A peer-reviewed version of this preprint was published in PeerJ on 8 March 2017.

<u>View the peer-reviewed version</u> (peerj.com/articles/3110), which is the preferred citable publication unless you specifically need to cite this preprint.

Brownstein CD. 2017. Description of Arundel Clay ornithomimosaur material and a reinterpretation of *Nedcolbertia justinhofmanni* as an "Ostrich Dinosaur": biogeographic implications. PeerJ 5:e3110 https://doi.org/10.7717/peerj.3110

Redescription of Arundel formation Ornithomimosaur material and a reinterpretation of *Nedcolbertia justinhofmanni* as an "Ostrich Dinosaur": Biogeographic implications

Chase Doran Brownstein Corresp. 1

 $^{
m 1}$ Stamford Museum & Nature Center, Stamford, Connecticut, United States

Corresponding Author: Chase Doran Brownstein Email address: chasethedinosaur@gmail.com

The fossil record of dinosaurs from the Early Cretaceous of eastern North America is scant, and only a few sediments to the east of the continent are fossiliferous. Among them is the Arundel Formation of the east coast of the United States, which has produced among the best dinosaur faunas known from the Early Cretaceous of eastern North America. The diverse dinosaur fauna of this formation has been thoroughly discussed previously, but few of the dinosaur species originally described from the Arundel are still regarded as valid genera. Much of the Arundel material is in need of review and redescription. Among the fossils of dinosaurs from this formation are those referred to ornithomimosaurs. Here, I redescribe ornithomimosaur remains from the Arundel Formation which may warrant the naming of a new taxon of dinosaur. These remains provide key information on the theropods of the Early Cretaceous of Eastern North America. The description of the Arundel material herein along with recent discoveries of basal ornithomimosaurs in the past 15 years has allowed for comparisons with the coelurosaur Nedcolbertia justinhofmanni, suggesting the latter animal was a basal ornithomimosaurian dinosaur rather than a "generalized" coelurosaur. Comparisons between the Arundel ornithomimosaur and similar southeast Asian ornithomimosaurian material as well as ornithomimosaur remains from western North America suggest that a lineage of ornithomimosaurs with a metatarsal condition intermediate between that of basal and derived ornithomimosaurs was present through southeast Asia into North America, in turn suggesting that such animals coexisted with genera having a more primitive metatarsal morphology as seen in *N. justinhofmanni*.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Redescription of Arundel Formation Ornithomimosaur Material and a Reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": Biogeographic Implications.

by Chase Doran Brownstein, Stamford Museum, Stamford, CT.

Abstract.

The fossil record of dinosaurs from the Early Cretaceous of eastern North America is scant, and only a few sediments to the east of the continent are fossiliferous. Among them is the Arundel Formation of the east coast of the United States, which has produced among the best dinosaur faunas known from the Early Cretaceous of eastern North America. The diverse dinosaur fauna of this formation has been thoroughly discussed previously, but few of the dinosaur species originally described from the Arundel are still regarded as valid genera. Much of the Arundel material is in need of review and redescription. Among the fossils of dinosaurs from this formation are those referred to ornithomimosaurs. Here, I redescribe ornithomimosaur remains from the Arundel Formation which may warrant the naming of a new taxon of dinosaur. These remains provide key information on the theropods of the Early Cretaceous of Eastern North America. The description of the Arundel material herein along with recent discoveries of basal ornithomimosaurs in the past 15 years has allowed for comparisons with the coelurosaur Nedcolbertia justinhofmanni, suggesting the latter animal was a basal ornithomimosaurian dinosaur rather than a "generalized" coelurosaur. Comparisons between the Arundel ornithomimosaur and similar southeast Asian ornithomimosaurian material as well as ornithomimosaur remains from western North America suggest that a lineage of

ornithomimosaurs with a metatarsal condition intermediate between that of basal and derived ornithomimosaurs was present through southeast Asia into North America, in turn suggesting that such animals coexisted with genera having a more primitive metatarsal morphology as seen in *N. justinhofmanni*.

Introduction.

The fossil record of dinosaurs from eastern North America during the Cretaceous is sparse compared that of the west of the continent. One of the best dinosaur faunas known from eastern North America comes from the Arundel Formation. This formation, which is Aptian in age (Kranz, 1998), has yielded specimens of sauropod dinosaur *Astrodon johnstoni*, the ornithopod *Tenontosaurus sp.*, the nodosaur *Priconodon crassus*, the tooth of a ceratopsian, and a number of theropods including *Deinonychus sp.* and the dubious theropods *Allosaurus medius*, *Creosaurus potens*, and *Coelurus gracilis* (Kranz, 1998; Weishampel et. al., 2004: Weishampel, 2006). The most recent review of the Arundel dinosaur material found the theropod fauna to contain *Deinonychus sp.*, an *Acrocanthosaurus*-like allosauroid known from a few teeth, and an indeterminate ornithomimosaur in addition to a few indeterminate species (Weishampel, 2006).

