
EvoPER – An R package for applying1

evolutionary computation methods in the2

parameter estimation of individual-based3

models implemented in Repast4

Antonio Prestes Garcı́a1 and Alfonso Rodrı́guez-Patón1
5

1Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Campus de6

Montegancedo s/n, Boadilla del Monte, Madrid, Spain7

ABSTRACT8

Individual-based models are complex and they normally have an elevated number of input parameters
which must be tuned in order to reproduce the experimental or observed data as accurately as possible.
Hence one of the weakest points of such kind of models is the fact that rarely the modeler has the
enough information about the correct values or even the acceptable range for the input parameters.
Therefore, several parameter combinations must be checked to find an acceptable set of input factors
minimizing the deviations of simulated and observed data. In practice, most of times, is computationally
unfeasible to traverse the complete search space to check all parameter combination in order to find the
best of them. That is precisely the kind of combinatorial problem suitable for evolutionary computation
techniques. In this work we present the EvoPER, an R package for simplifying the parameter estimation
using evolutionary computation techniques. The current version of EvoPER includes implementations of
PSO, SA and ACO algorithms for parameter estimation of Repast models.

9

10

11

12

13

14

15

16

17

18

19

Keywords: Individual-Based Modeling, Parameter Estimation, Evolutionary Computation, Systems
Biology

20

21

INTRODUCTION22

The Individual-based modeling and simulation is a powerful methodology which is having more and more23

adoptions between researchers and practitioners of distinct branches of ecological modeling and microbial24

consortia. Certainly one of the main reasons for the success of this approach is the extreme simplicity for25

capturing micro-level properties, stochasticity and spatially complex phenomena without the requirement26

of a high level of mathematical background (Grimm and Railsback (2005)). But the counterpart of that27

facility to build complex models, is the difficulty to make credible results which can be attributed in part28

to the fact that modelers are prone to circumvent a thoroughly analysis for simulation output.29

There are several reasons for the situation previously mentioned. The first and perhaps most important30

is that modeling and simulation is a vast discipline with a broad and complex body of knowledge having a31

theoretical background under the surface (Minsky (1965); Zeigler et al. (2000); Boccara (2003)) which32

are not completely mastered from modelers coming from disperse domains like biology, ecology or even33

computer science. Of course, this should not be an obstacle for the development of good models by34

the practitioners. We believe that the availability of easy tools for the model tuning and analysis which35

efficiently encapsulate such complex subject can greatly help to improve the quality and significance of36

simulation results.37

In the next sections we will describe the scope and the usage examples of the EvoPER R package38

which has been developed for facilitating the tasks of estimating the parameters of Individuals-based39

models.40

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

BACKGROUND41

The terms model calibration and parameter estimation, although informally are used interchangeably42

and being functionally similar are semantically distinct entities having a different scope and objectives.43

In order to provide a more formal definition of these terms let us briefly define the basic structure of a44

mathematical model. A model is normally expressed as some form of the algebraic composition expressing45

the relationship between of three element types, namely the independent variables, the dependent or the46

state variables and finally the constants. Therefore, for the sake of simplicity, a model expressing some47

linear relationship between variables is shown bellow48

y = α +βx

where x and y are independent and the state variable respectively and α and β are the model constants.49

The model constants are referred as the model parameters which necessarily do not have to have any50

correspondence to some element in the system being modeled (Beck and Arnold (1977)). The direct51

problem is, being known the model structure and also knowing the independent variables and the52

parameters, to estimate the value of state variable. Of course this oversimplified case is rarely seen when53

modeling real systems, especially when dealing with biological systems. In addition, in the most cases54

the constants and the independent variables are impossible to observe directly being also unknown the55

right model structure for representing the system under study.56

Usually the only value elucidated experimentally or backed by observations of some population data57

is the state variable; therefore, the parameters which are the structural part of model must be estimated58

having as the only reference, the measurements of dependent variable. Hence the term calibration can be59

defined as the procedure to where the values of state variable ”y” are compared to the known standard60

values, let’s say ”Y ”, which in the context of biological research are those sampled from population true61

values Zeigler et al. (2000).62

On the other hand, the parameter estimation is the task of estimating the values of the constants of63

a model and it can be seen somehow as an inverse problem, since we are using the reference values Y64

in order to determine the suitable values for the model constants (Ashyraliyev et al. (2009); Beck and65

