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Abstract  20 

Clustered regularly interspaced short palindromic repeat (CRISPR) systems are 21 

the adaptive immune systems of bacteria and archaea against viral infection. While 22 

CRISPRs have been exploited as a tool for genetic engineering, their spacer sequences 23 

can also provide valuable insights into microbial ecology by linking environmental viruses 24 

to their microbial hosts. Despite this importance, metagenomic CRISPR detection 25 

remains a major challenge. Here we present a reference-guided CRISPR spacer 26 

detection tool (Metagenomic CRISPR Reference-Aided Search Tool - MetaCRAST) that 27 

constrains searches based on user-specified direct repeats (DRs). These DRs could be 28 

expected from assembly or taxonomic profiles of metagenomes. We compared the 29 

performance of MetaCRAST to those of two existing metagenomic CRISPR detection 30 

tools 3 Crass and MinCED 3 using both real and simulated acid mine drainage (AMD) 31 

and enhanced biological phosphorus removal (EBPR) metagenomes. Our evaluation 32 

shows MetaCRAST improves CRISPR spacer detection in real metagenomes compared 33 

to the de novo CRISPR detection methods Crass and MinCED. Evaluation on simulated 34 

metagenomes show it performs better than de novo tools for Illumina metagenomes and 35 

comparably for 454 metagenomes. It also has comparable performance dependence on 36 

read length and community composition, run time, and accuracy to these tools 37 

MetaCRAST is implemented in Perl, parallelizable through the Many Core Engine (MCE), 38 

and takes metagenomic sequence reads and direct repeat queries (FASTA or FASTQ) 39 

as input. It is freely available for download at https://github.com/molleraj/MetaCRAST. 40 

 41 

 42 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2278v3 | CC BY 4.0 Open Access | rec: 19 Aug 2017, publ: 19 Aug 2017

https://github.com/molleraj/MetaCRAST


Introduction 43 

The clustered regularly interspaced short palindromic repeat (CRISPR) arrays 44 

found in prokaryotic genomes can help us better understand viral-microbial interactions 45 

important in many ecosystems. Viruses can release cellular nutrients back into the 46 

ecosystem through lytic infection, forming an ecological short-circuit called the viral shunt 47 

(Weitz & Wilhelm, 2012). In this manner, viruses not only contribute to nutrient cycling in 48 

individual ecosystems, but also to maintaining biogeochemical cycles on a broader scale. 49 

The short spacers of viral DNA incorporated into CRISPR arrays form a historical record 50 

of past infections, thus linking virus to host (Sorek, Kunin & Hugenholtz, 2008; Makarova, 51 

Wolf & Koonin, 2013). This power of CRISPR spacers to determine viruses’ host 52 

specificity has recently been exploited using metagenomes from many ecosystems 53 

(Anderson, Brazelton & Baross, 2011; Sanguino et al., 2015; Edwards et al., 2015). While 54 

many tools exist for detecting CRISPRs in assembled genomes (Bland et al., 2007; 55 

Edgar, 2007; Grissa, Vergnaud & Pourcel, 2007a; Rousseau et al., 2009), few exist for 56 

CRISPR detection in metagenomic reads (Rho et al., 2012; Skennerton, Imelfort & Tyson, 57 

2013; Skennerton).  58 

The repetitive nature of CRISPRs makes them difficult to assemble from 59 

metagenomes, necessitating special tools to detect them in unassembled reads. Several 60 

tools have been developed to detect and assemble CRISPR arrays in unassembled reads 61 

rather than assembled contigs. The tool MinCED (Mining CRISPRs in Environmental 62 

Datasets), like metaCRT (Rho et al., 2012), is a modified version of CRT (Bland et al., 63 

2007) that detects CRISPR spacers (Skennerton), while the tool Crass (CRISPR 64 

assembler) detects and assembles CRISPR arrays (Skennerton, Imelfort & Tyson, 2013), 65 
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both from raw metagenomic reads. MinCED searches each read for CRISPRs using the 66 

same strategy as CRT; it searches for appropriately spaced short k-mers from which it 67 

extends longer repeats if appropriately frequent nucleotides are identified at the ends of 68 

the growing repeats. Crass relies on a hybrid algorithm to detect spacers that blends 69 

strategies of CRT (Bland et al., 2007) and CRISPRFinder (Grissa, Vergnaud & Pourcel, 70 

