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ABSTRACT 

 Dormancy is a general microbial life-history trait that leads to the emergence of seed 12	

banks across diverse ecosystems. While the primary forces driving seed banks include 

macroscale factors like resource supply, the importance of microscale factors such as individual 14	

encounters with resource molecules are often overlooked. Here, we used >10,000 individual 

based models (IBMs) to simulate energetic, physiological, and ecological processes across 16	

combinations of resource-, spatial-, and trophic-complexity. We found that increasing rates of 

encounter of individual organisms with resource molecules led to greater abundance, greater 18	

productivity, and larger seed banks. We also found that the chemical complexity of resource 

molecules reduced encounter rates, which led to increased variability in the size of seed banks. 20	

Encounter-driven ‘boom and bust’ dynamics also caused resource-rich environments to 

simultaneously host large seed banks and serve as hotbeds of microbial activity. In conclusion, 22	

microscale phenomena appear to be essential for understanding the emergence of seed banks, the 

energetic basis of microbial life history trade-offs, and variation in the abundance and activity of 24	

microbial communities. 

  26	
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INTRODUCTION 28	

 Most microorganisms on Earth live in habitats where they experience energy limitation 

(Hoehler and Jørgensen, 2013). These microorganisms have evolved an expansive repertoire of 30	

traits that allow them to persist under these extreme conditions of resource scarcity (Lever et al., 

2015). One strategy that is important for microorganisms experiencing energy limitation is 32	

dormancy (Aanderud et al., 2016), i.e., a reversible state of reduced metabolic activity (Jones and 

Lennon, 2010). Dormant microorganisms make up a seed bank, which is important for 34	

maintaining diversity (Lennon and Jones, 2011; Aanderud et al., 2015) and the functioning of 

ecosystems (Wang et al., 2015). Transitions into and out of dormancy are often driven by the 36	

availability of energy and nutrients (Lennon and Jones, 2011), but seed banks still tend to 

accumulate in otherwise resource-rich habitats. For example, >90% of microbial biomass in soils 38	

can be dormant (Alvarez et al., 1998; Lennon and Jones, 2011; Blagodatskaya and Kuzyakov, 

2013). These observations suggest that seed bank dynamics may be influenced by factors other 40	

than macroscale properties such as the concentration of resources in a given habitat.  

 In an idealized system with few trophic interactions and where labile substrates are 42	

homogenously distributed, the encounter rate between individual microorganisms and resource 

molecules is governed by relatively simple physical processes such as turbulence and diffusion 44	

(Dusenbery, 2009; Rusconi and Stocker, 2015). However, these idealized conditions are rarely 

met in nature. Instead, microorganisms often live in complex habitats where aggregated particles 46	

of many resource types can vary in size, energetic yield, and spatial distribution (e.g., Hernández 

and Hobbie, 2010; Macalady et al., 2013). Such complexities modify the rate at which 48	

microorganisms encounter consumable resource particles (Kiørboe et al., 2002; Andersen et al., 
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2016; Großkopf and Soyer, 2016). Because it is challenging to integrate this fine-scale 50	

complexity into empirical studies, microorganisms are often investigated at spatial scales that 

exceed the scales of their individual interactions (Fierer and Lennon, 2011; Vos et al., 2013). For 52	

this reason, microorganisms may be energy- or nutrient-limited even though macroscale 

measurements would suggest that their habitat is replete with resources (Don et al., 2013; Allison 54	

et al., 2014). This phenomenon has led to the hypothesis that there is an advantage to 

maintaining large, but inactive populations (i.e., seed banks) that are able to maximize the 56	

probability of encountering resources that vary in time or space (Vaqué et al., 1989). 

