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Abstract—Research in event detection from the Twitter stream-
ing data has been gaining momentum in the last couple of
years. Although such data is noisy and often contains mislead-
ing information, Twitter can be a rich source of information if
harnessed properly. In this paper, we propose a scalable event
detection system, TwitterNews, to detect and track newsworthy
events in real time from Twitter. TwitterNews provides a novel
approach, by combining random indexing based term vector
model with locality sensitive hashing, that aids in performing
incremental clustering of tweets related to various events within
a fixed time. TwitterNews also incorporates an effective strategy
to deal with the cluster fragmentation issue prevalent in in-
cremental clustering. The set of candidate events generated by
TwitterNews are then filtered, to report the newsworthy events
along with an automatically selected representative tweet from
each event cluster. Finally, we evaluate the effectiveness of
TwitterNews, in terms of the recall and the precision, using a
publicly available corpus.

1. Introduction

Social media sites are continuously gaining popularity as
effective means of communicating information. Millions of
users share information on different aspects of everyday life
through these social networking services. Information shared
in these platforms range from personal status (i.e., opinions,
emotions, pointless babbles) to newsworthy events, as well
as updates and discussions on these events. Twitter is a
popular social media site providing microblogging service,
where users can post and read short text messages, known
as tweets. Due to the informal nature of the tweets, and
the ease with which they can be posted, Twitter users can
be faster in covering an event than the traditional news
media. As Twitter users do not have to be concerned with
how to structure a write up on news events or how news
will be perceived by the readers, they have the advantage
of spreading event related updates before they appear on
the traditional news. Also, local events that have low news
coverage are spread through Twitter.

In this paper we use the definition of an event, in a social
media context, provided by Dou et al. [1]: “An occurrence
causing change in the volume of text data that discusses

the associated topic at a specific time. This occurrence is
characterized by topic and time, and often associated with
entities such as people and location”. In accordance with
this definition, the series of coordinated terrorist attacks in
Paris on 13th November 2015 is an event in the context
of social media, that prompted a high volume or burst of
tweets as soon as the attacks took place. The various aspects
of this event were tweeted by the general users and the
news agencies all over the world, e.g., “BREAKING.This is
what we know: 35 dead, 100 hostages taken at a concert
venue. Various drive by shootings. Explosions at a #Paris
stadium.”.

Although the previous example is a high profile event of
a global consequence, an event detection system should also
be able to detect newsworthy events at a smaller scale with a
lower burst of tweets at any given time. There are, however,
a number of challenges in real time event detection from the
Twitter data streams. The message length restriction of 140
characters greatly reduces the amount of textual information
obtained from a tweet and the messages themselves are
noisy: containing typos, grammatical errors, abbreviations,
etc. In addition, most of the content found on Twitter is
not related to any event and the high volume of data on a
diverse number of topics poses a big challenge in terms of
scalability. Despite these challenges, it would be beneficial
to develop a system that can lead to real time detection and
tracking of events as Twitter does not provide a tool to see
event summaries except for searching on trending topics or
using hashtags.

Different approaches have been taken by the researchers
to deal with the event detection task. The approaches based
on term interestingness [2]–[6] and topic modeling [7]–[11]
suffer from high computational cost among other things.
However, incremental clustering based approaches [12]–[14]
usually provide a low computational cost solution. Taking
this into consideration, we propose an incremental clustering
based end-to-end solution to detect newsworthy events from
a stream of time ordered tweets.

The problem of event detection from the Twitter data
stream in an incremental clustering context can be divided
into two major stages. The first stage involves detecting
a burst in the number of tweets discussing a topic/event
and the second stage involves grouping/clustering the tweets
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that discuss the same event. The operation of our proposed
system, TwitterNews, is therefore divided into two major
stages. After the preprocessing of a tweet, the first stage
is responsible for determining the fact whether the current
input tweet to the system is discussing a previously encoun-
tered topic. If the input tweet is discussing a previously seen
topic, then it means a soft tweet burst related to a topic/event
has occurred and the output of the first stage declares the
input tweet to be bursty (“not unique”). The operation in
the first stage of TwitterNews is implemented by combining
Random Indexing (RI) based term vector model [15] with
the Locality Sensitive Hashing (LSH) scheme proposed by
Petrovic et al. [12], to determine whether a tweet is “not
unique”. To the best of our knowledge, this is a novel ap-
proach that combines RI with LSH to reduce the time needed
to determine the novelty of a tweet and performs a fast text
similarity comparison between the current input tweet and
the most recent tweets while maintaining a constant time
and space.