The Arundel ornithomimosaur material has been the subject of some taxonomic confusion (Weishampel, 2006). Originally found by Lull (1911) to be an ornithopod, the ornithomimosaur specimens from the Arundel have been described as a species of *Ornithomimus* ("O." affinis), referred to the genus *Archaeornithomimus*, regarded as a small theropod of indeterminate affinities, and finally regarded as an ornithomimosaur of indeterminate affinities (Gilmore, 1920; Russell, 1972; Smith & Galton, 1990; Makovicky, Kobayashi & Currie, 2004;

Weishampel, 2006). The remains were also referred to as *Ornithomimus sp.* or *Ornithomimus affinis* by Serrano-Brañas et. al. (2016). Gilmore (1920) originally described the Arundel material as then a new species of ornithomimosaur based on some pedal elements and caudal vertebrae. Weishampel and Young (1996) noted that pedal elements and the proximal portion of a tibia were retrieved in 1992. However, Weishampel & Young (1996) only figured the proximal end of the tibia and the location of the pedal elements discovered in 1992 is unknown to the author. Most recently, an astralagus was recovered from Prince George's County, Maryland in 2010 (USNM PAL540727).

Early Cretaceous ornithomimosaur remains have been retrieved from from Western North America (Ostrom, 1970; Galton & Jensen, 1975), Europe (Sanz & Wenz, 1988; Perez-Moreno et. al., 1994; Neraudeau & Allain, 2012; Allain et. al., 2014), Asia (Maleev, 1954; Dmitiriev, 1960; Kalandadze & Kurzanov, 1974; Hasegwa & Manabe, 1986; Xu & Wang, 1999; Boonchai & Grote, 2009; Molnar & Obata, 2009; Buffetaut, Suteethorn & Tong, 2009; Makovicky et. al., 2010; Liyong, Jun & Godefroit, 2012), and Africa (Choiniere, Forster & De Klerk, 2012). The rich fossil record of Early Cretaceous ornithomimosaurs which has developed in the past decade has allowed for comparisons of the Arundel specimens with a multitude of new taxa.

Here, I redescribe the Arundel ornithomimosaur remains retrieved from the Arundel Formation of Maryland and housed in the collections of the United States National Museum. The majority of these specimens, including those described by Gilmore (1920), are from a locality numbered 41615 in museum's collections and are referred to the same indeterminate ornithomimosaur taxon. Additionally, a phalanx of pedal digit IV retrieved from another location was referred to this Arundel taxon (then "O" affinis) by Gilmore (1920). Along with an

additional phalanx interpreted from coming from digit IV, the former phalanx described by Glimore (1920) is that of an ornithomimosaur based on its anteroposteriorly short length and is tentatively referred to the same ornithomimosaur taxon which left remains at site 41615.

This new ornithomimosaur has implications for the evolution of more derived members of the ornithomimosauria, suggesting that they were present across North America during the Early Cretaceous. However, the paucity of material from this animal warrants that further specimens are recovered before a new genus name is erected. Additionally, a reinterpretation of *Nedcolbertia justinhofmanni* from the Early Cretaceous of Utah as an ornithomimosaur is provided, showing that taxa with no arctometatarsalian pes and a likely near-arctometatarsalian pes coexisted during relatively the same time in North America as they did in Asia. The biogeographic and ecological implications of ornithomimosaurs with likely different metatarsus morphologies coexisting in North America are discussed, though the paucity of material from these North American forms during the Early Cretaceous makes any conclusions limited.

Methods.

Permits.

No permits were required for the described study, which complied with all relevant regulations.

Help in accessing the specimens was given by Mr. Thomas Jorstad of the Smithsonian

Institution.

Institutional Abbreviations.

I use the term USNM V to refer to the vertebrate zoology collections and USNM PAL to refer to the paleontology collections of the United States National Museum, within both of which the specimens discussed herein are stored.

Results.

Geological Setting.

The best record of the Arundel ornithomimosaur comes from a site numbered 41615 in the USNM collections. This site, along with the locations of the recovery of a few other elements referred to the Arundel ornithomimosaur, is in Prince George's County, Maryland and pertains to the Arundel Formation. This lithology of this formation was often described as "blue charcoal clays with iron carbonate nodules" (Kranz, 1998). However, some have doubted the placement Arundel sediments as a formation and instead have suggested that the Arundel constitutes as deposits from oxbow swamps. This interpretation is based on field observations that the clays of the Arundel appear as discontinuing elongated sediments (Kranz, 1998). Others have discussed that the palynomorphs of the Patuxent and Arundel Formations cannot be distinguished (Brenner, 1963; Doyle & Hickey, 1976; Doyle & Robbins, 1977; Robbins, 1991; Kranz, 1998), providing further evidence against the designation of the Arundel as a formation. Regardless, the sediments referred to as the Arundel are Aptian in age and have produced a diverse vertebrate fauna, including saurischian & ornithischian dinosaurs, testudines, anurans, and aquatic vertebrates like