Arnold (1977)). The parameter estimation procedure implicitly encompasses the calibration process as, in66

order to discover the values for the constants the model outputs must be checked to the reference values.67

Thus the problem can be also stated as an optimization problem, just because the process requires the68

search for the minimum values of some function f (yi,Yi) measuring the distance between yi and Yi which69

are the simulated and the reference values respectively.70

The function measuring how close are the observed and the reference values is the goodness of fit71

metric for assessing how well the model is able to reproduce the reference data. In other words, the72

metric gives a numerical hint about how close are the output of model to the reference data. There are73

fundamentally three approaches to define the goodness of fit for a model (Thiele et al. (2014)). The first74

approach is based on using acceptable ranges for the model outputs being the most straightforward one.75

That approach is also known as categorical calibration and works defining intervals for the model output76

values and when the output falls inside the interval it is considered as having a good fit. One of the main77

drawback of this approach is the fact that it is not possible to determine how close are the model and the78

reference data. The second metric relies on measuring the differences between simulated and observed79

values, being the least squares the most commonly used method for computing the quality of fit (Beck and80

Arnold (1977)). Finally, that last approach requires the use of likelihood functions. It is hard to implement81

and requires that the underlying distribution must be known.82

In order to explore the search space, the calibration process requires many model executions as well83

as many evaluations of goodness of fit function over the output data in order to find the best estimation for84

the model parameters. This is a computationally expensive task, especially in the case of Individual-based85

models, as the problem bounds increases with model complexity and the number of input parameters86

which must be tested. Roughly speaking there are basically two different approaches for generating87

the sample points required for estimating parameters. The first of them is based on the definition of88

sampling schemes such as Monte Carlo, Factorial designs or the Latin Hypercube sampling that works by89

generating an a priori set of samples in the search space, that is to say, a set of parameter combinations for90

running model with all of these sampling points (Thiele et al. (2014); Viana (2013)). On the other hand,91

in the case of optimization methods, we have to generate an initial set of points sampled from the input92

2/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

space and modify them dynamically to search for neighboring solutions which could approximate better93

to the minima. The exact method depends on the evolutionary algorithm chosen for parameter estimation.94

DESCRIPTION95

In order to facilitate the parameter estimation task of Individual-based models we introduce the GNU R96

(R Core Team (2015)) package EvoPER - Evolutionary Parameter Estimation for Repast, an open source97

project intended to facilitate de adoption and application of evolutionary optimization methods and algo-98

rithms to the parameter estimation of IBMs developed using the Repast Symphony framework North et al.99

(2013). The EvoPER package is released under the MIT license being the binaries available for download100

from CRAN (https://cran.r-project.org/web/packages/evoper/) and the complete101

source code for the project can be found on GitHub (https://github.com/antonio-pgarcia/102

evoper).103

The package EvoPER provides implementations of common evolutionary algorithms specially crafted104

for search the optimum values for Individual-based models developed in Repast Simphony. Current105

version of EvoPER package supports the Particle Swarm Optimization (PSO) (Kennedy and Eberhart106

(1995)), the Simulated Annealing (SA) (Kirkpatrick et al. (1983)) and the Ant Colony Optimization (ACO)107

(Dorigo et al. (2006)) algorithms for parameter estimation. We also plan to support more algorithms108

in future versions. All of these algorithms use some kind of natural or physical system analogy having109

each of them subtleties making them suitable for different types of problems. Nonetheless, despite of110

the differences in the natural metaphor chosen all algorithms share an important aspect which is that the111

search space is traversed downhill but allowing uphill moves in order to avoid to get trapped in a local112

optimum far from the global one.113

The basic PSO algorithm uses the idea of particles moving in a multidimensional search space being114

the direction controlled by the velocity. The velocity has two components, one towards to the direction115

of best value of particle pi and other towards to the best value found in the neighborhood of particle pi116

(Kennedy and Eberhart (1995)). The behavior and convergence of the algorithm is controlled by the117

particle population size and by the φ1, φ2 parameters which respectively controls the particle acceleration118

towards the local and the neighbor best. The algorithm implementation and the default values for the119

algorithm parameters follows the guidelines and standard values provided by (Clerc (2012)).120