Subsequently the second stage, implemented using a
novel approach by adapting the generic incremental clus-
tering algorithm, deals with generating the candidate event
clusters by incrementally clustering the tweets that were de-
termined as bursty (“not unique”) during the first stage. The
second stage also incorporates a defragmentation strategy to
deal with the fragmented events that were generated when
a particular event is detected multiple times as a new event.

To ensure scalability in a true streaming setting, each
cluster generated in the second stage has a dynamic expiry
time, dependent on the subsequent tweet arrival time in a
cluster. Finally a set of filters are applied after the second
stage to report the newsworthy events from the candidate
event clusters. Newsworthy events are reported along with
a representative tweet for each event cluster by employing
a Longest Common Subsequence (LCS) based scheme that
works on the word-level.

The rest of the paper is organized as follows: Section 2
contains a brief discussion on the related work, then we in-
troduce our proposed system, TwitterNews, in Section 3 and
expand on the various aspects of the system in Sections 4
and 5. Finally, we discuss the results of our experiments and
evaluation of TwitterNews in Section 6.

2. Related Work

We discuss the related work by organizing them into
approaches that share common traits (i.e., identifying inter-
esting properties in tweet terms, using probabilistic topic
modeling and incremental clustering). For more details we
refer to the survey on event detection techniques conducted
by Atefeh and Khreich [13].

Term Interestingness Based Approaches. The event
detection system in Twevent [2] initially extracts continu-
ous and non overlapping word segments from each tweet.
Statistical information obtained from the Microsoft Web N-
gram Service1 and the Wikipedia is used to detect nontrivial

1. http://research.microsoft.com/en-us/collaboration/focus/cs/web-
ngram.aspx

word segments. The top-k bursty event segments within a
fixed time window are then calculated from the frequency
of bursty segments, in conjunction with the user frequency
of the bursty segments. Finally, related event segments
are clustered by exploiting the content of their associated
tweets and the frequency pattern of the segments within the
specified time window. The events are then filtered based
on the newsworthiness score, which is calculated using the
Wikipedia as a knowledge base.

TwitInfo [3] allows a user to input event related key-
words to track an event. The system starts logging the
tweets that matches the user specified keywords, and uses
a streaming algorithm to detect spikes in tweet data and
automatically labels them with frequently occurring mean-
ingful terms from the tweets. The peak generated by the
high volume of Twitter posts are considered as sub-events.

TwitterMonitor [4] detects emergent topics by first iden-
tifying the bursty terms from the tweets within a small
time window. If the system detected high frequency terms
co-occur in a large number of tweets in the given time
window, they are placed in the same group. A greedy
strategy is used to generate groupings, in order to avoid the
high computational cost to enumerate all possible groups.
Similarly, enBlogue [16] computes statistical values for tag
pairs within a given time window and monitors unusual
shifts in the tag correlations to detect emergent topics.

Topic Modeling Based Approaches. TwiCal [9] is an
open-domain event detection system that provides a struc-
tured representation of the significant events extracted from
the Twitter data stream. The proposed system extracts named
entities, along with associated event phrases and dates from
each of the streaming tweets. A latent variable based model
is used to discover important event types from a large
tweet corpus. The event types that are found to be coherent
during the inspection of the discovered event types were
retained, and manually annotated with informative labels.
Once appropriate event types were identified, they were used
to categorize event phrases extracted from the subsequent
new data without requiring any further manual annotation.
Events are ranked by measuring the association strength
between an entity and a specific date, based on G2 log
likelihood ratio statistic.

Latent Event and Category Model (LECM) [10] is a
latent variable model similar to TwiCal [9]. However, LECM
incorporates semantic concept to categorize events of differ-
ent type.

Incremental Clustering Based Approaches. Becker et
al. [17] have used an incremental clustering algorithm to
detect events from the Twitter stream. For each tweet, its
similarity is computed against each of the existing cluster.
If the similarity of a tweet is not higher than a specific
threshold in any of the existing clusters, then a new cluster
is created. Otherwise the tweet is assigned to a cluster with
the highest similarity. Once the clusters are formulated, a
Support Vector Machine based classifier is used to distin-
guish between the newsworthy events and the non-events.