112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

128

129

130

131

132

133

the shark *Hybodus* and the lungfish *Ceratodus* (e. g. Kranz, 1998; Weishampel et. al., 2004; Weishampel, 2006). Systematic Paleontology. Dinosauria Owen 1852 sensu Padian and May 1993 Theropoda Marsh 1881 sensu Gauthier 1986 Ornithomimosauria Barsbold 1976 sensu Choiniere, Forster & De Klerk, 2012 Ornithomimosauria gen. et. sp. indet. Material: USNM V8454, a dorsal vertebral centrum; USNM V5701 & USNM V6116, two caudal vertebra; USNM 5652 and USNM PAL5407, left and right astragali; USNM V5684, the distal portion of metatarsal III; USNM V5704, the distal portion of metatarsal II; USNM V6108 & USNM V5453, pedal phalanges II-1; USNM V5703, pedal phalanx III-2; USNM V6115, phalanx from pedal digit IV; USNM V6107, a pedal ungual; ?USNM V8456 & ?USNM V16748, two phalanges from pedal digit IV recovered elsewhere in Prince George's County. Additional material, including a tibia, a pedal ungual, and pedal elements were recovered in 1992 and noted by Weishampel & Young (1996), though the author is unaware of the location of these specimens. The partial tibia, however, was figured in Weishampel & Young (1996), and as they noted that the tibia shares similarities with ornithomimosaurs in having a large proximodorsal crest. Additionally, Weishampel & Young (1996) likened some of the new pedal material to ornithomimosauria based on the pedal unguals found which were flat in lateral and medial view. Description: The single dorsal vertebral centrum (figure 1A-B) that was recovered and assigned to an ornithomimosaur by Gilmore (1920) is slightly worn and opisthocoelus. The vertebra

measures 7.6 cm long anteroposteriorly and 49.5 millimeters wide as measured mediolaterally along its distal face (Gilmore, 1920). The neural spine of USNM V8454 was broken off right at the neurocentral suture, the outline of which is still completely visible in lateral and dorsal view on the dorsal face of the vertebra. The condition of the dorsal face suggests that the suture was not fused and therefore that the dinosaur to which USNM V8454 pertains was a juvenile or subadult during the time of its death.

Both caudal vertebra (figure 2A-B) are elongate. USNM V5701 is opisthocoelus and has an elongated neural spine which is eroded in its middle, and measures 68.7 mm anteroposteriorly, while USNM V6116 is 67. 5 mm long (Gilmore, 1920). Two elongated zygapophyses extend distally past the border of the vertebral centrum. the ventral surface of USNM 5701 arches slightly in the middle of the ventral face. USNM V6116 is similar to USNM V5701, but is stouter and its zygapophyses do not extend past the distal end of the centrum.

The left and right astragali (figure 3A-D) retrieved from site 41615 are similar in form in having an ascending process which is square in posterior and anterior views which is separated by a very shallow oval depression from the condylar bodies of the astragali. USNM V5652, the left astragalus, is slightly longer than the right astragalus USNM PAL5407 at 78 mm long anteroposteriorly and 56 mm tall, though this can be attributed to the erosion present on the latter 70 mm long, 40.125 mm tall specimen. A sulcus also separates the astragalar condyles in USNM V5652. As Makovicky, Kobayashi & Currie (2004) discussed, an oval depression separating the ascending process from the condylar bodies and a shallow sulcus separating the astragalar condyles are features found in ornithomimosaurs. Both these features, however, are faint or absent from USNM PAL5407, likely due to weathering.

The distal portions of metatarsals II & III (figure 4A-B) were also recovered from site 41615 and described by Gilmore (1920). Metatarsal III is elongate and measures 139.5 mm long proximodistally (Gilmore, 1920), and both collateral ligament pits are large and teardrop-shaped.. The presence of an arctometatarsalian condition in the Arundel ornithomimosaur is supported by the thinning of the bone immediately after this diaphysis "bulge". At its distal end, metatarsal III measures 43 mm, while 75 mm towards its proximal end, it measures only 29 mm (Gilmore 1920). Ventrally, the distal condyles are separated, though in dorsal view they are fused. The distal end of metatarsal II was also recovered and described by Gilmore (1920). This element also preserves collateral ligament pits and curves outward from the center of the pes to allow room for the articulation of metatarsal III. This portion of metatarsal II measures 54 mm proximodistally and is distally 33 mm wide.

A number of phalanges are preserved, including two which Gilmore originally believed to both have been from the second digit of the right pes of ornithomimosaurs. If so, they would affirm the presence of the fossils of two ornithomimosaur individuals at site 41615. These two specimens (figure 5A-) are similar in being elongate, having distal condyles noticeably separated by a groove, having circular collateral ligament pits, having a slight depression at the distal end of their dorsal faces, and finally having a concave proximal articular facet bordered by a slight rim, though this last feature is less noticeable in USNM V6108. USNM V5453 and USNM V6108 measure 82 mm and 79 mm at their centers and 34 mm and 32 mm wide as measured mediolaterally along their proximal faces, respectively (Gilmore, 1920).