On the other hand, the Simulated Annealing uses the idea of cooling scheme to control how the121

problem solutions are searched. The algorithm generates an initial solution and then iterates, searching for122

neighbor solutions accepting new solutions when they are better than the current solution or with some123

probability P which is function of current temperature and the cost of solutions. Important parameters are124

the initial temperature T0, the final temperature and the cooling scheme Kirkpatrick et al. (1983). In our125

implementation the default function for temperature update is T = αT , being α the parameter controlling126

how fast the temperature is decremented.127

The package designed using an object-oriented approach being structured around the classes repre-128

senting the objective function to be minimized. These classes are the basic input for the optimization129

algorithms available on the EvoPER package. There is a parent class called ObjectiveFunction with130

two subclasses, namely the PlainFunction and the RepastFunction. The purpose of the first subclass is131

allow the user run the optimization algorithms to their own mathematical functions, the second subclass132

encapsulates the Repast Model calls and perform the parameter estimation. A brief description of package133

classes and the main methods is given in Table 1.134

135

3/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

 https://cran.r-project.org/web/packages/evoper/
https://github.com/antonio-pgarcia/evoper
https://github.com/antonio-pgarcia/evoper
https://github.com/antonio-pgarcia/evoper

Table 1. The EvoPER classes for encapsulating the objective function for parameter
estimation.

Class name Methods Description

ObjectiveFunction The base class in hierarchy providing the skeleton for running
the optimization algorithms.

Parameter Sets a model parameter with range between a minimum and a
maximum values.

GetParameter Returns a previously defined parameter.
Evaluate Evaluate the objective function.
Value Returns the value of last objective function evaluation.

PlainFunction Allows the optimization of plain functions implemented in R.
initialize Class constructor. Requires any R function as parameter. For

instance f <− f unction(x1,x2){(1− x1)
2 +100(x2− x2

1)
2}

Evaluate Override superclass method to the specific function call.
RepastFunction Wrapper the Repast Model

initialize Requires the model directory, an aggregated data source, the
simulation time and a user defined cost function.

Evaluate Override superclass method to the specific function call.

136

The object oriented approach allows the easy extension of the package for other types of Individual-137

based modeling tools or methods. As can be seen in Table 1 the only requirement to apply the methods138

contained in the EvoPER package is to extend the ObjectiveFunction class and override the Evaluate139

method to support the new parameter estimation target. One of the useful aspects of EvoPER implementa-140

tion is the possibility to specify constraints in the search space by individually setting lower and upper141

bounds for every parameter being analyzed using the ObjectiveFunction$Parameter(name, min, max)142

method. That is an important point for limiting the parameter values only to the acceptable biological143

range.144

The workflow for carry out the parameter estimation consists in a simple sequence of steps. First,145

an object instance of any ObjectiveFunction subclasses must be created and properly initialized. As146

mentioned previously, currently we have two options available for parameter estimation: one for simple147

functions which could be used for testing purposes (PlainFunction) and another for estimating parameters148

of Repast models (RepastFunction). Once the objective function has been initialized, the required149

parameters must be provided with the appropriate lower and upper bounds. Finally, the extremize function150

can be applied to the previously defined function. The required parameters are the optimization method151

and the objective function instance. The function has a third optional parameter for providing the custom152

options for the underlying optimization method.153

The optimization functions and its accessory helper functions are shown in the Table 2 for providing an154

overview on the package contents, the package is in continuous improvement and development therefore155

the list could change over the time. The package manual will be the most updated source of information156

for the package contents.157

158

4/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

Table 2. The partial list of EvoPER optimization functions for parameter estimation.

Function Description

abm.pso The function call for running the particle swarm optimization method. The
parameters are the ObjectiveFunction and an instance of Options class whith
the suitable parameter set.

pso.neighborhood.K2 This neighborhood function returns two neighbors of particle xi, where the
neighbors are the particles xi−1 and xi+1 using a ring topology Zambrano-
Bigiarini et al. (2013).

pso.neighborhood.K4 Returns four neighbors of particle xi using a von Neumann neighborhood
function.

pso.neighborhood.KN Return the whole set of particles. The neighborhood is a complete graph.
pso.Velocity Calculate the particle velocity Poli et al. (2007)
pso.chi Calculate the constriction coefficient Poli et al. (2007).
initSolution Creates a random initial population of size N for the model parameters.
enforceBounds Verify the upper and lower limits of every parameter
abm.saa The Simulated Annealing implementation. The parameters required are

the ObjectiveFunction and an instance of Options class whith the suitable
parameter set.

saa.neighborhood1 Generate a neighborhood solution for simulated annealing perturbing ran-
domly one value from current best solution and using the distance parameter.

saa.neighborhoodH Generate a neighborhood solution for simulated annealing perturbing ran-
domly the half of values of current best solution.

saa.neighborhoodN Generate a neighborhood solution for simulated annealing perturbing ran-
domly all values of current best solution.

extremize This is a wrapper encapsulating the calls for all parameter estimation meth-
ods. The parameters are the optimization method, the ObjectiveFunction
and an instance of Options class whith the suitable parameter set.