McMinn et al. [14] have utilized an inverted index for
each named entity with its associated near neighbors to
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cluster the bursty named entities for event detection and
tracking. The effectiveness of this approach, however, is
dependent on the accuracy of the underlying Named Entity
Recognizer [18] used by the system.

Petrovic et al. [12] have adapted a variant of the locality
sensitive hashing (LSH) technique to determine the novelty
of a tweet by comparing it with a fixed number of previously
encountered tweets. A novel tweet represents a new story,
which is assigned to a newly created cluster. On the other
hand, a tweet determined as ‘not novel’ is assigned to
an existing cluster containing the nearest neighbor. Event
clusters are ranked based on a combination of the entropy
information in a cluster and the number of unique user posts.

All of the aforementioned general approaches to event
detection from Twitter have their own set of drawbacks.
The approaches based on term interestingness [4]–[6] can
often capture misleading term correlations, and measuring
the term correlations can be computationally prohibitive in
an online setting. The topic modeling based approaches [7],
[8] incur too high of a computational cost to be effective
in a streaming setting, and are not quite effective in han-
dling events that are reported in parallel [19]. Incremental
clustering based approaches are prone to fragmentation, and
usually are unable to distinguish between two similar events
taking place around the same time [12], [14], [20]. However,
despite the challenges, we believe incremental clustering
approach is the way to go to avoid the high computational
cost associated with most of the state-of-the art approaches.

3. TwitterNews Architecture

From the continuation of our discussion in Section 1
regarding the two major stages of operation in TwitterNews,
here we will discuss the two major components in our
system, each of which deals with the operation of a specific
stage (Figure. 1). The decision making process on the nov-
elty of an input tweet during the first stage is handled by the
Search Module and generating the candidate event clusters
during the second stage is handled by the EventCluster
Module.

To facilitate the decision on novelty, the Search Module
allows fast retrieval of the neighboring tweets of the input
tweet for text similarity comparison. This is achieved by
using the adapted variant of the Locality Sensitive Hashing
(LSH) approach employed by Petrovic et al. [12], where a
set of most recent tweets are stored in a fixed number of hash
tables. However, Petrovic et al. [12] have used a variable
length tf − idf based term vector model to calculate the
hash keys for each input tweet, which is computationally
expensive. The hash keys are used to retrieve the neighbor-
ing tweets of the input tweet from the hash tables.

To reduce the computational cost of calculating the hash
keys, TwitterNews uses a random indexing based term vector
model. The advantage of using random indexing is the
capability to have a fixed length vector generated for each
input tweet to the system regardless of the number of tweets
encountered. This allows fast calculation of the hash keys

for an input tweet, and thus fast retrieval of the neighboring
tweets from the hash tables.

If the Search Module finds a neighboring tweet of the
input tweet with a cosine similarity higher than a specific
threshold value, then the input tweet is decided to be bursty
(“not unique”), and sent to the EventCluster Module. For
each tweet sent to this module, a candidate event cluster to
which the tweet can be assigned is searched. If the cosine
similarity between a tweet and the centroid of an event
cluster is above a certain threshold, then the tweet is as-
signed to that cluster. When no such cluster is found, a new
event cluster is created and the tweet is assigned to the new
cluster. The EventCluster Module contains a defragmen-
tation sub-module that merges together fragmented event
clusters. The defragmentation sub-module is also helpful
to merge clusters that are sub-events of an event. Finally,
TwitterNews uses a novel LCS based scheme, along with
a set of different filters to filter out some of the trivial
events from the candidate event clusters, and identifies a
representative tweet for each event.

4. The Search Module

Using the Search Module we aim to detect a soft burst,
that is, we intend to find at least one previous tweet that
discusses the same topic as the input tweet. To do that
we need to store the previously encountered tweets and
access them in a fast way to perform a text similarity
comparison with the input tweet. TwitterNews maintains
a fixed number of most recent tweets that are stored and
continuously updated in a set of hash tables. Each hash
table can be thought of as a collection of buckets, where a
hash key maps to a bucket in a hash table and each bucket
contains a fixed number of similar tweets. The contents of
a bucket are updated regularly by replacing the new tweet
with the oldest tweet in the bucket. A fixed number of hash
tables are maintained to increase the chance of finding the
nearest neighbor of the input tweet. The number of hash
keys needed to be calculated for an input tweet is equivalent
to the number of hash tables maintained. In our approach,
the calculation of the hash keys for the input tweet involves
combining Random Indexing (RI) based term vector model
and the Locality Sensitive Hashing based (LSH) scheme of
Petrovic et al. [12] with the parameter settings used by the
authors.