 Encounter rates between microorganisms and resources are likely driven by interacting 58	

dimensions of ecological complexity. For example, microorganisms have a tendency to have 

highly aggregated spatial distributions in physically structured habitats (Raynaud and Nunan, 60	

2014). Such patterns may reflect the non-random distribution of resources and the capacity of 

microorganisms to disperse (Mitchell and Kogure, 2006; Smriga et al., 2016). Encounter rates 62	

may also be affected by inherent properties of the resource pool, which is often diverse and 

includes substrates with complex molecular structures (Muscarella et al., 2014; Logue et al., 64	

2016). In some cases, complex resources may only be accessible to specialized taxa that produce 

extracellular enzymes (Lennon, 2007), which require energy that could otherwise be used for 66	

maintenance and growth (Traving et al. 2015). Last, encounters between microorganisms and 

resources may be influenced by trophic interactions such as competition, predation, and 68	

parasitism (e.g., Hibbing et al., 2010). Other trophic interactions are also common, such as the 

consumption of dead microorganisms (i.e., scavenging) or the uptake of metabolic byproducts 70	

released by neighboring cells (i.e., cross-feeding), especially in energy-limited ecosystems 
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(Rozen et al., 2009; Pande et al., 2015). Together, these different types of complexity may 72	

interact and influence encounter rates in ways that affect microbial seed-bank dynamics.   

 Studying complex interactions at the microscale is a profound challenge for microbial 74	

ecology (Cordero and Datta, 2016). One way to overcome this challenge is with individual-based 

models (IBMs), which are ideal for exploring how individual-level interactions and microscale 76	

properties give rise to higher-order phenomena at the scale of populations to ecosystems 

(Hellweger et al., 2016). In this study, we developed a stochastic individual-based modeling 78	

approach that explicitly simulated physiology, life history, energetics, and the metabolic activity 

of microorganisms. We used >10,000 IBMs to explore the influence of encounter on the 80	

emergence of microbial seed banks. We also asked whether encounters between organisms and 

resources are primarily driven by macroscale properties of resource concentration and supply, or 82	

whether microscale properties of spatial, trophic, and resource complexity might also be 

powerful factors driving encounter.  84	

 

METHODS 86	

Overview of individual-based modeling – We examined the influence of encounter rates and 

resource availability on the abundance, productivity, and activity of simulated microbial 88	

communities using over 10,000 probabilistic and information-intensive individual-based models 

(IBM). We constructed an automated source-code that builds IBMs from random combinations 90	

of life history parameters and ecological processes. These IBMs simulated encounters between 

organisms and resource particles within spatially explicit environments using varying degrees of 92	

spatial, resource, and trophic complexity. In the following sections we describe 1) how the 

models were parameterized with species-specific, resource-specific, and complexity-level 94	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2321v1 | CC BY 4.0 Open Access | rec: 27 Jul 2016, publ: 27 Jul 2016



	 5	

constraints, 2) how the models simulated energetic costs and encounter-limited growth, 3) how 

we simulated levels of spatial complexity, resource complexity, and trophic complexity, and 4) 96	

our modeling workflow. 

  98	

Model parameterization – Each IBM was parameterized with random values of constraints that 

established upper limits on growth dynamics. These constraints included maximum values for 100	

specific growth rate, maintenance energy requirements, active dispersal rate, the number of 

resource particles entering per time step, among others (see Table 1). The values of the 102	

parameters in the IBMs were chosen within ranges that produced computationally feasible 

abundances of organisms and resources within reasonable time limits. Once assembled, each 104	

IBM was populated with 10 individuals whose species identities were drawn at random from a 

uniform distribution. We used multi-species systems as a means to capture trophic complexity, 106	

which also allowed us to simulate a breadth of trait parameter-space. Species-specific values for 

maximum growth rate, active and dormant metabolic maintenance, maximum dispersal rate, 108	

environmental optimum, and growth efficiency were chosen at random (Table 1).  