159

Most of the aspects implemented in the optimization code are standard and, perhaps the only points160

which are specific to the EvoPER package, are the neighborhood function for pso.neighborhood.K4161

and saa.neighborhood. The von Neumann neighborhood for particle swarm optimization is generated162

using a topology created converting the linear collections of particles to a matrix using the R code163

m <- matrix(seq(1,N),nrow=(ceiling(sqrt(N)))) where N is the swarm size.164

In the case of neighborhood solution for Simulated Annealing we have used the following logic165

for generating new solutions: first we pick randomly the parameters to be perturbed1 and update them166

using the expression S′ = S+ S ∗U(−1,1) ∗ distance where S′, S, U and distance are respectively the167

new neighbor solution, the current solution, a uniform random number between [−1,1] and the desired168

distance from current solution.169

The package provides acceptable default values for most of parameters related to the optimization170

method in use. In spite of the fact that the parameter estimation functions can be called directly, the171

users should use the function extremize(m, f, o) which is the standard entry point for the optimization172

methods. As has been mentioned previously, the function has three parameters, which are respectively the173

method (m), the objective function (f) and the options (o). Only the first two are required and the third174

is optional. When the options parameter is not provided the default values are used. If setting different175

from the default values are required, the user must pass an instance of the corresponding option class.176

For example, if more iterations are required for PSO method an instance of OptionsPSO must be created177

and the method setValue(”iterations”, value) with the appropriate value. Many other parameters can178

be customized in order to fit the specific needs for the model being analyzed such as the neighborhood179

functions or the temperature update for the simulated annealing.180

1Our implemented neighborhood functions allows to choose from 1, 1/2 n or n, being n the number of parameters

5/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

EXAMPLES181

In this section we will show some small and illustrative examples about how to use the EvoPER package182

for estimating the model parameters. It is worth mentioning that although the package is oriented to the183

application of evolutionary optimization methods to the parameter estimation of models developed using184

Repast Simphony it can also be used to minimize basic mathematical functions. In the following example185

shown in Figure 1 we demonstrate the package usage applying it to the two variables Rosenbrock’s186

function.187

1 # S tep 0
2 rm (l i s t = l s ())
3 s e t . s eed (161803398)
4 l i b r a r y (ev o pe r)
5

6 # S tep 1
7 r o s e n b r o c k 2<− f u n c t i o n (x1 , x2) { (1 − x1) ˆ2 + 100 ∗ (x2 − x1 ˆ 2) ˆ2 }
8

9 # S tep 2
10 o b j e c t i v e<− P l a i n F u n c t i o n $new (r o s e n b r o c k 2)
11

12 # S tep 3
13 o b j e c t i v e $ P a r a m e t e r (name=” x1 ” , min=−100 ,max=100)
14 o b j e c t i v e $ P a r a m e t e r (name=” x2 ” , min=−100 ,max=100)
15

16 # S tep 4
17 r e s u l t s<− e x t r e m i z e (” pso ” , o b j e c t i v e)

Figure 1. A simple example for minimizing the Rosenbrock’s function using the EvoPER
package.

As can be seen in Figure 1 the step 1 shows the definition of a simple function to be minimized; the188

step 2 demonstrate how to create an instance of PlainFunction class; in the step 3 the parameter ranges189

for each function’s parameter is provided and finally in the step 4 the EvoPER extremize function is used190

to minimize the objective function. The results of running the example are shown in Figure 2 where can191

be seen the estimated parameters, the value of fitness function, the execution time and the number of192

times the function has been evaluated.193

1 > sys tem . t ime (r e s u l t s<− e x t r e m i z e (” pso ” , f))
2 u s e r sys tem e l a p s e d
3 1 . 5 0 0 . 0 0 1 . 5 3
4 > r e s u l t s
5 x1 x2 p s e t f i t n e s s
6 1 1 .000762 1 .001341 4 3 .948505 e−06
7 > f $ s t a t s ()
8 t o t a l e v a l s conve rged
9 [1 ,] 1616 1

Figure 2. The R console output session showing the results of running the previous example.