Before discussing how and why RI is combined with
LSH, we will briefly go through each of these concepts in
subsections 4.1 and 4.2. Finally, in subsection 4.3 we discuss
combining RI with LSH to find previously encountered
tweets similar to the input tweet.

4.1. Random Indexing (RI)

Random indexing [15] is a term vector based model for
semantic similarity. It deals with the high dimensionality
issue faced by other word co-occurrence based models, by
performing random projection for dimensionality reduction.
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Figure 1. TwitterNews Architecture

Thus, making it a scalable approach. RI works by associat-
ing each term with two vectors: an index vector and a con-
text vector. The index vector is a sparse, high dimensional,
and unique random vector. In addition, the index vectors for
each term have the same dimension. The context vector is
initialized with zeroes and its size is equivalent to that of
the index vector. The context vector of a term is updated by
adding the index vector of another term when it co-occurs
with the other term in a sliding context window. For each
tweet in the system, a RI based incremental term vector
model can be created, by processing each term of the tweet.
Finally, a RI based vector representation for a tweet can
be produced from an average of the vectors of each term.
Having a RI based term vector model ensures that, every
tweet vector will have the same dimension, regardless of
the amount of new terms encountered in any subsequent
tweets.

4.2. Locality Sensitive Hashing (LSH)

The basic idea behind the LSH approach used by [12] is
that if two high dimensional points are close in some metric
space X , a random projection operation on those two points
on a randomly drawn hyperplane will allow them to remain
close on a low dimensional subspace. The probability of
two points i and j colliding in a single hyperplane in this
hashing scheme with random projection is:

Pr[h(i) = h(j)] = 1− θ(i, j)

π

where θ(i, j) is the angle between i and j. To simplify,
the probability of two points colliding is proportional to the
cosine of the angle between them. Increasing the number
of hyperplanes k decreases the probability of collision with
points that are not close together. Using this concept, similar
tweets are hashed into the same bucket of a hash table.
Each bucket in a hash table represents the subspace formed
by intersecting X with k independently drawn random

hyperplanes. The hash function based on which the tweets
are placed in a bucket can be defined as:

hu(q) = sgn(u.q)

where u is a random vector drawn from a Gaussian distri-
bution N(0, 1) and q is a query point, i.e., tweet vector. The
output of the previously defined hash function is,

hu(q) =

{
1 if u.q ≥ 0

0 if u.q < 0
(1)

Each hyperplane m ∈ [1...k] represents a single bit in m-th
position of the hash key for a bucket and each bit position of
the hash key is calculated by equation (1). So, k bits of the
hash key for a bucket are formed by gluing all the values of
the corresponding bit position together. Although increasing
the number of hyperplanes k, decreases the probability
of collision with non-similar points, it also decreases the
probability of collision with the nearest neighbors. Thus, L
number of hash tables are created, each having k indepen-
dently chosen random hyperplanes, in order to obtain a high
probability of collision with the nearest neighbors.

4.3. Combining RI with LSH

The calculation of L number of hash keys are compu-
tation intensive even with parallel processing. Generating a
single hash key requires k number of independent random
vectors whose dimensions are needed to be updated as
more unique terms are encountered. This is done to match
the dimensions of the input tweet vector which is based
on an incremental tf − idf weighting. To alleviate this
problem we use the term vector model created with RI. This
allows us to have a fixed length for every tweet vector and
also the same length for the random vectors. Hence, the
random vectors are created once at the initialization phase
of the system, without requiring any further updates, as
the dimensions for term vectors are unchanged regardless
of the number of tweets encountered. Algorithm 1 shows
the pseudocode for the Search Module using LSH and RI.
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Algorithm 1 . TwitterNews Search Module
Require: threshold value

1: for each tweet d in twitter-stream D do
2: preprocess(d)
3: generate vector for d with RI
4: generate vector for d with tf − idf
5: S ←set of documents that collide with d in L hash tables . hash calculated using RI based tweet vector
6: simmax ← 0
7: for each tweet d

