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The ability to recognise new research trends early is strategic for many stakeholders, such

as academics, institutional funding bodies, academic publishers and companies. While the

state of the art presents several works on the identification of novel research topics,

detecting the emergence of a new research area at a very early stage, i.e., when the area

has not been even explicitly labelled and is associated with very few publications, is still an

open challenge. This limitation hinders the ability of the aforementioned stakeholders to

timely react to the emergence of new areas in the research landscape. In this paper, we

address this issue by hypothesising the existence of an embryonic stage for research

topics and by suggesting that topics in this phase can actually be detected by analysing

diachronically the co-occurrence graph of already established topics. To confirm our

hypothesis, we performed a study of the dynamics preceding the creation of novel topics.

This analysis showed that the emergence of new topics is actually anticipated by a

significant increase of the pace of collaboration and density in the co-occurrence graphs of

related research areas. These findings are very relevant to a number of research

communities and stakeholders. Firstly, they confirm the existence of an embryonic phase

in the development of research topics and suggest that it might be possible to perform

very early detection of research topics by taking into account the aforementioned

dynamics. Secondly, they bring new empirical evidence to related theories in Philosophy of

Science. Finally, they suggest that significant new topics tend to emerge in an

environment in which previously less interconnected research areas start cross-fertilising.
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ABSTRACT 9 

The ability to recognise new research trends early is strategic for many stakeholders, such as 10 

academics, institutional funding bodies, academic publishers and companies. While the state 11 

of the art presents several works on the identification of novel research topics, detecting the 12 

emergence of a new research area at a very early stage, i.e., when the area has not been even 13 

explicitly labelled and is associated with very few publications, is still an open challenge. 14 

This limitation hinders the ability of the aforementioned stakeholders to timely react to the 15 

emergence of new areas in the research landscape. In this paper, we address this issue by 16 

hypothesising the existence of an embryonic stage for research topics and by suggesting that 17 

topics in this phase can actually be detected by analysing diachronically the co-occurrence 18 

graph of already established topics. To confirm our hypothesis, we performed a study of the 19 

dynamics preceding the creation of novel topics. This analysis showed that the emergence of 20 

new topics is actually anticipated by a significant increase of the pace of collaboration and 21 

density in the co-occurrence graphs of related research areas. These findings are very relevant 22 

to a number of research communities and stakeholders. Firstly, they confirm the existence of 23 

an embryonic phase in the development of research topics and suggest that it might be 24 

possible to perform very early detection of research topics by taking into account the 25 

aforementioned dynamics. Secondly, they bring new empirical evidence to related theories in 26 

Philosophy of Science. Finally, they suggest that significant new topics tend to emerge in an 27 

environment in which previously less interconnected research areas start cross-fertilising. 28 

 29 

Keywords: Scholarly Data, Empirical Study, Research Trend Detection, Topic Emergence 30 

Detection, Topic Discovery, Digital Libraries, Ontology, Semantic Web 31 

 32 

INTRODUCTION 33 

Being aware of the rise of new research topics can bring significant benefits for anybody 34 

involved in the research environment. Academic publishers and editors can exploit this 35 

knowledge for offering the most up to date and interesting contents. Researchers might be 36 

interested in new trends related to their topics and in promising new research areas. 37 

Institutional funding bodies and companies need to be updated constantly on how the 38 

research landscape is evolving in order to make early decisions about critical investments. 39 

Nonetheless, considering the growth rate of research publications (Larsen & Von Ins 2010), 40 

keeping up with novel trends is a challenge even for expert researchers and traditional 41 

methods, such as the manual exploration of the publications in significant conference and 42 

journals, are no longer viable. This lead to the emergence of several approaches capable of 43 

detecting novel topics and research trends (Bolelli et al. 2009; Duvvuru et al. 2012; He et al. 44 

2009; Wu et al. 2016). However, these approaches focus on topics that are associated with a 45 

substantial number of publications or on which the scientific community reached a consensus 46 

for a specific label. This limitation hinders the ability of aforementioned stakeholders to 47 

timely react to novelties in the research landscape. 48 
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An intriguing challenge is thus to identify in a very early phase the appearance of a new 49 

topic, assess its potential and forecast its trend. For this reason, we need a better 50 

understanding of the dynamics underlying the creation of new topics and how these can be 51 

detected using current knowledge bases. 52 

The Philosophy of Science offers a number of intriguing theories about the emergence of new 53 

topics. Kuhn (2012) theorised that science evolves through paradigm shifts. According to 54 

him, scientific work is performed within a set of paradigms and when these paradigms cannot 55 

cope with certain problems, there is a paradigm shift that can lead to the emergence of a new 56 

scientific discipline. This happens often through the creation of novel scientific 57 

collaborations. In this regards, Becher & Trowler (2001) explained that, even if science 58 

proceeds toward more specific disciplines and thus researchers in different communities 59 

become less compatible, they are still incline to collaborate for mutual benefit. Herrera et al. 60 