 110	

Simulating energetic costs and encounter-limited growth – Each IBM tracked and analyzed a 

large amount of information including but not limited to the identity, cell quota, physiology, 112	

location, and traits of each organism. We also tracked the identity, size, diversity, structure, and 

location of each resource particle (Table 1). As mentioned above, our IBMs were probabilistic, 114	

meaning that all ecological processes, such as dispersal, growth, death, reproduction, and 

consumption occurred via random draws. Likewise, the ability to consume resources and grow 116	
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was directly determined by whether individuals were in simulated physical contact with a 

consumable resource particle. 118	

 Energetic costs to individuals were associated with cellular maintenance, growth, and 

dispersal. These costs lowered their endogenous resources (i.e., cell quotas) and directly 120	

determined the probabilities of reproduction, death, and transitions into dormancy. For example, 

a starving individual was more likely to enter dormancy or die and was less likely to reproduce 122	

than an individual that was replete with resources. Dormant individuals, while having a nonzero 

cell quota, were prevented from consuming and reproducing, and experienced a species-specific 124	

reduction in cellular maintenance costs (See Table 1). Individuals were also simulated in a way 

that, depending on the model, allowed active movement towards consumable resource particles 126	

(i.e., chemotaxis) though at an energetic cost. 

 128	

Simulating ecological complexity – In addition to explicitly simulating the spatial environment 

and individual-level changes in organisms and resource particles, we constructed our modeling 130	

framework to allow random combinations of various levels of spatial, resource, and trophic 

complexity. Each IBM was parameterized at random with one of 36 combinations of complexity 132	

(4 trophic, 3 resource, 3 spatial) (Figure 1). We then explored how these dimensions of 

complexity affected encounter rates, along with attributes of community structure such as total 134	

number of individuals (i.e., total abundance), the abundance of active individuals, production of 

individuals per time step (i.e., productivity), and size of the fraction of dormant individuals (i.e. 136	

percent dormancy). 

 Resource complexity: We simulated three levels of resource complexity. The first level 138	

represented the simplest condition, wherein only one type of resource molecule was supplied. 
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These molecules had no chemical complexity and could be consumed without extracellular 140	

enzymatic breakdown (Figure 1). Resource molecules were represented by strings of individual 

particles (e.g., ‘aaaa’) that could be broken down from each end when encountered by organisms. 142	

The number, size, and dispersion of resource molecules were chosen at random (Table 1). We 

referred to this resource complexity level as a "monoculture". The second level supplied three 144	

different types of resources (e.g., ‘aaaa’, ‘bbbb’, ‘cccc’) that could only be used by a specialist 

consumer (Figure 1). We referred to this as a "polyculture" resource level. The average total 146	

number of individual resource particles (e.g., ‘a’, ‘b’, ‘c’) entering the system at a given time and 

inflow rate was made to be consistent across levels of resource complexity. 148	

 The third level of resource complexity simulated the structural complexity of resource 

molecules, i.e., chemical complexity. We imposed a “lock and key” constraint on chemical 150	

complexity by requiring that consumers break down resource molecules at specific locations. For 

example, a molecule would have a hyphen that simulates a chemical bond separating two groups 152	

of resource particles (e.g., ‘aaaa-aaaa’). In order to consume a resource particle, i.e., ‘a’, 

individuals would need to cleave the ‘aaaa-aaaa’ molecule at the bond and then consume an ‘a’ 154	

from one of the two resulting ‘aaaa’ molecules. Because molecules are cleaved at random 

locations, there is a 1/9 chance of cleaving the ‘aaaa-aaaa’ particle and, likewise, a 1/5 chance of 156	

cleaving a ‘bb-bb’ particle, and a 2/8 chance of cleaving a ‘bb-bb-bb’ particle (Figure 1). 

Therefore, a molecule with a proportionately larger number of bonds requires greater time, and 158	

hence, energy to break down. 

 Spatial complexity: We simulated three levels of spatial complexity. The first level of 160	

spatial complexity was a ‘white noise’ model in which the locations of individual organisms and 

resource molecules changed at each time step in an uncorrelated way. Hence, every organism 162	
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and resource particle had the same chance of moving to any location within the environment at 

each time step in the model. This white-noise model created a well-mixed environment with no 164	

dispersal limitation. In the second level of spatial complexity, resource molecules entered the 

environment in clusters but did not change locations, resulting in a system that lacked mixing. 166	

Individuals then underwent random walks. The average length of the random walk was a 

species-specific parameter, and larger dispersal distances carried greater energetic costs. The 168	

degree of spatial dispersion among incoming resource clusters was chosen at random (Table 1). 