2007b). In long reads (>177 bp), it searches for repeats using the CRT strategy previously 71 

described. In short reads (<177 bp), on the other hand, it searches for appropriately 72 

spaced full-length repeats (i.e., 20-50 bp) and extends these repeats only with identical 73 

nucleotides, thus avoiding the potential errors caused by the CRT algorithm over- or 74 

under-extending the few repeats found in a short sequence. Crass then searches further 75 

for reads containing a single repeat, determines consensus direct repeats, uses the first 76 

and last k-mers of detected spacers to build a graph of spacer arrangement, and 77 

assembles CRISPR arrays using this graph. Both MinCED and Crass do not rely on prior 78 

knowledge of direct repeat sequences, making them de novo detection methods. Instead, 79 

they use heuristics to determine whether detected repeats are indeed CRISPRs. Such 80 

heuristics include threshold array lengths to avoid short, spurious CRISPR arrays and 81 

threshold repeat-spacer similarities to avoid arrays where spacers are too similar to 82 

repeats (Bland et al., 2007; Grissa, Vergnaud & Pourcel, 2007a; Skennerton, Imelfort & 83 

Tyson, 2013), which might indicate microsatellites rather than CRISPRs.  84 

In this work, we present the Metagenomic CRISPR Reference-Aided Search Tool 85 

(MetaCRAST), a novel reference-guided tool to improve CRISPR spacer detection in 86 

unassembled metagenomic sequencing reads. While MetaCRAST, to our knowledge, is 87 

the first reference-guided, read-dependent metagenomic CRISPR detection tool, prior 88 
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studies have used known direct repeats to improve CRISPR detection. The genomic 89 

CRISPR identification algorithm CRISPRDetect matches newly identified direct repeats 90 

to a reference library to refine repeat boundaries and validate arrays (Biswas et al., 2016). 91 

Searching reference repeat libraries, together with annotating cas genes adjacent to 92 

CRISPR arrays, has been used to exclude false positive <putative= CRISPRs from 93 

CRISPR annotation (Zhang & Ye, 2017). Unlike MinCED and Crass, as a reference-94 

guided method, MetaCRAST constrains spacer detection by searching metagenomes for 95 

direct repeats (DRs) that the user specifies. Relationships amongst these tools and such 96 

differences in use are further illustrated in Figure 1. Such specified DRs may be selected 97 

based on assembly or taxonomic profiling of metagenomic reads. MetaCRAST improves 98 

CRISPR annotation by allowing users to control for the taxonomic composition of the 99 

metagenome. It also avoids the rejection of true CRISPRs that can occur due to the 100 

heuristics required for de novo detection methods. In addition, unlike Crass and MinCED, 101 

MetaCRAST provides consistent performance over different read length Illumina 102 

datasets.  103 

Materials and Methods 104 

Algorithm and implementation 105 

MetaCRAST can constrain spacer detection by expected host species’ DRs or 106 

DRs identified from assembly (Figure 2A). It searches each read for DR sequences 107 

matching query DRs specified by the user. These DRs can be selected from CRISPR 108 

arrays detected with genomic CRISPR detection tools such as PILER-CR (Edgar, 2007), 109 

CRF (Wang & Liang, 2017), or CRISPRFinder (Grissa, Vergnaud & Pourcel, 2007b) in 110 

fully assembled microbial genomes or assembled metagenomic contigs. The steps of the 111 
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MetaCRAST pipeline are outlined in Figure 2B. In the first step of the pipeline, reads 112 

containing DRs within a certain Levenshtein edit distance (i.e., number of insertions, 113 

deletions, or substitutions necessary to convert one sequence to another) of the query 114 

DRs are quickly identified using the Wu-Manber multi-pattern search algorithm (Wu, 115 

Manber & Myers, 1995). In the second step, individual reads found to contain a query DR 116 

sequence are searched for two or more copies of the query DRs. In the third step, the 117 

sequence fragments between the DRs detected in these sequence reads are extracted 118 

into a comprehensive spacer set, which are then clustered using CD-HIT into a non-119 

redundant unique spacer set stored in FASTA format (Li & Godzik, 2006, p.).  120 

MetaCRAST is implemented in Perl as a command line tool to analyze 121 

metagenomes in FASTA or FASTQ formats. The tool has been implemented in several 122 

versions that differ in metagenome loading method (using BioPerl or readfq, the latter of 123 

which was paired either with the standard open routine to load a single file or mce_open 124 

for parallel file loading). Optionally, the user can specify the maximum spacer length, the 125 

distance metric used for comparing DRs to reads (Hamming or Levenshtein), whether to 126 

search for the reverse complement of the DR, the CD-HIT similarity threshold for 127 

clustering spacers, and the maximum number of threads to use to parallelize the search. 128 