(2010), Sun et al. (2013), Nowotny et al. (2013) suggested that the development of new 61 

topics is actually encouraged by the cross-fertilisation of established research areas and 62 

recognised that multidisciplinary approaches foster new developments and innovative 63 

thinking. Sun et al. (2013) and Osborne et al. (2014) provided empirical evidence to these 64 

theories by analysing the social dynamics of researchers and their effect on research 65 

communities and topics. 66 

According to these theories, when a new scientific area emerges, it goes through two main 67 

phases. In the initial stage a group of scientists agree on some basic theories, build a 68 

conceptual framework and begin to establish a new scientific community. Afterwards, the 69 

area enters into a recognised phase in which a substantial number of authors start working on 70 

it, producing and disseminating results (Couvalis 1997). 71 

Inspired by previous theories, we hypothesize the existence of an even earlier phase, that we 72 

label embryonic phase, in which a topic has not yet been explicitly labelled or recognized by 73 

a research community, but exist as a fuzzy entity which entices a number of researchers from 74 

a variety of fields to converge and collaborate, with the aim of defining the mission and the 75 

paradigms of this potential research area. We also hypothesize that it is possible to detect 76 

topics in this stage by analysing the dynamics of established topics, which should reflect the 77 

new collaborations of pioneer researchers shaping the new area. 78 

This paper presents a study of the dynamics preceding the creation of novel topics which 79 

supports our hypothesis by showing that the emergence of novel research topics is actually 80 

anticipated by a significant increase of pace of collaboration and density in the co-occurrence 81 

graphs of related topics. 82 

The study was conducted in the 2000-2010 interval on a sample of three million publications. 83 

It was conducted by selecting sections of the co-occurrence graph where a new topic is about 84 

to emerge and analysing their dynamics in the previous five years versus a control group of 85 

subgraphs related to established topics. The analysis was performed with two different 86 

approaches that integrate statistics and semantics. It was found that the pace of collaboration 87 

and density measured in the sections of the network that will give rise to a new topic are 88 
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significantly higher (p < 0.0001) than the one in the control group. These findings confirm 89 

the existence of an embryonic phase, yield new empirical evidences to aforementioned 90 

theories and confirm the strong benefits of an interdisciplinary environment.  91 

The study presented in this paper is an extension of the one published in (Salatino & Motta 92 

2016). The new contribution of this paper are: 1) a larger sample (75 debutant topics and 100 93 

established ones), 2) a new technique for measuring the density of the topic graphs, 3) a more 94 

exhaustive statistical analysis, including the comparison of the different approaches, 4) a 95 

revised state of the art, and 5) a more comprehensive discussion of the findings.  96 

The rest of the paper is organized as follows. We will first review the literature regarding the 97 

early detection of topics, pointing out the existing gaps. Then we will describe the 98 

experimental approach used for the study, present the results and discuss their implication. 99 

Finally, we will summarize the main conclusions and outline future directions of research. 100 

RELATED WORK 101 

Topic detection and tracking is a task that has drawn much attention in the last years and has 102 

been applied to a variety of scenarios, such as social networks (Cataldi et al. 2010; 103 

Mathioudakis & Koudas 2010), blogs (Gruhl et al. 2004; Oka et al. 2006), emails (Morinaga 104 

& Yamanishi 2004) and scientific literature (Bolelli et al. 2009; Decker et al. 2007; Erten et 105 

al. 2004; Lv et al. 2011; Osborne et al. 2014; Sun et al. 2016; Tseng et al. 2009).  106 

The state of the art presents several works on research trend detection, which can be 107 

characterised either by the way they define a topic or the techniques they use to detect them 108 

(Salatino 2015). Blei et al. (2003) developed the well-known Latent Dirichlet Allocation 109 

(LDA) which is an unsupervised learning method to extract topics from a corpus and models 110 

topics as a multinomial distribution over words. Since its introduction, LDA has been 111 

extended and adapted in several applications. For example, Blei & Lafferty (2006) introduced 112 

the Correlated Topic Model using the logistic normal distribution instead of the Dirichlet one, 113 

to solve the fact that LDA fails to model the correlation between topics. Griffiths & 114 

Tenenbaum (2004) developed the hierarchical LDA where topics are grouped together in a 115 

hierarchy. Further extensions, incorporate other kinds of research metadata. For example, 116 

Rosen-Zvi et al. (2004) presented the Author-Topic model (ATM) which includes authorship 117 

information and then associates each topic to a multinomial distribution over words and each 118 

author to a multinomial distribution over topics. Bolelli et al. (2009) introduced the 119 

Segmented Author-Topic model which further extends ATM by adding the temporal ordering 120 

of documents to address the problem of topic evolution. In addition, Chang & Blei (2010) 121 

developed the relational topic model which combines LDA and the network structure of 122 

documents to model topics. Similarly, He et al. (2009) combined LDA and citation networks 123 

in order to address the problem of topic evolution. Their approach detects topics in 124 

independent subsets of a corpus and then leverages citations to connect topics in different 125 

time frames. In a similar way, Morinaga & Yamanishi (2004) employed a probabilistic model 126 

called Finite Mixture Model to represent the structure of topics and analyse the changes in 127 

time of the extracted components to track emerging topics. However, it was evaluated on an 128 

email corpus, thus it is not clear how it could perform on scientific corpus. A general issue of 129 
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this kinds of approaches is that is not always easy to associate specific research areas to the 130 

resulting topics. 131 

In addition to LDA, the Natural Language Processing (NLP) community proposed a variety 132 

of tools for identifying topics. For example, Chavalarias & Cointet (2013) used CorText 133 