One of important aspects is that the syntax is simple and consistent independent of the function for194

which parameters are being estimated. In next example shown in Figure 3 we can observe the simplicity195

for running the optimization code for Repast parameter estimation. As can be seen the same steps196

are required: (1) create the function to minimize based on the model characteristics; (2) Create the197

RepastFunction instance with model data; (3) Initialize the model parameters with the acceptable ranges198

and (4) Run the optimization function. In this example we are basically trying to find the best combination199

of model parameters which minimize the differences between the observed and the simulated data for the200

variable Rate and the method used is the normalized root mean square deviation.201

Finally, in the last example show in Figure 4 we want to show an example on how to craft the cost202

function for tuning the model parameters in order to accomplish a specific output. Specifically, a simple203

toy model representing the Lotka-Volterra, also known predator-prey is presented and we want to estimate204

the parameters required to make the output oscillate with an approximate period of twenty-four hours.205

This model, despite of being developed for modeling the predator and prey relationship, has a broad range206

of applications and can be used for representing a many types of ecological and biological interactions207

6/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

1 # S tep 0
2 rm (l i s t = l s ())
3 s e t . s eed (161803398)
4 l i b r a r y (ev o pe r)
5

6 # S tep 1
7 my . c o s t<− f u n c t i o n (params , r e s u l t s) {
8 Rate<− AoE .NRMSD(r e s u l t s $ s i m u l a t e d , r e s u l t s $ e x p e r i m e n t a l)
9 c r i t e r i a<− c b i n d (Rate)

10 r e t u r n (c r i t e r i a)
11 }
12

13 # S tep 2
14 o b j e c t i v e<− R e p a s t F u n c t i o n $new (” / u s r / models / BactoSim ” , ” ds : : Outpu t ” , 300 ,my . c o s t)
15

16 # S tep 3
17 o b j e c t i v e $ P a r a m e t e r (name=” c y c l e P o i n t ” , min =1 ,max=90)
18 o b j e c t i v e $ P a r a m e t e r (name=” c o n j u g a t i o n C o s t ” , min =0 ,max=100)
19 o b j e c t i v e $ P a r a m e t e r (name=” p i l u s E x p r e s s i o n C o s t ” , min =0 ,max=100)
20 o b j e c t i v e $ P a r a m e t e r (name=”gamma0” , min =1 ,max=10)
21

22 # S tep 4
23 r e s u l t s<− e x t r e m i z e (” s a a ” , o b j e c t i v e)

Figure 3. The minimum code required to accomplish the parameter estimation for a repast
model.

(Shonkwiler (2008)). The parameters we are trying to estimate are c1, c2, c3 and c4 which represent208

respectively the growth rate of prey, the predation rate, the predation effect on predator growth rate and209

finally the death rate of predator. The session output is presented in Figure 5 where the values for the210

parameters required to produce oscillations with the desired period are shown. The Figure 6 shows211

graphically the results for the tuned parameters.212

1 # S tep 0
2 rm (l i s t = l s ())
3 s e t . s eed (161803398)
4 l i b r a r y (ev o pe r)
5

6 # S tep 1
7 my . c o s t<− f u n c t i o n (params , r e s u l t s) {
8 p r e d a t o r s<− AoE .NRMSD(p e r i o d (r e s u l t s $ p r e d a t o r s) , 2 4)
9 c r i t e r i a<− c b i n d (p r e d a t o r s)

10 r e t u r n (c r i t e r i a)
11 }
12

13 # S tep 2
14 o b j e c t i v e<− R e p a s t F u n c t i o n $new (” / u s r / models / P r e d a t o r P r e y ” , ” ds : : p o p u l a t i o n ” ,180 ,my . c o s t)
15

16 # S tep 3
17 f $ P a r a m e t e r (name=” c1 ” , min = 0 . 5 , max=8)
18 f $ P a r a m e t e r (name=” c2 ” , min = 0 . 5 , max=8)
19 f $ P a r a m e t e r (name=” c3 ” , min = 0 . 5 , max=8)
20 f $ P a r a m e t e r (name=” c4 ” , min = 0 . 5 , max=8)
21

22 # S tep 4
23 r e s u l t s<− e x t r e m i z e (” pso ” , o b j e c t i v e)

Figure 4. Tuning the oscillation period of predator-prey model.