In the third level of spatial complexity, resource molecules entered in clusters but individuals 170	

were capable of sensing resource molecules based on resource density and distance. Through this 

process, individuals moved toward resources via chemotaxis, a trait that can increase encounter 172	

rates between consumers and substrates in spatially structured habitats.  

 Trophic complexity: We simulated four levels of trophic complexity, with the last being a 174	

combination of two others (Figure 1). The first level had only one trophic interaction, which we 

refer to as a simple "consumer-resource" model. At this level of trophic complexity, all 176	

individuals were solely consumers of inflowing resources. The second level of trophic 

complexity allowed for the consumption of resources contained in dead bacteria (e.g., Rozen et 178	

al., 2009), which is a trophic interaction that we referred to as "scavenging". Our third level of 

trophic complexity simulated a situation in which one group of consumer species generated a 180	

metabolic byproduct that could be taken up by a second group of consumer species, which in 

turn generated a byproduct that served as a resource for a third group of species. This situation 182	

was meant to simulate conditions that are characteristic of cross-feeding or syntrophy (Pande et 

al., 2015). A final level of trophic complexity was characterized by a combination scavenging 184	
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and cross-feeding, which we saw as more ecologically realistic and complex than scavenging or 

cross-feeding alone. 186	

 

Modeling workflow – Each model was run to a state of mean reversion, i.e., a point where the 188	

total number of individuals (N) fluctuates around a given value. This burn-in period was then 

discarded and the models were run for at least 100 additional generations. We recorded 190	

information for each time point past the burn-in period, including, but not limited to N; the 

number of individuals produced (i.e., productivity); Morisita’s index of aggregation (Hurlbert, 192	

1990) for individual organisms and resource molecules; and the total number of resource 

molecules (Table 1). Once a model ran to mean reversion, we recorded its starting parameters as 194	

well as mean and variance of abundances, productivity, percent dormancy, organism and 

resource aggregation, and species-specific parameters related to physiology and life history 196	

(Table 1). A detailed version of the standard IBM protocol of (Grimm et al., 2006) is available 

on a public GitHub repository: https://github.com/LennonLab/Micro-Encounter. 198	

 

RESULTS AND DISCUSSION 200	

 Dormancy allows microorganisms to persist in low-energy environments, yet seed banks 

emerge in other ecosystems as well (Lennon and Jones, 2011, Blagodatskaya and Kuzyakov, 202	

2013). While it is generally assumed that energy limitation can drive transitions into dormancy, 

the finer details of what regulates seed bank dynamics are poorly understood and difficult to 204	

study, especially under naturally occurring conditions. Our results from thousands of individual-

based models suggest that both microscale and macroscale factors are important for the 206	

development of seed banks. However, microscale factors (e.g., encounter rate and chemical 
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complexity of resource molecules) did a better job of predicting microbial community attributes 208	

than macroscale properties of resources (e.g. average concentration). Contrary to expectations, 

we found that trophic complexity had a minimal effect on microbe-encounter rate, raising the 210	

question of whether trophic interactions, as modeled, provided enough energetic benefits to 

influence abundance, productivity, and the emergence of seed banks. 212	

 

Importance of resource chemical complexity on encounter – Overall, the chemical complexity of 214	

resources had the strongest effect on resource encounter rates across all of our simulations. 

Specifically, chemical complexity suppressed encounter rates to very low levels across all 216	

combinations of spatial and trophic complexity (Figure 2a). Chemical complexity required 

individuals to cleave resource molecules at specific locations (i.e., "lock and key", Figure 1) in a 218	

manner analogous to enzymatic hydrolysis of a polymer like cellulose into glucose monomers. 