Manager to extract a list of 2000 n-grams representing the most salient terms from a corpus 134 

and derived a co-occurrence matrix on which they perform clustering analysis to discover 135 

patterns in the evolution of science. Jo et al. (2007) developed an approach that correlates the 136 

distribution of terms extracted from the text with the distribution of the citation graph related 137 

to publications containing those terms. Their work is based on the assumption that if a term is 138 

relevant to a particular topic, documents containing that term will have a stronger connection 139 

than randomly selected ones. However, this approach is not suitable for topics in their very 140 

early stage since it takes time for the citation network of a term to become tightly connected. 141 

Duvvuru et al. (2013) analysed the co-occurring network of keywords in a scholarly corpus 142 

and monitored the evolution in time of the link weights for detecting research trends and 143 

emerging research areas. However, as Osborne & Motta (2012) pointed out, keywords tend to 144 

be noisy and do not always represent research topics and in many cases different keywords 145 

can represent the same topic. For example, Osborne et al. (2014) showed that the use of a 146 

semantic characterisation of research topics yields better results for the detection of research 147 

communities. To cope with this problem, some approaches rely on taxonomies of topics. For 148 

example, Decker et al. (2007) matched a corpus of research papers to a taxonomy of topics 149 

based on the most significant words found in titles and abstracts, and analysed the changes in 150 

the number of publications associated with topics. Similarly, Erten et al. (2004) adopted the 151 

ACM Digital Library taxonomy for analysing the evolution of topic graphs and monitoring 152 

research trends. However, human crafted taxonomy tend to evolve slowly and in a fast-153 

changing research field such as Computer Science (Pham et al. 2011) it is important to rely 154 

on constantly updated taxonomies. For this reason, in our experiment we adopted an ontology 155 

of Computer Science automatically generated and regularly updated by the Klink-2 algorithm 156 

developed by Osborne & Motta (2015). 157 

In brief, the state of the art provides a wide collection of approaches for detecting research 158 

trends. However, these focus on already recognised topics, associated with either a label or, 159 

in the case of probabilistic topics models, with a set of terms that should have previously 160 

appeared in a good number of publications. Therefore, detecting research trends in a very 161 

early stage is still an open challenge.  162 

EMPIRICAL STUDY 163 

The aim of this study was to explore whether the emergence of new topics is anticipated by a 164 

significant increase of pace of collaboration and density in the co-occurrence graphs of 165 

related topics. To this end, we represented topics and their relationships in certain time 166 

interval as a graph in which nodes are topics and edges represent their co-occurrences in a 167 

sample of publications. This is a common representation for investigating topic dynamics 168 

(Boyack et al. 2005; Leydesdorff 2007; Newman 2001) and we will refer to it as topic graph 169 

or topic network in the following. We then selected 75 topics debuting between 2000 and 170 
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2010 and extracted the sub-graphs containing their n most co-occurring topics in the five 171 

years before their debut. Finally, we measured the collaboration pace and the density of these 172 

graphs, comparing it to those of a control group of established topics.  173 

In the following sections we will describe the dataset, the semantically enhanced topic graph 174 

and the methods used to measure the pace of collaboration and the density of the subgraphs. 175 

The raw data and the outcomes of this study are publically available at 176 

http://technologies.kmi.open.ac.uk/rexplore/peerj2016/. 177 

Semantic Enhanced Topic Network 178 

We used as dataset the metadata describing 3 million papers in the field of Computer Science 179 

from a dump of the well-known Scopus dataset1. In this dataset each paper is associated to a 180 

number of keywords that could be used to build the topic graph. However, as pointed out in 181 

(Osborne & Motta 2012), the use of keywords as proxies for topics suffers from a number of 182 

problems: some keywords tend to be noisy and do not represent topics (e.g., <case study=) 183 

and multiple keywords can refer to the same topic (e.g., <ontology mapping= and <ontology 184 

matching=). 185 

We address this issue by building a semantically enhanced topic graph with the Klink-2 186 

ontology of Computer Science, which describes the relationship between almost 15000 187 

research areas. Klink-2 is an algorithm which analyses keywords and their relationships with 188 

research papers, authors, venues, and organizations and takes advantage of multiple 189 

knowledge sources available on the web in order to produce an ontology of research topics 190 

linked by three different semantic relationships. Klink-2 is integrated in the Rexplore system 191 

(Osborne et al. 2013), a modern tool for exploring and making sense of scholarly data, which 192 

adopts novel solutions in large-scale data mining, semantic technologies and visual analytics. 193 

In particular, Rexplore uses the large Computer Science ontology to craft semantic-aware 194 

analytics.  195 

We took advantage of the Klink-2 ontology by filtering from our dataset the keywords that 196 

did not represent specific research areas and aggregating keywords representing the same 197 

concept, i.e., linked by a relatedEquivalent relationship in the ontology (Osborne et al. 2013). 198 

For example, we aggregated keywords such as <semantic web=, <semantic web technology= 199 

and <semantic web technologies= in a single semantic topic and assigned it to all publications 200 

associated with these keywords. 201 

We used the resulting semantic topics to build sixteen topic networks representing the topic 202 

co-occurrences in the 1995-2010 timeframe. Each network is a fully weighted graph Gyear = 203 

(Vyear, Eyear), in which V is the set of topics while E is the set of links representing the topic 204 

co-occurrences. The node weight is given by the number of publications in which the 205 

keyword appears, while the link weight is equal to the number of publications in which two 206 

topics co-occur together in a year. 207 

                                                 
1 https://www.elsevier.com/solutions/scopus 
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Graph Selection   208 