′
in S do . parallel processing

8: tempSim = CosineSimilarity(d, d
′
) . calculated using tf − idf based tweet vector

9: if tempSim > simmax then
10: simmax = tempSim
11: end if
12: end for
13: if simmax > threshold then
14: d is “not unique”
15: else
16: d is “unique”
17: end if
18: add d in each colliding buckets of L hash tables
19: end for

We have used the S-Space Package [21] to create RI based
vector representation for the tweets, and a threshold value in
the range of [0.5−0.6] for cosine similarity is empirically set
for the Search Module to determine the novelty of the input
tweet. If the cosine similarity of the approximate nearest
neighbor of the input tweet is below the threshold value,
the input tweet is considered as “unique”, otherwise “not
unique”.

Text similarity between two tweet vectors d1 and d2
in Algorithm 1 is computed using the cosine similarity
measure:

cos(θ) =

n∑
i=1

d1i × d2i√√√√ n∑
i=1

(d1i)
2 ×

√√√√ n∑
i=1

(d2i)
2

In our experiments, we have found that the cosine similarity
calculation is better suited with the tf − idf based term
vector model than the RI based vectors. Therefore we use the
tf − idf based term vectors for cosine similarity calculation
and the RI based vectors are only used for the hash key
calculation. To generate the tf − idf based term vector for
each tweet in Algorithm 1, the following formula is used:

tf − idf(t, d,D) = tf(t, d)× idf(t,D)

where t is a term in the input tweet d, D is the corpus
representing the tweets processed so far, tf(t, d) is simply
the number of times t is found in d, and

idf(t,D) = log
N

|{d ∈ D : t ∈ D}|

where N is the number of tweets processed so far and |{d ∈
D : t ∈ D}| is the total number of tweets in D where the
term t appears.

5. The EventCluster Module

The EventCluster Module incrementally clusters the
tweets discussing the same topic and produces a set of
candidate events. Algorithm 2 shows the pseudocode for
the EventCluster Module, where the event threshold (tev)
value for a tweet to be assigned to a cluster is empirically
set to 0.6 and the defragmentation granularity (gev) value to
merge fragmented events is empirically set in the range of
[0.05− 0.07].

The reason for sending only those tweets that are decided
as “not unique” as input to the EventCluster Module, is
to reduce noise. If a tweet is decided as “unique” and
sent to the EventCluster Module, there is a chance that
it might not have any more similar tweets in the future.
Therefore, unnecessarily creating a new event cluster where
no new members might be assigned and increasing the
overall number of active clusters to be searched.

Although this strategy reduces the total number of clus-
ters created, there are still a lot of clusters to search,
to decide which cluster a tweet belongs. To mitigate this
problem, each cluster has an expiry time associated with it.
When a cluster is created an initial expiry time tsi for the
cluster is set. Each time a new tweet is added to the cluster
c, the expiry time is updated based on the average time
stamp difference between the arrival of successive tweets in
c. Once an event cluster is expired, it is marked as inactive
to avoid further similarity comparison with any tweet that
arrives in the EventCluster Module.

The time complexity of Algorithm 2 is O(m), where
m is the number of clusters. However, from the point in
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Algorithm 2 . TwitterNews EventCluster Module
Require: tweet d decided as “not unique” by Algorithm 1, event threshold value tev, and defragmentaion granularity value

gev
1: simmax ← 0
2: for each active event cluster c in C do . parallel processing
3: tempSim = findClosestCentroid(c, dtermV ector) . measures cosine similarity between the centroid of the cluster

and the tweet term vector
4: if tempSim > simmax then
5: simmax = tempSim
6: end if
7: if tempSim ≥ (tev + gev) then
8: Sc ← assign c to the set of fragmented clusters to be merged later
9: end if

10: end for
11: if simmax > tev then
12: assign d to the closest matching cluster csimMax

13: updateCentroid(csimMax, dtermV ector) . cluster centroid updated by averaging with the tweet vector
14: merge the clusters from the set Sc with csimMax

15: update the centroid of csimMax . cluster centroid updated by averaging with the event centroids in Sc

16: update csimMax expiry time
17: else
18: create a new cluster cnew and assign d to it
19: assign dtermV ector as the centroid of cnew
20: assign a initial expiry time to cnew
21: end if

time of system execution where the clusters start getting
inactive, the total number of active clusters remain fairly
constant. As we search only the active clusters, the cost of
the EventCluster Module effectively becomes O(1). Based
on our experiments, we found that setting tsi value in
the range of [8 − 15] minutes provides good results while
reasonably limiting the total number of active clusters.

