Diverse origins of high copy tandem repeats in grass genomes
- Published
- Accepted
- Subject Areas
- Genetics, Plant Science
- Keywords
- Centromere, tandem repeats, heterochromatin
- Copyright
- © 2016 Bilinski et al.
- Licence
- This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Preprints) and either DOI or URL of the article must be cited.
- Cite this article
- 2016. Diverse origins of high copy tandem repeats in grass genomes. PeerJ Preprints 4:e2314v1 https://doi.org/10.7287/peerj.preprints.2314v1
Abstract
In studying genomic architecture, highly repetitive regions have historically posed a challenge when investigating sequence variation and content. High-throughput sequencing has enabled researchers to use whole-genome shotgun sequencing to estimate the abundance of repetitive sequence, and these methodologies have been recently applied to centromeres. Here, we utilize sequence assembly and read mapping to identify and quantify the genomic abundance of different tandem repeat sequences. Previous research has posited that the highest abundance tandem repeat in eukaryotic genomes is often the centromeric repeat, and we pair our bioinformatic pipeline with fluorescent in-situ hybridization data to test this hypothesis. We find that de novo assembly and bioinformatic filters can successfully identify repeats with homology to known tandem repeats. Fluorescent in-situ hybridization, however, shows that de novo assembly fails to identify novel centromeric repeats, instead identifying other potentially important repetitive sequences. Together, our results test the applicability and limitations of using de novo repeat assembly of tandem repeats to identify novel centromeric repeats. Building on our findings of genomic composition, we also set forth a method for exploring the repetitive regions of non-model genomes whose diversity limits the applicability of established genetic resources.
Author Comment
This is a submission to PeerJ for review.