We randomly selected 75 topics that debuted in the period between 2000 and 2010 as 209 

treatment group (also referred as debutant group) and 100 well-established topics that made 210 

their debut at least in the previous decade as control group (also referred as non-debutant 211 

group). A topic debuts in the year in which its label first appears in a research paper. The 212 

debutant topic graphs included 1357 topics, while the control group ones 1060 topics. The 213 

fact that the set of graph is larger is due to the fact that novel topics tend to collaborate with a 214 

larger variety of research areas.  215 

We assume that after a new topic emerges it will continue to collaborate with the topics that 216 

contributed to its creation for a certain time. This assumption was discussed and tested in 217 

previous work (Osborne & Motta 2012) where it was used for finding historical subsumption 218 

links between research areas. Hence, for each debuting topic we extracted the portion of topic 219 

network containing its n most co-occurring topics from the year of debut until nowadays and 220 

analysed their activity in the five years preceding its year of debut. Since we want to analyse 221 

how the dimension of these subgraphs could influence the results, we tested different values 222 

of n (20, 40, and 60). 223 

Figure 1 summarizes this process. For example, if a topic A had its debut in 2003, the portion 224 

of network containing its most co-occurring topics will be analysed in the 1998-2002 225 

timeframe. We repeated the same procedure on the topics in the control group, assigning 226 

them a random year of analysis within the decade 2000-2010. In the previous study (Salatino 227 

& Motta 2016) we assigned each established topic to a random year of analysis, while for this 228 

study we randomly assigned each established topic to two consecutive years with the aim of 229 

reducing the noise and smoothing the resulting measures. 230 

At the end of the selection phase we associated to each topic in the two groups a graph 
topic

G : 231 

 5 4 3 2 1
topic topic topic topic topic topic

year year year year year
G G G G G G          (1) 232 

which corresponded to its collaboration network in the five years prior to its emergence. This 233 

graph contained five sub-graphs topic

year i
G   and each one corresponded to: 234 

 ( , )topic topic topic

year i year i year i
G V E    (2) 235 

in which topic

year i
V  is the set of most co-occurring topics in a particular year and topic

year i
E  is the set of 236 

edges that link nodes in the set topic

year i
V  .  237 
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 238 

Figure 1: Workflow representing all the steps for the selection phase. 239 

 240 

Graph Analysis 241 

We assess the dynamics in the graphs with two main approaches: cliques-based and triad-242 

based. The first transforms the graph in 3-cliques, associates to each of them a measure 243 

reflecting the increase in collaboration between the relevant topics and then averages the 244 

results over all 3-cliques. The second measures the increase in the topics graph density via the 245 

triad census technique (Davis & Leinhardt 1967). In the following two sections we will 246 

describe both methods in details.  247 

Cliques-based method 248 

This method is based on the intuition that we can measure the collaboration pace of a graph 249 

by analysing the diachronic activity of triangles of collaborating topics. Hence, we first 250 

transformed the graphs in sets of 3-cliques. A 3-clique, as shown in Figure 2, is a complete 251 

sub-graph of order three in which all nodes are connected to one another and is employed for 252 

modelling small groups of entities close to each other (Luce & Perry 1949). We then 253 

extracted the 3-cliques from the five sub-graphs associated to each topic and created 254 

timelines of cliques in subsequent years. In order to assess the increase of collaboration 255 

between nodes {ý, þ, ÿ} in a 3-clique we adopted Equation 3, which takes in consideration 256 

both node weights {�ÿ, �Ā , �ā} and link weights {�ÿĀ , �Āā, �āÿ}. It does so by computing 257 

the conditional probability �(þ|ý) = �ýþ/�ý that a publication associated with a topic x will 258 

be also associated with a topic y in a certain year. The advantage of using the conditional 259 

probability over the number of co-occurrences is that the resulting value is already 260 

normalised according to the number of publications associated to each topic.  261 

We computed the weight associated to each link between topic x and y by using the harmonic 262 

mean of the conditional probabilities �(þ|ý) and �(ý|þ) and then computed the final index 263 �Δ as the harmonic mean of all the weights of the clique. This solution was adopted after 264 

testing a variety of alternative approaches (e.g., arithmetic mean) during a preliminary 265 

evaluation discussed in the Findings section. 266 
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 268 

Figure 2. An instance of a 3-clique containing nodes and links weights. 269 

At this stage, each clique was reduced to the timeline of measures showed in Equation 4. We 270 

then studied the evolution of these values for determining whether the collaboration pace of a 271 

clique was increasing or decreasing in the time interval, as illustrated in Figure 3.  272 

 273 

 time ( yr 5) ( yr 4) ( yr 3) ( yr 2) ( yr 1)[ , , , , ]clique i     
            (4) 274 

 275 

 276 

Figure 3. Main steps of the analysis phase: from 3-cliques matching to slope processing. 277 

We first tried to determine the trend of a clique by simply taking the difference between the 278 

first and last values of the timeline. However, this method ignores the other values in the 279 

timeline and can thus neglect important information. For this reason, we applied instead the 280 

linear interpolation method on the five measures using the least-squares approximation to 281 

determine the linear regression of the time series  �(ý) = ÿ ∙ ý + Ā. The slope a is then used 282 

to assess the increase of collaboration in a clique. When a is positive the degree of 283 

collaboration between the topics in the clique is increasing over time, while when is negative 284 

the number and intensity of collaborations are decreasing.  285 

Finally, the collaboration pace of each sub-graph was measured by computing the mean of all 286 

the slopes associated with the 3-cliques.  287 
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Triad-based method 288 