CONCLUSIONS213

The systematic parameter estimation should be a fundamental part of individual-based modeling but214

it is normally omitted by modelers. One of the main reasons is the relative complexity of available215

methods and the lack of simple tools for the practitioners which usually come from different domains with216

different backgrounds. Individual-based models are complex and non-linear and the evaluation of model’s217

input parameters is precisely the kind of combinatorial optimization problem for which evolutionary218

computation provides good results.219

In this work we have introduced the set of features available on EvoPER package alongside with220

7/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

1 > sys tem . t ime (r e s u l t s<− e x t r e m i z e (” pso ” , f))
2 u s e r sys tem e l a p s e d
3 9 1 . 2 0 . 0 0 91 .29
4 > r e s u l t s
5 c1 c2 c3 c4 p s e t f i t n e s s
6 1 0 .6305862 0 .8146169 1 .192911 1 .611731 4 5 .01271 e−03
7 > f $ s t a t s ()
8 t o t a l e v a l s conve rged
9 [1 ,] 800 0

Figure 5. The R console output session showing the results of running predator-prey model in
Figure 4.

some brief usage cases. The package is being developed bearing in mind the idea of minimizing the effort221

required to the application of sophisticated methods in the parameter estimation process of Individual-222

based models. This package will allow the modelers to try different alternatives without having to code ad223

hoc and complex integration code to the existent packages.224

ACKNOWLEDGMENTS225

This work was supported by the European FP7 - ICT - FET EU research project: 612146 (PLASWIRES226

”Plasmids as Wires” project) www.plaswires.eu and by Spanish Government (MINECO) research227

grant TIN2012-36992.228

REFERENCES229

Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. A., and Blom, J. G. (2009). Systems biology:230

Parameter estimation for biochemical models.231

Beck, J. V. and Arnold, K. J. (1977). Parameter estimation in engineering and science. Wiley series in232

probability and mathematical statistics. Wiley, New York.233

Boccara, N. (2003). Modeling Complex Systems (Graduate Texts in Contemporary Physics). Springer, 1234

edition.235

Clerc, M. (2012). Standard Particle Swarm Optimisation.236

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE Computational237

Intelligence Magazine, 1(4):28–39.238

Grimm, V. and Railsback, S. F. (2005). Individual-based Modeling and Ecology: (Princeton Series in239

Theoretical and Computational Biology). Princeton University Press, Princeton.240

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings.,241

IEEE International Conference on, 4:1942–1948 vol.4.242

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science,243

220(4598):pp. 671–680.244

Minsky, M. (1965). Matter, Mind and Models. In Proceedings of IFIP Congress 65, pages 45–49.245

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko, P. (2013).246

Complex adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling,247

1(1):3.248

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence,249

1(1):33–57.250

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for251

Statistical Computing, Vienna, Austria.252

Shonkwiler, R. W. (2008). Mathematical Biology: An Introduction with Maple and Matlab. Springer253

Publishing Company, Incorporated, 2nd edition.254

Thiele, J. C., Kurth, W., and Grimm, V. (2014). Facilitating Parameter Estimation and Sensitivity Analysis255

of Agent-Based Models: A Cookbook Using NetLogo and ’R’. Journal of Artificial Societies and256

Social Simulation, 17(3).257

Viana, F. A. C. (2013). Things You Wanted to Know About the Latin Hypercube Design and Were Afraid258

to Ask. 10th World Congress on Structural and Multidisciplinary Optimization, pages 1–9.259

Zambrano-Bigiarini, M., Clerc, M., and Rojas, R. (2013). Standard Particle Swarm Optimisation 2011260

8/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

www.plaswires.eu

at CEC-2013: A baseline for future PSO improvements. In 2013 IEEE Congress on Evolutionary261

Computation, CEC 2013, pages 2337–2344.262

Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000). Theory of Modeling and Simulation, Second Edition.263

Academic Press, 2 edition.264

9/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

0

5

10

15

0 25 50 75 100
time

va
lu

e

species

x

y

Predator/Prey period

Figure 6. An example of tuning the oscillation period of predator-prey model. The objective
function can be tweaked to reproduce any desired output behavior. The most common one is to
assess the quality of fit between simulated and experimental data but it is no limited and can be
used to find parameter combinations which generate some global behavior. In this figure we can
observe how x and y species, respectively the prey and predator components oscillates with an
approximated period of 24 hours using the parameter combination shown in Figure 5.

10/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2279v1 | CC BY 4.0 Open Access | rec: 11 Jul 2016, publ: 11 Jul 2016

	References