Any incremental algorithm such as ours for the Event-
Cluster Module, suffers from fragmentation. We have em-
ployed a defragmentation strategy to avoid cluster fragmen-
tation as much as possible. The defragmentation strategy is
also helpful to merge clusters that are sub-events of an event.
While searching for a cluster that is closest in similarity to
the input tweet, we also keep track of the clusters in a set
Sc whose cosine similarity with input tweet is > tev + gev,
as shown in Algorithm 2. After we assign the tweet to the
closest matching cluster (given that, similarity is > tev), all
the clusters in Sc are merged to achieve defragmentation.

6. Experiment Results and Evaluation

Corpus. In our experiments, we have used the
Events2012 corpus provided by McMinn et al. [22]. The
corpus contains 120 million tweets from the 9th of October
to the 7th of November, 2012. Along with this corpus 506
events, with relevant tweets for these events, are provided
as a ground truth. Initially, the authors [22] have generated
a set of candidate events using three different methods.
The first two methods are the LSH approach of Petrovic
et al. [12], and the Cluster Summarization approach of
Aggarwal and Subbian [23]. The third approach is to simply

extract the events found from the Wikipedia current event
portal2, which are within the dates covered by the corpus.
Afterwards for each event found on the Wikipedia, relevant
tweets of that event are retrieved from a Lucene3 indexed
version of the corpus. The candidate events produced by
each of these three methods are combined using clustering
and then the authors [22] have used crowdsourcing to gen-
erate the final set of 506 ground truth events for the time
duration covered by the corpus.

Preprocessing. We have performed preprocessing on
each tweet before it is sent to the Search Module. Each
tweet is tokenized using Twokenize [24]. Tokens containing
Username/mentions, stop words, and URLs are removed in
the preprocessing phase as they do not contribute in cluster-
ing the event related tweets. Tokens containing hashtags are
retained, as hashtags often contain important information.

Reporting newsworthy events. We have conducted ex-
periment on the first 3 days (9th to 11th of October, 2012)
of approximately 17 million tweets from the Events2012
corpus. The candidate events generated by TwitterNews are
then filtered by applying a combination of different filters
to retain only the newsworthy events that will be reported
by our system. The first level of filters retain the candidate
events with an entropy > 2.5, and a user diversity > 0.0.
The entropy threshold ensures that a minimum amount of
information is contained in an event cluster, and a positive
user diversity value ensures that the candidate event contains
tweets from more than one user. Entropy [12] and User

2. http://en.wikipedia.org/wiki/Portal:Current events
3. https://lucene.apache.org/
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Diversity [20] value of an event cluster c, are computed
as:

Entropy = −
∑
i

ni
N

log
ni
N

where, ni is the number of times word i appears in a cluster
and N is the total number of words in that cluster.

UserDiversity = −
∑
i

ui
T

log
ui
T

where ui is the number of tweets published by user i in a
cluster, and T is the total number of tweets in that cluster.

For the second level of filter, we employ a word-level
Longest Common Subsequence (LCS) based filtering. The
idea here is based on the empirical evidence found from
inspecting the candidate event set. We have noticed that the
news propagated by the general users or the news agencies
usually follow a similar sentence structure. If we apply the
traditional word-level LCS algorithm on the relevant tweets
of an event cluster c, the length of the LCS can be used
as a determining factor to decide whether c is about a
newsworthy event. If an event cluster c has an LCS whose
length is below a certain threshold, meaning there are no
tweets in c with an appropriate level of similarity in their
sentence structure, then c is not likely to be a newsworthy
event.

The LCS based scheme also selects a representative
tweet from the event cluster, by emitting the tweet having the
maximum LCS in an event. Before applying the LCS based
scheme on the set of candidate events, all the tweets of each
event cluster are discarded that do not contain at least one
proper noun or possessive noun. Doing so reduces the total
number of tweets in a cluster by discarding the tweets that
do not contain any useful information. Table 1 shows the
representative tweets of the newsworthy events reported by
TwitterNews. Note that, only one event representative tweet
from each day is shown to keep Table 1 concise.