The triad-based method employs the triad census (Davis & Leinhardt 1967) to measure the 289 

change of topology and the increasing density of the subgraphs during the five year period. 290 

The triad census of an undirected graph, also referred as global 3-profiles, is a four 291 

dimensional vector representing the frequencies of the four isomorphism classes of triad, as 292 

shown in Figure 4.  293 

 294 

Figure 4. The four isomorphism classes of triad. The triad census consists in counting the frequencies of Hi of the input 295 
graph. 296 

The triad census summarises the structural information in networks and is useful to analyse 297 

structural properties in social networks. In has been applied to several scenarios, such as 298 

identifying spam (Kamaliha et al. 2008; O'Callaghan et al. 2012), comparing networks (Pržulj 299 

2007), analysing social networks (Faust 2010; Ugander et al. 2013) and so on.  300 

In this study, we used triad census to describe all the sub-graphs topic

year i
G   associated to a 301 

particular testing topic in terms of frequencies of Hi (see Figure 4) and then evaluate how the 302 

frequencies of empties (H0), one edges (H1), two-starts (H2) and triangles (H3) changed in 303 

time. Figure 4 illustrates the four classes of triad for an undirected graph as in the case of 304 

topic network. Naturally an increase of the numbers of triangles suggests the appearance of a 305 

number of new collaborations clusters between previous distant topics. 306 

Differently from the previous approach, the triad census does not consider the weight of 307 

links, but only their existence. Hence, it is useful to assess how including links with different 308 

strength might influence the analysis. To this end, we performed three experiments in which 309 

we considered only links associated with more than 3, 10 and 20 topic co-occurrences. 310 

Figure 5 shows the workflow for analysing how the topology of networks related to a testing 311 

topic evolved in the five years preceding its debut. We first performed the triad census over 312 

the five graphs associated to each testing topic. For example, Table 1 shows the results of the 313 

triad census over the five sub-graphs associated to the debutant topic <Artificial Bee 314 

Colonies=. We then measured whether the collaboration graph was becoming denser by 315 

analysing how the frequencies associated to Hi evolved (see Figure 6). To do so, we 316 

computed the percentage growth of each Hi using Equation 5. 317 

  (5) 318 

Then we used Equation 6, which performs a weighted summation of all the contributions of 319 

percentage of growth.  320 

1 5

5

( ) *100
%

Yr Yr

i i
i Yr

i

H H
GrowthH

H

 





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  (6) 321 

As a result, we expect that the growing index of the portion of network related to debutant 322 

topics would be significantly higher than the one associated to non-debutant topics. 323 

 324 

Figure 5. Main step of the analysis phase for the triad census approach.  325 

Table 1. Frequencies of Hi obtained performing triad census on the debutant topic <Artificial Bee Colonies= 326 

Graph H0 H1 H2 H3 

 �����−ă�ýþ��
 446 790 807 882 �����−Ă�ýþ��
 443 854 915 1064 �����−ā�ýþ��
 125 486 967 1698 �����−Ā�ýþ��
 100 410 908 1858 �����−ÿ�ýþ��
 68 486 849 2251 

 327 

 328 

Figure 6: Development in time of the frequencies of Hi in the network related to the emergence of "Artificial Bee Colonies". 329 

 330 

Findings 331 

In this section we report the results obtained by analysing the debutant and the control groups 332 

with the previously discussed methods. We will describe: 333 

 The preliminary evaluation performed on a reduced dataset for assessing the metrics 334 
used in the Cliques-based method; 335 
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 The full study using the Cliques-based method; 336 
 The full study using the Triads-based method. 337 

 338 

Preliminary evaluation with alternative cliques-based methods 339 

We initially conducted a preliminary evaluation with the aim of choosing the most effective 340 

Cliques-based method for assessing the pace of collaboration. This test focused on the 341 

subgraph of the 20 most co-occurring topics associated to the Semantic Web (debuting in 342 

2001) and Cloud Computing (2006) versus a control group of 20 subgraphs associated to a 343 

non-debutant group. We tested on this dataset two techniques to compute the weight of a 344 

clique (i.e., harmonic mean and arithmetic mean) and two methods to evaluate its trend (i.e., 345 

computing the difference between the first and the last values and linear interpolation). 346 

Hence, we evaluated the following four approaches: 347 

 AM-N, which uses the arithmetic mean and the difference between first and last 348 
value; 349 

 AM-CF, which uses the arithmetic mean and the linear interpolation; 350 
 HM-N, which uses the harmonic mean and the difference between first and last value; 351 
 HM-CF, which uses the harmonic mean and the linear interpolation. 352 

 353 

Figure 7 illustrates the average pace of collaboration for the sub-graphs associated to each 354 

topics according to these methods (thick horizontal black lines) and the range of their values 355 

(thin vertical line). The results support the initial hypothesis: according to all methods, the 356 

pace of collaboration of the cliques within the portion of network associated with the 357 

emergence of new topics is positive and higher than the ones of the control group. 358 

Interestingly, the pace of collaboration of the control group is also slightly positive. Further 359 

analysis revealed that this behaviour is probably caused by the fact that the topic network 360 

becomes denser and noisier in time. Figure 8 confirms this intuition illustrating the fast 361 

growth of the number of publications per year in the dataset during the time window 1970-362 

2013. 363 

 364 

Figure 7. Overall directions of the sub-graphs related to testing topics in both debutant and control group with all the four 365 
approaches.  366 
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 367 