Additionally, a pedal phalanx regarded as III-2 by Gilmore (1920) was recovered (figure 5). The specimen is elongate and both collateral ligament pits were preserved and are teardrop-

shaped. As in phalanges II-1 of the Arundel ornithomimosaur, a slight depression appears at the distal end of the dorsal face of USNM V5703. This phalanx is very slightly curved and has a noticeably expanded rim surrounding the proximal articular facet, which Gilmore (1920) regarded as warranting the phalanx's position as III-2. Indeed, the phalanx is similar to III-2 of *Ornithomimus* (Gilmore, 1920) and *Struthiomimus*, but not to that of the basal taxon *Harpymimus* (figure 6.5 in Makovicky, Kobayashi & Currie, 2004), suggesting that the presence of expanded rim around the proximal articular facet on an elongate pedal phalanx III-2 is a derived trait among ornithomimosaurs. The specimen has an anteroposterior length of 69 mm and is 32 mm wide as measured mediolaterally along its proximal face (Gilmore, 1920).

A partial phalanx, USNM V6115 (figure 5), was recovered from site 41615 and is interpreted as coming from digit IV of the pes of the Arundel ornithomimosaur due to the immediate proximodorsal curvature of the dorsal and ventral faces of the specimen in lateral and medial view suggesting an anteroposteriorly short phalanx. The collateral ligament pits are not well-preserved though still are somewhat visibly circular. The specimen is 31 mm long anteroposteriorly.

Finally, USNM V6107, a pedal ungual (figure 5), was recovered from site 41615. In lateral and medial views, USNM V1607 is very slightly curved. Additionally, the pedal ungual bears a flexor fossa on the proximal end of its ventral face, a synapomorphy of ornithomimosauria (Choiniere, Foster & De Klerk, 2012). The grooves for the claw sheath are well-defined and curve anteromedially towards the distal tip of the ungual. This pedal claw measures 55.5 mm long anteroposteriorly and 17 mm wide as measured lateromedially along its proximal articular facet (Gilmore, 1920).

The two phalanges discovered elsewhere in Prince George's County, Maryland (figure 5) are both interpreted as phalanges of digit IV of an ornithomimosaur as they are both anteroposteriorly short and therefore characteristic of digit IV of ornithomimosaurs (Choiniere, Foster & De Klerk, 2012). USNM V8456, which Gilmore (1920) originally referred to the Arundel ornithomimosaur, is 38 mm long anteroposteriorly and 24 mm wide mediolaterally along its proximal face. USNM V16748 is similar in size and complete. Both preserve circular collateral ligament pits and unfused distal condyles, and are tentatively assigned to the Arundel form at site 41615 due to their similarities with the known pedal phalanx from digit IV found at site 41615 and comparatively short geographic distance between the locations where the two phalanges were each found at site 41615.

The Arundel remains are identified as belonging to an ornithomimosaur due to a flexor fossa being present on the ventral surface of the known pedal ungual and having anteroposteriorly short phalanges from digit IV (Choiniere, Foster & De Klerk, 2012).

Additionally, the USNM material shares the elongated metatarsals found in ornithomimosaurs and the pedal phalanges of the Arundel ornithomimosaur strongly resemble those of *Kinnareemimus khonkaensis* and other genera (Buffetaut, Suteethorn & Tong, 2009).

The astragali of the Arundel form have traits of the astragali of ornithomimosaurs described by Makovicky, Kobayashi & Currie (2004). The caudal vertebrae of the Arundel form are elongated as seen in ornithomimosaurs, though this is also found in other theropods.

Discussion.

223

241

242

243

222

The Arundel ornithomimosaur material represents among the most complete records of 224 any dinosaur from the Early Cretaceous of eastern North America. Though more remains are 225 needed to confidently name a new taxon for the Arundel animal, the fossils of the Arundel 226 ornithomimosaur not only display a mix of derived (i. e., metatarsal III & pedal phalanx III-2 227 displaying morphologies similar to those of some ornithomimids including suggesting the 228 presence of a near arctometatarsalian foot) and basal (recurved pedal phalanx) traits, but also 229 have features dissimilar to or absent from the corresponding elements in other ornithomimosaurs. 230 For example, the dorsal surface of the distal end of metatarsal III displays two ridges which 231 migrate towards each other from the lateral and medial ends of the dorsal face of metatarsal III to 232 form a distinct, upside-down V-shaped outline. These ridges then run almost parallel to each 233 other and then depart again to the lateral and medial sides of the dorsal face. The distal condyles 234 of metatarsal III are also fused in dorsal view, unlike the condition found in *Tototlmimus* 235 packardensis (figure 6 in Serrano-Brañas et. al., 2016). Additionally, the pedal ungual of the 236 Arundel form does not show a sulcus on its ventral surface in lateral or medial views, 237 differentiating it from *Ornithomimus* and *Struthiomimus*. The pes of the Arundel 238 ornithomimosaur is not nearly as robust as those of the deinocheirids Beishanlong & 239 Deinocheirus (Makovicky et. al., 2010; Lee et. al., 2014). 240

The geographical distance between the location of the retrieval of specimens of the Arundel ornithomimosaur and those of other Early Cretaceous ornithomimosaurs may also suggest that the Arundel material is indeed from a distinct taxon intermediate between, though

further remains will need to be recovered in order to confidently erect a new genus for the Arundel form.