By requiring individuals to cleave resource molecules at specific locations and basing these 220	

attempts on random draws, our approach implicitly simulated concentration-dependent kinetics 

of enzymatic action, and thereby the greater energy lost due to the time required to break larger, 222	

more complex molecules. The strong negative influence of chemical complexity on resource 

encounter provides additional insight into the ways that structurally complex molecules influence 224	

the growth and activity of microorganisms within complex microbial habitats such as soil 

(Schimel and Weintraub, 2003; Allison et al., 2011). Chemical complexity effectively reduced 226	

the loss of energy from the resource pool by limiting encounter with consumable resource 

particles. Similar predictions have been made regarding the "slow release" effects of complex 228	

resources on ecosystem dynamics (e.g., Wetzel, 1999). 

 230	
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Interactions between chemotaxis and resource complexity – Chemotaxis is an important 

microbial trait that has strong effects on resource encounter rates (e.g., Smriga et al., 2016; Datta 232	

et al., 2016). In our simulations, the ability of organisms to use chemotaxis increased encounters 

in systems characterized by complex resources (Figure 2b). The energetic cost of this directed 234	

movement must have been offset by the energy saved in not encountering these complex 

resource molecules at random, as opposed to the white noise and random walk models. It is 236	

generally assumed that there is a trade-off between ecosystem productivity and chemotaxis. For 

example, chemotaxis is thought to be selected against in oligotrophic environments where 238	

searching for sparse chemically-complex resources could be energetically wasteful (Ottemann 

and Miller, 1997). This view is supported by genomic evidence suggesting that bacteria from 240	

copiotrophic environments tend to harbor more motility genes than bacteria from oligotrophic 

environments (Giovannoni et al., 2005; Lauro et al., 2009). However, unlike some of these 242	

studies we observed no relationship of productivity to either per capita or species-specific rates 

of dispersal in models that simulated chemotaxis (Figure S1). While the lack of a clear 244	

relationship may have been due to ways in which we encoded chemotaxis, some studies have 

suggested that the energetic costs of chemotaxis may also be highly scale-dependent (Stocker, 246	

2012). Though our simulation efforts were directed at exploring the influence of chemotaxis on 

encounter, and were not focused on exploring chemotaxis-specific trade-offs, IBMs such as those 248	

used in this study are ideal for exploring chemotaxis related questions. 

 250	

Minimal effect of trophic complexity on encounter – We focused on exploring the effects of 

trophic complexity on resource encounter, even though the theoretical expectations for these 252	

interactions at the miscroscale are not well developed. From this we found that trophic 
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complexity had a minimal influence on resource encounter rates. We observed no effect of either 254	

scavenging or cross-feeding on resource encounter across levels of spatial and resource 

complexity (Figure 2). For a number of reasons, however, we do not conclude that trophic 256	

interactions are unimportant for microbe-resource encounter rate. First, we only considered a few 

types of trophic interactions. Besides scavenging and cross-feeding, microbial communities 258	

engage in a plethora of trophic interactions, which could affect encounter and consumer-resource 

interaction strength. Second, certain aspects of our model may have dampened the effect of 260	

trophic complexity on microbial encounter rates. Specifically, our models included dormancy, 

which reduced mortality rates. This suggests that by slowing down the turnover rate of the 262	

microbial biomass pool, seed banks may also reduce the importance of scavenging. 

Alternatively, scavenging may not have had an effect on encounter rates because of low 264	

microbial growth efficiencies. Per capita death rates should be highest in low resource 

environments. Under these conditions, energy-limited bacteria may take up microbial necromass, 266	

but there is a higher probability that these individuals will allocate energy toward maintenance 

rather than growth. This situation was highly likely in our models. Last, it is possible that 268	

scavenging and cross-feeding did affect resource encounter for a small cross-sections of models, 

but that this signal was overshadowed when all levels of spatial and resource complexity were 270	

examined together.  