Figure 8. Number of papers each year in period 1970-2013 368 

The approaches based on the simple difference (AM-N and HM-N) exhibit the larger gaps 369 

between the two groups in terms of the average pace of collaboration. However, the ranges of 370 

values actually overlap, making it harder to assess if a certain sub-group is incubating a novel 371 

topic. The same applies to AM-CF. HM-CF performs better and even if the values slightly 372 

overlap when averaging the pace over different years they do not when considering single 373 

years. Indeed, analysing the two ranges separately in 2001 and 2006 (see Figure 9), we can 374 

see that the overall collaboration paces of the debutant topics (DB) are always significantly 375 

higher than the control group (NDB).  376 

 377 

 378 

Figure 9. Overall directions of the sub-graphs related to testing topics in both debutant and control group in HM-CF 379 
approach 380 

 381 

We ran Student’s t-test on the HM-CF approach in order to verify whether the two groups 382 

belong to different populations. The test yielded p < 0.0001, which allowed us to reject the 383 

null hypothesis that the differences between the two distributions were due to random 384 

variations2. For this reason, we selected the combination between the harmonic mean and the 385 

                                                 
2 p<0.0001 is the conventional statistical representation to indicate an extremely high 
statistical significance (> 500 times stronger than the conventional 0.05 threshold for 
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linear interpolation (HM-CF) as the approach for the full study using the clique-based 386 

method. 387 

The results of HM-CF show also interesting insights on the creation of some well-known 388 

research topics. Table 2 and Table 3 list the cliques which exhibited a steeper slope for 389 

semantic web and cloud computing. We can see that Semantic Web was anticipated in the 390 

1996-2001 timeframe by a significant increase in the collaborations of the world wide web 391 

area with topics such as information retrieval, artificial intelligence, and knowledge based 392 

systems. This is consistent with the initial vision of the semantic web, defined in the 2001 by 393 

the seminal work of Tim Berners-Lee (Berners-Lee et al. 2001). Similarly, Cloud Computing 394 

was anticipated by an increase in the collaboration between topics such as grid computing, 395 

web services, distributed computer systems and internet. This suggests that our approach can 396 

be used both for forecasting the emergence of new topics in distinct subsections of the topic 397 

network and for identifying the topics that gave rise to a research area. 398 

Table 2. Ranking of the cliques with highest slope value for the <semantic web=.  399 

Topic 1 Topic 2 Topic 3 Slope 
world wide web information retrieval search engines 2.529 
world wide web user interfaces artificial intelligence 1.12 
world wide web artificial intelligence knowledge representation 0.974 
world wide web knowledge based systems artificial intelligence 0.850 
world wide web information retrieval knowledge representation 0.803 

 400 

Table 3. Ranking of the cliques with highest slope value for the <cloud computing=. 401 

Topic 1 Topic 2 Topic 3 Slope 
grid computing distributed computer systems web services 1.208 
web services information management information technology 1.094 
grid computing distributed computer systems quality of service 1.036 
internet quality of service web services 0.951 
web services distributed computer systems information management 0.949 

 402 

 Cliques-based method study 403 

We applied the cliques-based methods on the subgraphs associated to both topics in the 404 

treatment and control groups. Figure 10 reports the results obtained by using subgraphs 405 

composed by the most 20, 40 and 60 co-occurring topics. Each bar shows the mean value of 406 

the average pace of collaboration for the debutant (DB) and non-debutant (NDB) topics. As 407 

before, the average pace computed in the portion of topic network related to debutant topics 408 

is higher than the one of the control group. 409 

                                                                                                                                                        
claiming significance). It includes all mathematical outcomes from 0 to below 0.0001, which 
are essentially equivalent in assessing the excellent significance. 
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 410 

Figure 10. Average collaboration pace of the sub-graphs associated to the treatment (DB) and control group (NDB), when 411 
selecting the 20, 40 and 60 most co-occurring topics. The thin vertical lines represent the ranges of values. 412 

 413 

 414 

Figure 11. Average collaboration pace per year of the sub-graphs related to testing topics in both debutant and control group 415 
considering their 20 most co-occurring topics. The year refers to the year of analysis of each topic. 416 

 417 

Figure 12. Average collaboration pace per year of the sub-graphs related to testing topics in both debutant and control group 418 
considering their 40 most co-occurring topics. The year refers to the year of analysis of each topic. 419 
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 420 

Figure 13. Average collaboration pace per year of the sub-graphs related to testing topics in both debutant and control group 421 
considering their 60 most co-occurring topics. The year refers to the year of analysis of each topic. 422 

Since the pace of collaboration changes significantly according to the period considered, it is 423 

useful to study it across different years. Figure 11, Figure 12 and Figure 13, show the average 424 

collaboration pace for each year when considering the 20, 40 and 60 most co-occurring 425 

topics. In all cases the collaboration pace for the debutant topics is higher than the one for the 426 

control group. We can also notice that in the last five years the overall pace of collaboration 427 

for both debutant and non-debutant topics suffered a significant fall. This is due to the fact 428 

that topic network became denser and noisier in recent years.  429 

Table 4 shows as example a number of debutant topics and their collaboration pace versus the 430 

collaboration pace of the control group in the same year. We can see how the appearance of a 431 

good number of well-known topics that emerged in the last decade was actually anticipated 432 

by the dynamics of the topic network. 433 

Table 4. Collaboration pace of the sub-graphs associated to selected debutant topics versus the average collaboration pace of 434 
the control group in the same year of debut. 435 

