose, and the differentiation of the 257 

concentrations of these three sugars was small. Therefore, we cannot revineyard the carbohydrate 258 

in these wines as characteristic metabolites. 259 

CONCLUSIONS 260 

1H NMR-based metabolomics was used to study the metabolite differences in different vintages 261 

of Cabernet Sauvignon wines. Pattern recognition showed clear differentiation between the wines 262 

vinified in 2009, 2010, 2011, and 2012 vintages. 263 

Pattern recognition methods clearly differentiated between the wines vinified in different 264 

vintages. Responsible for the differentiation of the metabolites were identified as 2,3-butanediol, 265 

ethyl acetate, valine, proline, succinic acid, lactate, acetic acid, glycerol, gallic acid and choline. 266 

Wines were vinified in the same fermentation technique, yeast and grape varieties, therefore, 267 

climatic factors such as average temperature, rainfall, evaporation and so on are the main reason 268 

for the difference of the metabolites in different vintages wines. Probably the higher average 269 

temperature and evaporation, less rainfall in 2009 increase the sugar content of the grapes and 270 

enable the grapes to reach optimum ripeness. This has contributed to the 2009 vintage wines have 271 

the highest level of valine, 2,3-butanediol, gallic acid and proline. Grapes from a long, slow 272 

ripening season due to the lower average temperature, higher rainfall and evaporation in 2011 and 273 

2012. The 2011 vintage wines contained the highest level of lactic acid, and the highest levels of 274 

ethyl acetate, succinic acid, glycerol and choline were detected in the 2012 vintage wines. 275 

Selected metabolites were selected from the 1H NMR spectra and quantified according to 276 

their peak areas. The results of the quantitative analysis agree with the PLS-DA results.  277 

It seemed that this NMR based metabonomics approach can effectively classify wine. For 278 

wine, certification of a vintage’s geographical indications, as well as adulteration and quality 279 

monitoring, provide the theoretical basis and technical support. 280 
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