Redescription of the Arundel ornithomimosaur and the naming of new basal ornithomimosaur taxa in recent years has allowed for the reinterpretation of the "generalized" North American coelurosaur *Nedcolbertia justinhofmanni* as an ornithomimosaur. *Nedcolbertia* shares two synapomorphies with ornithomimosaurs in having anteroposteriorly shortened phalanges from pedal digit IV and a single flexor fossa on the proximal end of the ventral surface of its pedal unguals (figure 8 & figure 9 in Kirkland et. al., 1998). The proximal end of metatarsal III is restricted mediolaterally slightly less than in *Harpymimus*, and in proximal view the metatarsals are similar in shape to those of *Kinnareeemimus* (figure 8 in Buffetaut, Suteethorn & Tong, 2009). The pedal unguals of *Nedcolbertia* are also triangular in cross-section (Kirkland et. al., 1998), similar to those of some ornithomimosaur taxa and listed as a synapomorphy of ornithomimosaurs by Barsbold & Osmólska (1990). The astralagus of *N. justinhofmanni* is also similar to the left astralagus, USNM PAL5407, of the Arundel ornithomimosaur.

Unlike some ornithomimosaurs, the flexor tubercle of the first manal ungual is extremely pronounced, the manal unguals are likely differentiated, and the dorsal vertebrae are simplistic and pneumatic (Kirkland et. al., 1998). *N. justinhofmanni* can be differentiated from the Arundel ornithomimosaur by having straighter, more elongate pedal unguals and lacking the visibly separated distal condyles seen in phalanx II-1 of the latter taxon (figure 8 & figure 9 in Kirkland et. al., 1998). Additionally, the two forms likely can be differentiated in the morphology of their metatarsus, as the known portion of metatarsal III of the Arundel ornithomimosaur suggests the

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

form had a near-arctometatarsalian condition similar to that of *Kinnareemimus*, while in *Nedcolbertia* the dorsal face of metatarsal III is still completely visible along the entire portion of the metatarsus. *Nedcolbertia* is therefore considered as a basal ornithomimosaur due to its non-arctometatarsalian pedal condition where the shaft of metatarsal III is at least partially visible along its entire run in dorsal view.

The similarities between the Arundel ornithomimosaur and Kinnareemimus suggest that ornithomimosaurs with a metatarsal morphology intermediate between that of the basal Ngwebasaurus thwazi and the derived condition seen in ornithomimids were present in southeast Asia and through the whole of North America. Both Kinnareemimus and Nedcolbertia come from post-earliest Cretaceous pre-Aptian (possibly Barremian) and Barremian sediments, respectively (Kirkland et. al., 1998; Buffetaut, Suteethorn & Tong, 2009), while the Arundel Formation from which the ornithomimosaur discussed herein pertains is Aptian in age (Kranz, 1998). This temporal frame suggests that both basal ornithomimosaurians lacking an arctometatarsalian or near-arctometatarsalian pes and ornithomimosaurs with a pedal morphology closer to the arctometatarsalian condition may have coexisted in North America during the mid-Early Cretaceous. Additionally, ornithomimosaur metatarsals from the Late Aptian to Early Albian Cloverly Formation of the American west (Ostrom, 1970) have morphologies consistent with a near-arctometatarsus or arctometatarsus, supporting the presence of an ornithomimosaurian lineage with a near-arctometatarsalian or arctometatarsalian pes in western North America. However, only portions of metatarsals II & III of this Cloverly Formation form are known (Ostrom 1970).

277

Though the possibility of two distinct lineages of ornithomimosaurs coexisting during the Early Cretaceous is an enticing prospect, more specimens will have to be recovered and analyzed in a biogeographic frame to further understand the spread of lineages of Early Cretaceous "ostrich dinosaurs". Material from the forelimbs, neck, and skull of different lineages of North American Early Cretaceous ornithomimosaurs may show morphological disparities between near-arctometatarsalian/arctometatarsalian and forms with the dorsal surface of metatarsal III completely visible in dorsal view of the metatarsus which could have allowed ornithomimosaurs of different lineages to coexist. Indeed, the dissimilarities between the manus of *Nedcolbertia* and ornithomimids (Kirkland et. al., 1998) suggest that *N. justinhofmanni* employed its forelimbs differently than more derived ornithomimosaurs. It would not surprise the author if future discoveries did reveal that North American ornithomimosaurs with only a slightly-pinched proximal end of metatarsal III possessed different morphologies to carry out daily activities such as food consumption. Unfortunately, the poor record of Early Cretaceous North American dinosaurs has still to yield such remains.

Conclusions.

The Arundel ornithomimosaur is one of the most well-known theropods from the Early Cretaceous of eastern North America and may represent a new taxon. Furthermore, it has provided evidence for the placement of *Nedcolbertia justinhofmanni* as an ornithomimosaur. Both species have implications for the biogeography of Early Cretaceous ornithomimosaur lineages, suggesting that clades with near-arctometatarsalian and non-arctometatarsalian metatarsus morphologies coexisted in Early Cretaceous North America.