 272	

Microscale vs. macroscale drivers of microbial community dynamics – Rates of encounter 

between individual organisms and resource molecules had strong effects on the abundance, 274	

productivity, and activity of the microbial community. Greater encounters between organisms 

and resource particles led to increased production of new individuals and increases in the 276	
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abundances of the entire community and its metabolically active fraction (Figure 3). While 

encounter rates were positively correlated with resource concentration and the rate of resource 278	

supply, encounter had a much stronger effect on productivity and abundance than either of these 

macroscale resource properties (Figure 4). This result reflects that encounter is not simply a 280	

consequence of resource concentration and supply, and that controls on encounter, such as 

chemical complexity and energetic trade-offs can be independent of macroscale resource 282	

properties. In considering the microscale heterogeneity of aquatic, terrestrial, and host-associated 

microbial systems, there are likely entire suites of microscale properties and microscale-level 284	

dynamics that a traditional macroscale approach has missed. Modeling provides a powerful and 

convenient starting point for understanding the driving influence of microscale properties. For 286	

example, animations of our IBMs suggest that “boom and bust” dynamics within spatially 

structured environments lead to the emergence of such seed banks and high temporal variability 288	

in abundance and productivity (see Supplemental Movie 1). These dynamics occurred in 

resource-rich and resource-poor systems, under all level of trophic and resource complexity. 290	

 

Emergence of seed banks via micro- & macroscale interactions – The emergence of microbial 292	

seed banks appears to be driven by strong interactions between microscale and macroscale 

properties. At the microscale, we observed that increased encounter rates led to larger dormant 294	

fractions (Figure 3). However, large seed banks still emerged at all levels of encounter. Closer 

examination revealed that this relationship was partly due to interactions with total resource 296	

concentration, a macroscale property (Figures 5). Specifically, models that simulated chemical 

complexity resulted in characteristically low rates of encounter and highly variable seed banks 298	

(Figures 3-5a). This variability was largely due to the influence of resource concentration, where 
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a greater concentration of resources led to smaller seed banks (Figure 5b). This interaction 300	

between the microscale property of encounter and the macroscale property of resource 

concentration was nearly absent from models that did not simulate chemical complexity.  302	

 

CONCLUSION 304	

Our study supports the general importance of microscale factors in driving ecological dynamics 

and the emergence of seed banks within microbial systems. Resource encounter can drive strong 306	

increases in abundance and productivity across ecologically complex systems. At the same time, 

the chemical complexity of resources greatly influences encounter rates. By considering the 308	

interaction of microscale and macroscale factors, our study provides insight into how otherwise 

resource-rich environments can host large microbial seed banks and high productivity. 310	
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 422	

TABLE 1 | Parameter values for individual based models (IBMs). Top: Values for input 

parameters were randomly chosen within ranges that produced computationally feasible 424	

abundances of organisms and resource particles (up to ~104) within reasonable simulation times 

(up to several minutes per IBM). Mean and variances for recorded data were calculated across 426	

each time point after IBMs reached a state of mean reversion in community abundance. Bottom: 

Recorded data from each IBM. 428	

 

 430	
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 432	

 

 434	

 

 436	

 

 438	

 

 440	

 

Input Parameter 
Range of values 

(per time step) 

Resource molecules flowing in per time step 0 to 90 

Maximum growth rate 10% to 50% 

Maximum maintenance cost for active individuals 1% to 5% 

Maximum dispersal rate 1% to 10% 

Maximum resuscitation rate 0.1% to 1% 

Maximum maintenance-reduction factor, when transitioning to 

dormancy 
20% to 100% 

Incoming resource aggregation, i.e., standard deviation of a 

Normal distribution 
0.1 to 0.4 
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 442	

 

 444	

 

 446	

 

 448	

 

 450	

 

 452	

 

 454	

 

 456	

 

 458	

 

 460	

 

 462	

 

 464	

 

Recorded data  

Growth rate: specific and per capita 

Metabolic maintenance: specific and per capita 

Dispersal rate: specific and per capita 

Aggregation of individuals and resources (Morisita’s index) 

Production of individuals 

Death among individuals 

Total individual abundance 

Size of the dormant fraction, i.e., % dormancy 

Resource concentration 

Total resources 

Number of encounters with consumable resource particles 
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FIGURE CAPTIONS 

 466	

FIGURE 1 | Conceptual diagram depicting dimensions of complexity simulated using 

individual based models (IBM) We modeled spatial complexity (top row) in the microbial 468	

habitat by simulating the distribution of resources clusters (open circles) and the movement of 

microorganisms (solid symbols). In the "white noise" level, the location of individual organisms 470	

and resource molecules changed in an uncorrelated way at each time step. Under these 

conditions, there was no dispersal limitation. In contrast, resources entered as clusters leading to 472	

spatial aggregation in the "random walk" and "chemotaxis" levels of spatial complexity. 