TABLE 1. REPRESENTATIVE TWEETS OF THE SELECTIVE
NEWSWORTHY EVENTS REPORTED BY TWITTERNEWS

Date Event Representative Tweet
09 Oct 2012 Retweet If You’re Watching The “BET Hip Hop

Awards 2012”
10 Oct 2012 BAE-EADS merger plans are ‘off’: Aerospace and

defence firms BAE and EADS have cancelled their
planned merger, t... http://bbc.in/Tvu31e

11 Oct 2012 Nobel Prize for literature awarded - Mo Yan of China
won the prize for his novel “Frog”, which explores
the traditio... http://ow.ly/2sCWey

Evaluation. Due to the restriction imposed by Twitter,
the Events2012 corpus only contains unique tweet IDs
using which the tweets belonging to the corpus need to
be downloaded. After downloading the tweets, we have
inspected the corpus and discovered that a large number
of tweets (around 30%) belonging to the corpus were not
downloaded as they are not available any more. The effect of
a partially incomplete corpus, due to the unavailability of the
tweets, is going to negatively impact the results produced

by our system. To remedy this problem we have decided
to manually reconfirm the ground truth events provided by
the authors [22]. However, there are a total of 506 ground
truth events spanning from the 9th of October to the 7th of
November, 2012. As this can take a substantially long time,
we have only reconfirmed the first three days (9th to 11th

of October, 2012) of the ground truth events and manually
selected a total of 41 events that belong to our selected time
window. Further inspection of these 41 events were required
to identify and remove the events which contained a large
number of unavailable tweets. Doing so led us to a final set
of 31 events to be used as the ground truth.

As we have the reconfirmed ground truth events only for
a specific time period, we ran our experiments on the tweets
spanning the same time period from the corpus. We have
used the LSH scheme proposed by Petrovic et al. [12] as
our baseline, which achieved a recall of 0.52 by identifying
16 events out of the 31 ground truth events. McMinn et al.,
in their later work [14], have used the same baseline over
the Events2012 corpus and reported the baseline system to
achieve a very low precision. As calculating the precision is
a time consuming task we have skipped this for our baseline
which has been reported to have a low precision on the same
corpus.

TwitterNews achieved a recall of 0.87 by identifying
27 events out of the 31 ground truth events. A total of
1619 events were reported by TwitterNews within the time
window of three days. This high number of events obviously
amount to a very low precision with respect to the ground
truth. However, McMinn et al. [22] have noted in their later
work [14] that a lot of additional events can be detected
from the Events2012 corpus that were not originally on the
ground truth data set they have provided along with the cor-
pus. Hence, instead of calculating the precision with respect
to the ground truth, we have used two human annotators to
determine the precision of 100 randomly chosen events out
of the reported 1619 events. The precision is calculated as a
fraction of the 100 randomly chosen events that are related
to realistic events. The agreement between the two anno-
tators, measured using Cohen’s kappa coefficient, was 0.84
and the precision of TwitterNews reported by the annotators
was 0.72 (72 out of 100 events were agreed as newsworthy
events by both annotators). The results of our evaluation is
shown in Table 2.

TABLE 2. SUMMARY OF THE EVALUATION RESULTS

Methods Recall Precision
Baseline [12] 0.52 -
TwitterNews 0.87 0.72

7. Conclusion

TwitterNews incorporates random indexing based term
vectors with locality sensitive hashing to make a fast de-
cision on the novelty of an input tweet. The incremental
clustering based approach adopted in our system, along with
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the defragmentation sub-module, provides an efficient way
to cluster event related tweets. Both of the main components
of our system maintain a constant space and processing time,
which is an important requirement in a true streaming set-
ting. We have shown that, the result achieved by TwitterNews
outperforms the state-of-the-art baseline by a big margin.
Note that, our exploration in the Events2012 corpus gave us
a clear idea on the reason our system has missed some of the
events from the ground truth event set. TwitterNews missed
only those events, which are not bursty in nature, meaning,
the event related tweets were spread out in the corpus with
big time gaps between those tweets. In our future work,
we will focus on detecting events that are less bursty in
nature (e.g., events with usually non-measurable burst of
few tweets, events having small amount of tweets with big
gaps in successive tweet arrival). In addition, we intend to
devise an approach that will allow us to discard spam and
neutral event clusters in order to achieve a higher precision.
Finally, we plan to perform a detailed sensitivity analysis
on the different parameter settings used in our system.
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