The reverse complement argument (-r) should be used when the CRISPR direction is 129 

unknown. When the search is run in parallel, the FASTA (or FASTQ) file is split based on 130 

the specified number of threads. All command line arguments are further described in 131 

Table 1. Each split file is searched in parallel. An additional tool has been provided to 132 

assist taxonomy-guided query selection. This tool searches a taxonomically-annotated 133 
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library of CRISPRdb DRs for those that belong to a particular taxon query (e.g., 134 

Streptococcus).  135 

To analyze the distribution of taxonomic affiliations to direct repeats, we examined 136 

all direct repeats found in microbial genomes using the CRISPRdb database. CRISPRdb 137 

provides a library of direct repeats labeled with respective GenBank accessions in the 138 

CRISPR utilities section of the database (Grissa, Vergnaud & Pourcel, 2007a). We 139 

processed this library to assign taxonomy information based on GenBank accession. 140 

Taxonomy information was extracted from GenBank records with the Perl module 141 

Bio::DB::GenBank. Statistics describing the distribution of unique binomial names or 142 

genuses to which individual direct repeats affiliated was compiled with Microsoft Excel. 143 

Binomial name (species-level) and genus statistics are presented in Table 2. 144 

Performance evaluation with simulated and real metagenomes 145 

To study the relationship between CRISPR spacer detection and read length or 146 

sequencing technology, simulated acid mine drainage (AMD) and enhanced biological 147 

phosphorus removal (EBPR) metagenomes were generated using Grinder (Angly et al., 148 

2012). We generated simulated metagenomes over a range of average read lengths (100 149 

to 600 base pairs) using models of 454 (Balzer et al., 2010) and Illumina (Korbel et al., 150 

2009) errors. Following previous studies, we used a fourth-degree polynomial (3e-3 + 151 

3.3e-8 * i^4, where i is the nucleotide position from the 5’ end of the read, and the output 152 

is percentage chance of an error at that position) to model the Illumina sequencing error 153 

rate (Dohm et al., 2008; Korbel et al., 2009; Angly et al., 2012). This polynomial 154 

determined the probability of substitution, insertion, or deletion at each base of a 155 

simulated read (Korbel et al., 2009). For Illumina simulations, the ratio of substitutions to 156 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2278v3 | CC BY 4.0 Open Access | rec: 19 Aug 2017, publ: 19 Aug 2017



insertions and deletions was set to 80:20 by default. For 454 metagenome simulations, 157 

we modeled homopolymer errors as homopolymer length variation within simulated 158 

reads. The distributions of homopolymer lengths were defined by the mean n and 159 

standard deviation 0.03494 + n * 0.06856, where n is the homopolymer length, based on 160 

a prior study (Balzer et al., 2010; Angly et al., 2012).  161 

We generated six simulated metagenomes per condition (average read length, 162 

model, and microbial community). We used highly simplified taxonomic profiles to model 163 

the AMD and EBPR metagenomes (Tables S1 and S2). To test the effects of community 164 

composition on spacer detection, we simulated the AMD metagenome with a 454 error 165 

model and 600 bp average read length, varying the relative proportions of Leptospirillum 166 

and Ferroplasma genome used for the simulation (i.e., from 0 to 100% Leptospirillum). 167 

All simulated metagenomes contained 100,000 reads. 454 metagenomes were 168 

generated with this command: grinder -reference_file AMDgenomes.fasta - 169 

abundance_file AMDprofile.txt -total_reads 100000 -read_dist (one of 100, 150, 200, 250, 170 

300, 400, or 600) normal 50 -homopolymer_dist balzer. All 454 read length distributions 171 

were normal with a standard deviation of 50 bp. Illumina metagenomes were generated 172 

with this command: grinder -reference_file AMDgenomes.fasta -abundance_file 173 

AMDprofile.txt -total_reads 100000 -read_dist (one of 100, 150, 200, 250, or 300) -md 174 

poly4 3e-3 3.3e-8. All Illumina read length distributions were uniform with all reads having 175 

exactly the average read length.  176 

Simulated metagenomes were searched for CRISPR spacers using Crass 177 

(Skennerton, Imelfort & Tyson, 2013), MinCED (Skennerton), and MetaCRAST. Crass 178 

and MinCED were run with default parameters (crass grinder-reads.fa; minced -spacers 179 
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grinder-reads.fa minced.crispr). The default minimum and maximum DR lengths for both 180 