Microorganisms could encounter resource clusters via a random walk or by sensing and moving 474	

towards resources (chemotaxis), albeit with associated energetic costs. We modeled resource 

complexity (middle) row in three different ways. The first level of resource complexity assumed 476	

homogeneity of the resource pool ("monoculture"), while the second level supplied different 

resources ("polycultures") that could only be consumed by specialist microorganisms. We also 478	

simulated chemical complexity by imposing a "lock and key" constraint, such that 

microorganisms could only cleave a resource particle (open colored symbol) from a molecule in 480	

a cluster at a specific location (depicted by the double bond), which came at an energetic cost. 

Finally, we modeled trophic complexity (bottom row) by simulating different types of energy 482	

transfer among resource pools and consumers. The first level of trophic complexity assumed 

simple "consumer-resource" dynamics where microorganisms only consumed inflowing 484	

resources (non-dashed arrow). In the second level of complexity, the biomass of dead cells was 

returned to the resource pool (dashed arrow), which could be subsequently consumed by viable 486	

bacteria in a process that was intended to simulate "scavenging". Last, we simulated "cross-
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feeding" where one group of consumer species generated a metabolic byproduct that could be 488	

taken up by a second group of consumer species (dashed arrow), which in turn generated a 

byproduct that served as a resource for a third group of species. 490	

 

FIGURE 2 | Influence of resource complexity (left), spatial complexity (center), and trophic 492	

complexity (right) on frequencies of encounter between organisms and resource particles. 

A: Across all 11,000 models, we found that chemical complexity substantial reduced the number 494	

of microbe-resource encounters. B: When we subsetted our simulated data to only include 

models with chemical complexity, we found that chemotaxis substantially increased microbe-496	

resource encounter rates. Trophic complexity as modeled, had little-to-no influence on encounter 

rates. 498	

 

FIGURE 3 | Encounter rate affected microbial community properties including 500	

productivity, abundance, and seed-bank size. In each plot, blue heat maps represent the results 

of models that simulated chemical complexity, while red heat maps represent results of models 502	

that did not. Greater heat (i.e., areas within heat maps that have lighter colors) corresponds to a 

greater number of models. Models with chemical complexity have characteristically lower 504	

encounter rates but do not altogether change relationships of encounter to dormancy, abundance, 

and productivity. The relationship of % dormancy to encounter is characterized by a strong lower 506	

constraint, where at high rates of encounter % dormancy is constrained to be high and results in 

the emergence of a large seed bank. 508	
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FIGURE 4 | Microscale factors are stronger drivers than macroscale factors. Encounter rate 510	

was more strongly related to abundance and productivity than total resources and resource 

inflow. Greater heat (i.e., areas within heat maps that have lighter colors) corresponds to a 512	

greater number of models. While greater encounters generally led to a larger seed bank (i.e., 

greater % dormancy), both total resources and resource inflow generally led to lower % 514	

dormancy. The variability in relationships of % dormancy is largely due to models that included 

chemical complexity. 516	

 

FIGURE 5 | Three dimensional heat maps reveal interactions between total resources, 518	

encounter rates, and the seed bank (% dormant). Left: The triangular relationship of % 

dormant to encounter, same as in Figure 3, was driven by models that included chemical 520	

complexity (blue-green heat map). Right: This relationship was in turn driven or modified by the 

concentration of resources in the environment. Among models that included chemical 522	

complexity, greater resource concentration led to lower % dormancy; effects which were not 

pronounced for other levels of chemical complexity. 524	
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