Topic Collaboration 

Pace 
Standard 

Collaboration 

pace 
service discovery (2000) 0.455 0.156 

ontology engineering (2000) 0.435 0.156 

ontology alignment (2005) 0.386 0.273 

service-oriented architecture (2003) 0.360 0.177 

smart power grids (2005) 0.358 0.273 

sentiment analysis (2005) 0.349 0.273 

semantic web services (2003) 0.349 0.177 

linked data (2004) 0.348 0.250 

semantic web technology (2001) 0.343 0.147 

vehicular ad hoc networks (2004) 0.342 0.250 

mobile ad-hoc networks (2001) 0.342 0.147 

p2p network (2002) 0.340 0.145 

location based services (2001) 0.331 0.147 

service oriented computing (2003) 0.331 0.177 

ambient intelligence (2002) 0.289 0.145 

social tagging (2006) 0.263 0.192 

wireless sensor network (2001) 0.258 0.147 

community detection (2006) 0.243 0.192 

cloud computing (2006) 0.241 0.192 
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user-generated content (2006) 0.240 0.192 

information retrieval technology (2008) 0.231 0.057 

web 2.0 (2006) 0.224 0.192 

ambient assisted living (2006) 0.224 0.192 

Internet of things (2009) 0.221 0.116 

 436 

We ran Student’s t-test on the groups in different years, in order to confirm that the two 437 

distributions belong to different populations. In all cases it yielded p < 0.0001 in all years. 438 

However, the experiment containing 60 most co-occurring topics allows to better 439 

discriminate debutant topics from non-debutant ones. Indeed, the p-values obtained by this 440 

solution are lower than the one yielded by the other two experiments for every single year of 441 

the period under analysis. 442 

In conclusion, the results confirm that the portions of the topic network in which a novel 443 

topic will appear exhibit a measurable fingerprint, in terms of increased collaboration pace, 444 

well before the topic is recognized and labelled by researchers.  445 

Triads-based method study 446 

We applied the triads-based methods on the subgraphs composed by the 60 most co-447 

occurring topics, since this configuration provided the best outcomes in previous tests. We 448 

performed multiple tests by filtering links associated with less than 3, 10 and 20 co-449 

occurrences, for understanding how the collaboration strength influences the outcome. 450 

Figure 14 reports the average value of the growing indexes when discarding links with less 451 

than 3 co-occurrences. The approach allows to discriminate well the portion of networks 452 

related to debutant topics from the ones related to the control group and the collaboration 453 

pace associated with the debutant topics is always higher than its counterpart. Figure 15 and 454 

Figure 16 report the results obtained by removing links with less than 10 and 20 co-455 

occurrences. The gap between the groups in these two last experiments is reduced in 456 

comparison with the first experiment. This suggest that considering weak connections is more 457 

beneficial for discriminating the two groups. Nonetheless, the indexes associated with 458 

debutant topics are always higher than the ones associated to non-debutant ones. The 2004 459 

peak is caused by the debut of number of topics associated with particularly strong 460 

underlying dynamics, such as Linked Data, Pairing-based Cryptography, Microgrid and 461 

Privacy Preservation.   462 

Table 5 reports as an example the triad census performed over the subgraph associated to the 463 

<semantic web technologies= (SWT) debuting in the 2001. We can see an increase in the 464 

number of triangles (H3) and two-stars (H2), mirroring the increasing density of the topics 465 

network. Again, this phenomenon is more evident when using also weak links (< 3). The 466 

percentage of growth of full triangles is 109% in the first test and then it decreases to 86% (< 467 

10) and 36 % (< 20). 468 

 469 
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 470 

Figure 14. Average growing index per year of the sub-graphs related to the topics in both debutant and non-debutant group 471 
considering their 60 most co-occurring topics and filtering links associated with less than 3 publications. 472 

 473 

  474 

Figure 15. Average growing index per year of the sub-graphs related to the topics in both debutant and non-debutant group 475 
considering their 60 most co-occurring topics and filtering links associated with less than 10 publications. 476 

 477 

 478 

Figure 16. Average growing index per year of the sub-graphs related to the topics in both debutant and non-debutant group 479 
considering their 60 most co-occurring topics and filtering links associated with less than 20 publications. 480 
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 481 

Table 5. The results of the triad census performed on the network associated with the debutant topic <semantic web 482 
technology= removing links associated with less than 3 (left), 10 (right) and 20 (bottom) publications. 483 

Removing links < 3 Removing links < 10 

Graph H0 H2 H2 H3 
1996 1124 1157 658 337 
1997 928 1237 670 441 
1998 1255 1353 657 389 
1999 1307 1431 861 461 
2000 913 1399 1043 705 

 

H0 H2 H2 H3 
641 676 316 138 
1022 828 315 135 
585 705 300 181 
1222 1098 413 192 
1482 1361 554 257 

 

Removing links < 20 
Graph H0 H2 H2 H3 
1996 796 509 174 61 
1997 632 432 204 62 
1998 525 418 145 52 
1999 569 497 187 77 
2000 842 618 228 83 

 

 484 

 485 

Table 6 shows a selection of debutant topics and their growing index compared with the 486 

growing index of the control group in the same year. We can compare this table to Table 4 to 487 

appreciate how the two methods used in this study reflect the same behaviour.   488 