Crass and MinCED were 23 and 47 bp.  The default minimum and maximum spacer 181 

lengths for both Crass and MinCED were 26 and 50 bp. MetaCRAST was run with a 182 

taxonomy-guided query (Tables S3 and S4), a maximum spacer length of 60, a maximum 183 

allowed edit distance (insertions, deletions, or substitutions) between query and target 184 

direct repeats of 3, a CD-HIT clustering similarity threshold of 0.9, and a total of 16 parallel 185 

threads (MetaCRAST -p query.fa -i grinder-reads.fa -o MetaCRAST -d 3 -l 60 -c 0.90 -a 186 

0.90 -n 16 -t tmp). We selected a maximum allowed edit distance of 3 based on results 187 

of our prior metagenomic CRISPR detection studies, which showed MetaCRAST 188 

searches with a taxonomy-guided query found similar numbers of spacers to Crass when 189 

we set this edit distance (Moller & Liang, 2017). For all analyses, detected spacers were 190 

clustered with CD-HIT with a similarity threshold of 0.9 (cdhit -i spacers.fa -o 191 

spacersCD90.fa -c 0.9) to reduce spacer redundancy. Performance on these simulated 192 

metagenomes was evaluated based on total number of spacers detected, number of false 193 

positive spacers detected, and run time for each average read length. For the mixed 194 

composition simulated AMD metagenomes described above, spacers were aligned 195 

against CRISPR spacers present in the source Leptospirillum and Ferroplasma genomes 196 

and the number of matching true positive spacers for each organism reported.  197 

The number of false positive spacers found in simulated metagenomes was 198 

determined by comparing the total detected spacers with the expected CRISPRdb 199 

spacers found in the source genomes used for the simulations (AMD and EBPR). 200 

Alignments were made to the annotated CRISPRdb spacers using BLAST with an E-201 

value cutoff of 1e-6 (Altschul et al., 1990). This analysis was repeated with an E-value 202 
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cutoff of 1e-1 to consider whether the original threshold was too stringent. The number 203 

ofdetected spacers that were aligned to expected ones was subtracted from the total 204 

number of spacers detected to determine the number of false positive spacers for a 205 

particular method and condition. Cases where zero spacers were detected in a 206 

metagenome were treated as zero false positive spacers and included in overall analysis. 207 

Run times were determined for each metagenome and method using the built-in Linux 208 

command time. Run time was calculated as the sum of the user and system time (together 209 

the total CPU time).  210 

Similarly, CRISPR spacers were also detected by the aforementioned three tools 211 

in real AMD and EBPR metagenomes (Table S5) downloaded from iMicrobe (Hurwitz, 212 

2014) and taxonomically profiled with MetaPhyler (Liu et al., 2011). MetaCRAST analyses 213 

of the real metagenomes were performed with taxonomy- or assembly-guided query DRs 214 

generated as follows. To make an assembly-guided query, CAP3-assembled contigs 215 

(Huang & Madan, 1999) were searched for CRISPR DRs using PILER-CR (Edgar, 2007), 216 

which finds CRISPRs in assembled genomes or contigs. These DRs formed an 217 

assembly-guided query (Tables S6 and S7), while DRs found in assembled Leptospirillum 218 

(AMD), Ferroplasma (AMD), and Candidatus Accumulibacter phosphatis (EBPR) 219 

genomes included in CRISPRdb (Grissa, Vergnaud & Pourcel, 2007a) formed a 220 

taxonomy-guided query (Tables S3 and S4). All of these aforementioned taxa were found 221 

to be major components of the microbial community based on the AMD and EBPR 222 

taxonomic profiles determined with MetaPhyler (Tables S8 and S9). 223 

 224 

 225 
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Results 226 

Effects of read length, sequencing technology, and community composition on 227 

CRISPR spacer detection 228 

We first investigated the relationships between detected spacers and read length 229 

or sequencing technology. Performance, here determined by the number of spacers 230 

detected, increased with read length over all 454 tests (Figure 3). While the total number 231 

of spacers detected by Crass and MetaCRAST converged as read length increased, the 232 

total number of spacers detected by MinCED steadily increased even beyond the true 233 

number of spacers found in the genomes used to generate the simulated metagenomes. 234 

We speculate that MinCED inconsistently determined DR lengths amongst different 235 

CRISPR-containing reads due to its CRT-based algorithm, leading to the same spacers 236 

being inappropriately truncated or extended. Meanwhile, amongst metagenomes 237 

simulated with the Illumina model, MetaCRAST detected significantly more spacers than 238 