300 Acknowledgements. 301 The author would like to thank Mr. Thomas Jorstad for his help in accessing the specimen 302 and for graciously allowing me to use the photographs of the specimens described herein. 303 304 305 References. 306 307 Kranz PM. 1998. Mostly dinosaurs: a review of the vertebrates of the Potomac Group (Aptian 308 Arundel Formation), USA. In Lucas, SG, Kirkland JI & Estep JW. Lower and Middle Cretaceous 309 Terrestrial Ecosystems. New Mexico Museum of Natural History and Science Bulletin 14: 235– 310 238. 311 312 Weishampel DB, Barrett PM, Coria RA, Loeuff JL, Xing X, Xijin Z, Sahni A, Gomani EMP, 313 Noto CR. Dinosaur Distribution. In Weishampel DB, Dodson P & Osmólska H, eds: 2004. The 314 *Dinosauria*, 2nd Edition. Berkeley: University of California Press. pp. 517-617. 315 316 Weishampel DB. 2006. Another look at the dinosaurs of the East Coast of North America. In 317 'Coletivo Arqueológico-Paleontológico Salense, eds: Actas III Jornadas Dinosaurios Entorno. 318 Burgos: Salas de los Infantes. pp. 129-168. 319 320 321

322 Vertebrata. Maryland Geological Survey, Lower Cretaceous Volume: 183-211. 323 324 Gilmore CW. 1920. Osteology of the carnivorous Dinosauria in the United States National 325 Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus. 326 Bulletin of the United States National Museum 60: 1-154. 327 328 Russell DA. 1972. Ostrich dinosaurs from the Late Cretaceous of western Canada. Canadian 329 Journal of Earth Sciences 9: 375-402. 330 331 Smith D & Galton PM. 1990. Osteology of Archaeornithomimus asiaticus (Upper Cretaceous, 332 Iren Dabasu Formation, People's Republic of China). Journal of Vertebrate Paleontology 10: 333 255-265. 334 335 Makovicky PJ, Kobayashi Y & Currie PJ. 2004. Onithomimosauria. In Weishampel DB, Dodson 336 P & Osmólska H, eds: *The Dinosauria*, 2nd Edition. Berkeley: University of California Press. pp. 337 137-150. 338 339 Serrano-Brañas CI, Torres-Rodríguez E, Reyes-Luna PC, González-Ramírez I, González-Leóne 340 C. 2016. A new ornithomimid dinosaur from the Upper Cretaceous Packard Shale Formation 341 (Cabullona Group) Sonora, México. Cretaceous Research 58: 49–62. 342 343

Lull RS. 1911. Systematic paleontology of the Lower Cretaceous deposits of Maryland:

344	Weishampel DB & Young L. 1996. Dinosaurs of the East Coast. Baltimore: Johns Hopkins
345	University Press. pp.
346	
347	Ostrom JH. 1970. Stratigraphy and paleontology of the Cloverly Formation (Lower Cretaceous)
348	of the Bighorn Basin area, Wyoming and Montana. Peabody Museum Bulletin 35:1-234.
349	
350	Galton PM and Jensen JA. 1975. Hypsilophodon and Iguanodon from the Lower Cretaceous of
351	North America. <i>Nature</i> 257: 668-669.
352	
353	Sanz JL & Wenz S. 1988. An Early Cretaceous faunal and floral continental assemblage: Las
354	Hoyas fossil site (Cuenca, Spain). Géobios 21(5): 611-635.
355	
356	Perez-Moreno BP, Sanz JL, Buscalioni AD, Moratalla JJ, Ortega F, Raskin-Gutman D. 1994. A
357	unique multitoothed ornithomimosaur from the Lower Cretaceous of Spain. <i>Nature</i> 370:
358	363-367.
359	
360	Neraudeau D & Allain R. 2012. The Hautevarian-Barremian lignitic bone bed of Angeac
361	(Charente, south-west France): stratigraphical, palaeobiological and palaeogeographical
362	implications. Cretaceous Research 37(1): 1-14.
363	
364	Allain R, Vullo R, Le Loeuff J, Tournepiche JF. 2014. European ornithomimosaurs (Dinosauria,
365	Theropoda): an undetected record. <i>Geologica Acta</i> 12(2): Advance Online Publication.