Table 6. Growing indexes of sub-graphs associated to selected debutant topics versus the average growing index of the 489 
control group in the same year of debut. 490 

Topic Growing  

Index 
Standard 

Growing Index 
service discovery (2000) 290.29 35.97 

ontology engineering (2000) 207.22 35.97 

ontology alignment (2005) 399.60 186.89 

service-oriented architecture (2003) 628.07 140.17 

smart power grids (2005) 637.53 186.89 

sentiment analysis (2005) 354.10 186.89 

semantic web services (2003) 439.85 140.17 

linked data (2004) 590.81 289.94 

semantic web technology (2001) 465.53 72.71 

vehicular ad hoc networks (2004) 859.44 289.94 

mobile ad-hoc networks (2001) 87.31 72.71 

p2p network (2002) 305.28 18.92 

location based services (2001) 595.90 72.71 

service oriented computing (2003) 422.92 140.17 

ambient intelligence (2002) 308.34 18.92 

social tagging (2006) 429.77 157.69 

community detection (2006) 583.21 157.69 

cloud computing (2006) 695.79 157.69 

user-generated content (2006) 485.89 157.69 

information retrieval technology (2008) 552.14 227.02 

web 2.0 (2006) 387.42 157.69 

ambient assisted living (2006) 940.79 157.69 

Internet of things (2009) 580.33 167.86 

 491 
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As before, we ran Student’s t-test over the two distributions of growing indexes, for all the 492 

three experiments. It yielded p <0.0001 for all the experiments. Figure 17 shows as an 493 

example the distribution obtained in the first test. 494 

Hence, also the results of this second experiment confirm our initial hypothesis. In addition, 495 

if we use the p-values for measuring the relative distance between the sample means, the 496 

technique which include weaker links performs better in discriminating the two populations.  497 

 498 

Figure 17. Distributions of growing indexes for both groups when filtering links associated with less than 3 publications. 499 

 500 

Discussion 501 

In this study, we analysed the topic network with the aim of confirming that the emergence of 502 

new research areas is anticipated by the dynamics of established topics. We examined the 503 

pace of collaboration (via the cliques-based method) and the change in topology (via the 504 

triads-based method) in the portion of network related to debutant topics, confirming that is 505 

possible to effectively discriminate the subgraphs associated to the future emergence of a 506 

debutant topic from the ones in the control group. In particular, the first experiment showed 507 

that the portion of the topics network in which a new topic will arise exhibits a significant 508 

increase in the pace of collaboration. The second experiment suggested that also the topology 509 

of networks tends to anticipate the appearance of a topic. In particular, it highlighted that the 510 

density of the network is higher in the portions which will give birth to new topics. 511 

The ability of the two approaches of discriminating the debutant graph from the control group 512 

varies according to the period. Looking at their best results, reported in Figure 13 and Figure 513 

14, it appears that the cliques-based approach works better (according to the resulting p-514 

values) in the first years of the decade (2000-2004) while the triads-based one approach 515 

yielded better performance in the last years (2005-2010). This indicates that the second 516 

approach seems to work better when the topic network is nosier and denser, as it does happen 517 

for the second period. In this sense, the two approaches are complementary and the best one 518 

will depends on the characteristics of the topic graph under analysis.  519 
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The findings of this study are relevant to a number of research communities and stakeholders. 520 

Firstly, they confirm the existence of an embryonic phase in the development of research 521 

topics and suggest that it might be possible to perform very early detection of research trends 522 

by taking into account the aforementioned dynamics. Secondly, they bring new empirical 523 

evidences to related theories in philosophy of science, such as Herrera et al. (2010), Kuhn 524 

(2012), Nowotny et al. (2013), and Sun et al. (2013). Finally, they highlight that most new 525 

topics actually tend to be born in an environment in which previously less interconnected 526 

research areas start cross-fertilising and generating original ideas. This suggests that 527 

interdisciplinarity is one of the most significant forces that push research forward, allowing to 528 

integrate a diversity of expertizes and perspectives to come up with new solutions and new 529 

visions. The results of our analysis may thus support relevant research policies.  530 

CONCLUSIONS 531 

In this paper, we hypothesised the existence of an embryonic stage for research topics, in 532 

which they are not yet been labelled or associated with a considerable number of 533 

publications, and suggest that it is possible to detect topics in this stage by analysing the 534 

dynamics between already existent topics. To confirm this hypothesis, we performed an 535 

experiment on 75 debutant topics in Computer Science, which brought to the extraction and 536 

analysis of topic networks including about 2000 topics, from a sample of 3 million papers in 537 

the 2000-2010 interval. The results confirmed that the creation of novel topic is anticipated 538 

by a significant (p < 0.0001) raise in the pace of collaboration and density of the portion of 539 

network in which they will appear. These findings confirm the existence of an embryonic 540 

phase, potentially allowing for a very early detection of research topics, bring new empirical 541 

evidence to related theories in philosophy of science and suggest that an interdisciplinary 542 

environment is the most fertile ground for the creation of novel topics.  543 

We now plan to exploit the dynamics discovered in this study for creating a fully automatic 544 

approach for detecting embryonic topics. We also intend to study and integrate a number of 545 

additional dynamics involving other research entities, such as authors and venues. The aim is 546 

to produce a robust approach that relies on multiple dynamics correlated with the emergence 547 

of new topics such that it could be used by researchers and companies alike for gaining a 548 

better understanding of where research is heading. 549 
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