367	Syrmosauridae). Trudy Paleontologicheskogo Instituta Akademiy Nauk SSSR 48: 142-170.
368	
369	Dmitiriev GA. 1960. New discoveries of dinosaurs in Buryatia. Paleontologicheskii Zhurnal
370	1960(1): 148.
371	Kalandadze NN & Kurzanov SM. 1974. Lower Cretaceous terrestrial vertebrate localities of
372	Mongolia. In Kramarenko NN, Luvsandansan B, Voronin YI, Barsbold R, Rozhdestve AK, eds:
373	Mesozoic and Cenozoic Faunas and Biostratigraphy of Mongolia. The Joint Soviet-Mongolian
374	Paleontological Expedition, Transactions 1: 288-295.
375	
376	Hasegwa Y & Manabe M. 1986. Dinosaur fossils and tracks in Japan. In Gillette DD & Lockley
377	MG, eds: First International Symposium on Dinosaur Tracks and Traces, Abstracts with
378	Program.
379	
380	Xu X & Wang X-L. 1999. A dromaeosaurid dinosaur with a filamentous integument from the
381	Yixian Formation of China. Nature 401: 262-266.
382	
383	Boonchai N & Grote PJ. 2009. Paleontological parks and museums and prominent fossil sites in
384	Thailand and their importance in the conservation of fossils. In Lipps JH & Granier BRC, eds:
385	PaleoParks - The Protection and Conservation of Fossil Sites Worldwide. Notebooks on Geology
386	Book 3(7): 75-95.
387	

Maleev EA. 1954. The Upper Cretaceous armored dinosaurs of Mongolia (family

388 Cretaceous Sebayashi Formation, Sanchu Cretaceous, Japan. Bulletin of Tokyo Gakugei 389 *University, Division of Natural Sciences* 61: 105-117. 390 391 Ji Q, Norell MA, Makovicky PJ, Gao K, Ji S, Yuan C. 2003. An Early Ostrich Dinosaur and 392 Implications for Ornithomimosaur Phylogeny. American Museum Novitates 3420: 1–19. 393 394 Buffetaut E, Suteethorn V & Tong H. 2009. An early 'ostrich dinosaur' (Theropoda: 395 Ornithomimosauria) from the Early Cretaceous Sao Khua Formation of NE Thailand. In 396 Buffetaut E, Cuny G, Le Loeuff J & Suteethorn V, eds: Late Palaeozoic and Mesozoic 397 Ecosystems in SE Asia. Geological Society of London Special Publication 315: 229-243. 398 399 Makovicky PJ, Li D, Gao KQ, Lewin M, Erickson GM, Norell MA. 2010. A giant 400 ornithomimosaur from the Early Cretaceous of China. *Proceedings of the Royal Society B:* 401 Biological Sciences 277(1679): 191–198. 402 403 Liyong J, Jun C & Godefroit P. 2012. A New Basal Ornithomimosaur (Dinosauria: Theropoda) 404 from the Early Cretaceous Yixian Formation, Northeast China. In Godefroit P, ed: Bernissart 405 Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Bloomington: Indiana University Press. 406 pp. 467–487. 407 408 409

Molnar RE & Obata I. 2009. A tooth of Fukuiraptor aff. F. kitadaniensis from the Lower

Brenner JG. 1963. The spores and pollen of the Potomac Group of Maryland. Baltimore: State of 410 Maryland, Board of Natural Resources, Dept. of Geology, Mines, and Water Resources. pp. 15. 411 412 Doyle JA & Hickey LJ. 1976. Pollen and leaves from the Mid-Cretaceous Potomac Group and 413 their Bearing on Early Angiosperm Evolution. In Origin and Early Evolution of Angiosperms: 414 136-206. 415 416 Doyle JA & Robbins ET. 1977. Angiosperm pollen donation of the Continental Cretaceous of the 417 Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. *Palynology* 418 1: 43-78. 419 420 Robbins EI. 1991. Age of Early Cretaceous palynomorphs in the Muirkirk clay pit fossil locality 421 (Prince George's County, MD). US Geological Survey Open-File Report 91-613: 1-7. 422 423 Owen R .1842. Report on British Fossil Reptiles, Pt. II. Report of the British Association for the 424 Advancement of Science 11: 60–204. 425 426 Padian K & May CL. 1993. The earliest dinosaurs. In Lucas SG & Morales M, eds: The 427 Nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin 3: 379-381. 428 429 Marsh OC. 1881. Principal characters of American Jurassic dinosaurs. Part V. American Journal 430 of Sciences series 3 21: 417-423. 431

432	Gauthier J. 1986. Saurischian monophyly and the origin of birds. <i>Memoirs of the California</i>
433	Academy of Sciences 8: 1–55.
434	
435	Barsbold R. 1976. K evolyutsii i sistematike pozdnemezozovskikh khishchnykh dinozavrov. In
436	Kramarenko, Luvsandansan, Voronin, Barsbold, Rozhdestvensky, Trofimov, Reshetov, eds:
437	Paleontology and Biostratigraphy of Mongolia. The Joint Soviet-Mongolian Paleontological
438	Expedition, Transactions 3: 68-75.
439	
440	Weishampel DB & Young L. 1996. Dinosaurs of the East Coast. Baltimore: Johns Hopkins
441	University Press. pp. 132-134.
442	
443	Lee YN, Barsbold R, Currie PJ, Kobayashi Y, Lee HJ, Godefroit P, Escuillié F, Chinzorig T.
444	2014. Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus.
445	<i>Nature</i> 515: 1–4.
446	
447	Kirkland JI, Whittle CH, Britt BB, Madsen S, Burge D. 1998. A Small Theropod from the Basal
448	Cedar Mountain Formation (Lower Cretaceous, Barremian) of Eastern Utah. In Lucas SG,
449	Kirkland JI & Estep JW, eds:Lower and Middle Cretaceous Terrestrial Ecosystems. New Mexico
450	Museum of Natural History and Science Bulletin 14: 239-248.
451	
452	
453	

Figure 1(on next page)

Dorsal Vertebra of the Arundel Ornithomimosaur

Figure 1. Dorsal vertebra of the Arundel ornithomimosaur in lateral (A), and dorsal (B) views. Scale bar = 50 mm. Courtesy of Smithsonian Institution. Photos by M. Brett-Surman.

Figure 2(on next page)

Caudal Vertebrae of the Arundel Ornithomimosaur

A.

B.

Figure 2. Caudal vertebra of the Arundel Ornithomimosaur in lateral (A, B) view. Scale bar = 60 mm. USNM V5701 pictured in A; USNM V6116 pictured in B. Courtesy of Smithsonian Institution. Photos by M. Brett-Surman.

Figure 3(on next page)

Astragali of Arundel Ornithomimosaur

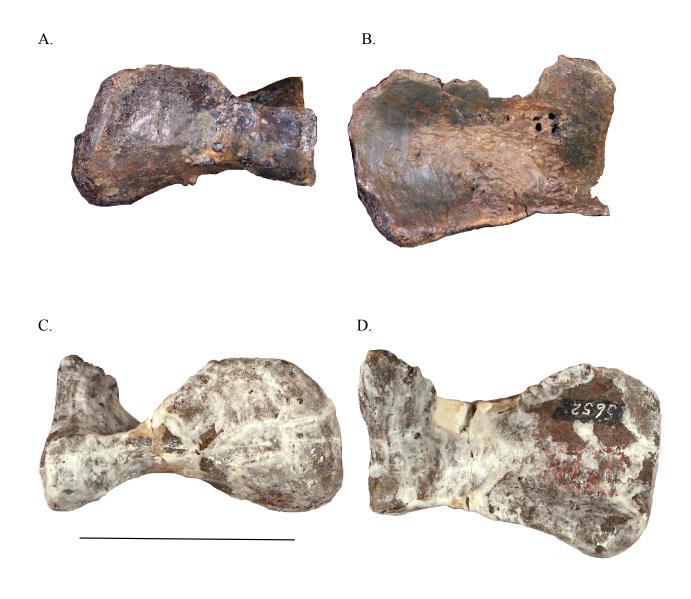


Figure 3. Left and right astralagi of the Arundel ornithomimosaur in medial (A, C) and dorsal (B, D) views. Scale bar = 60 mm. USNM PAL5407 pictured in A-B; USNM V5652 pictured in C-D. Courtesy of Smithsonian Institution. Photos by M. Brett-Surman.

Figure 4(on next page)

Selected Pedal Elements of the Arundel Ornithomimosaur

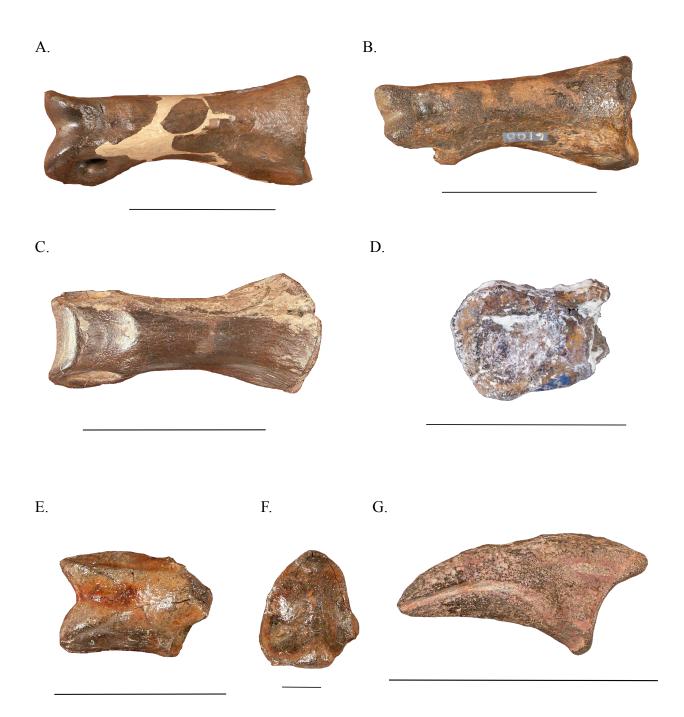


Figure 6. Selected pedal elements from the Arundel ornithomimosaur. USNM V5453, right pedal phalanx II-1, in dorsal view (A); USNM V6108, ?right pedal phalanx II-1, in dorsal view (B); USNM V5703, right pedal phalanx III-2, in dorsal view (C); USNM V6115, pedal phalanx of digit IV, in medial view (D); USNM V8456, pedal phalanx of digit IV, in dorsal (E) and proximal (F) views; USNM V6107, pedal ungual, in medial view (G). Scale bar = 50 mm (A, B, C, G), = 40 mm (D, E,), = 10 mm (F). Courtesy of Smithsonian Institution. Photos by M. Brett-Surman.