Crass and MinCED for average read lengths of 200 bp or greater (Figure 3; p < 0.05 for 239 

both AMD and EBPR simulations using unpaired t-tests). Crass detected more spacers 240 

than MinCED and MetaCRAST for short Illumina reads (100 and 150 bp), however 241 

(Figure 3; p < 0.05 for both AMD and EBPR simulations using unpaired t-tests).  242 

We also tested the effects of community composition on CRISPR detection for 243 

each of the three methods using AMD metagenomes simulated with a 454 error model 244 

and 600 bp average read length. We selected the 600 bp average read length for all 245 

mixed metagenomes to minimize differences in detection between methods based on 246 

read length (Figure 3). We varied the relative abundances of Leptospirillum and 247 

Ferroplasma from 0 to 100 percent in our taxonomic profiles, thus varying the proportions 248 
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of CRISPR arrays specific to each included in the simulated metagenomes. For all 249 

detection methods, detected spacers specific to a genome decreased as the relative 250 

proportion of that taxon decreased, with roughly the same pattern for each method (Figure 251 

4). As in the read length studies, MinCED consistently detected far more genome-specific 252 

spacers in the metagenomes than were originally present in the source genomes (Figure 253 

4). This may account for its steeper increase in detected genome-specific spacers as the 254 

proportion of the corresponding genome in the simulated metagenomes increased. 255 

Evaluation of CRISPR spacer detection on real AMD and EBPR metagenomes  256 

We also evaluated MetaCRAST against Crass and MinCED using real AMD and 257 

EBPR metagenomes (Tyson et al., 2004; Martín et al., 2006). While taxonomy-guided 258 

queries consistently found fewer spacers than the other two methods (583 compared to 259 

2486 for Crass and 4265 for MinCED in the AMD metagenome; 196 compared to 1014 260 

for Crass and 1821 for MinCED in the EBPR metagenome), an assembly-guided 261 

MetaCRAST search identified more spacers than Crass did in the AMD metagenome 262 

(2813 compared to 2486 - Figure 5A). In both AMD and EBPR metagenomes, many 263 

common spacers were detected amongst Crass, MetaCRAST (assembly-guided query), 264 

and MinCED (7.1% of all detected spacers for AMD and 2.5% for EBPR 3 Figures 5B and 265 

5C). Despite this, there were also many spacers detected with Crass and MinCED not 266 

identified with MetaCRAST searches (Figures 5B and 5C). Notably, however, none of the 267 

spacers detected with MetaCRAST using the taxonomy-guided query overlapped with the 268 

Crass-detected spacers (Figures 5B and 5C), suggesting MetaCRAST can detect 269 

spacers missed by Crass given an appropriate taxonomy-guided query.  270 

 271 
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Evaluation of accuracy and runtime performance 272 

 In addition to our studies comparing detected spacers over a variety of conditions, 273 

we evaluated all three detection methods for spacer detection accuracy and run time 274 

(Figures 6 and 7). We performed these evaluations on the simulated AMD and EBPR 275 

metagenomes previously used to examine effects of read length and sequencing 276 

technology on CRISPR detection (Figure 3). For AMD metagenomes simulated with the 277 

454 model, MinCED detected significantly more false positive spacers than Crass or 278 

MetaCRAST for average read lengths of 200 bp or more (Figure 6; p < 0.05 using 279 

unpaired t-tests). Crass and MetaCRAST, on the other hand, did not have statistically 280 

significant differences in detected false positive spacers over the entire range of average 281 

read lengths (p > 0.05 using unpaired t-tests). For the AMD Illumina metagenomes, on 282 

the other hand, MetaCRAST generated the largest number of false positive spacers for 283 

average read lengths greater than 200 bp (Crass for average read lengths of 150 bp and 284 

lower), but not by a statistically significant margin compared with MinCED (p > 0.05 using 285 

unpaired t-tests). For the EBPR metagenomes simulated with the 454 model, there were 286 

remarkably few false positive spacers detected with all methods over the full range of 287 

average read lengths. For the EBPR Illumina metagenomes, MinCED generated the 288 

largest number of false positive spacers for average read lengths greater than 200 bp 289 

(Crass for average read lengths of 150 bp and lower), with MetaCRAST overlapping its 290 

pattern closely (Figure 6). Because of this overlap, differences between MinCED and 291 

MetaCRAST false positive spacers were not statistically significant (p > 0.05 using 292 

unpaired t-tests), (EBPR Illumina metagenomes, Figure 6). MetaCRAST did detect more 293 

false positives than MinCED for the 200 bp read length (p < 0.05 using unpaired t-tests, 294 
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EBPR Illumina metagenomes, Figure 6). We note that these false positive spacers are 295 

only detected spacers that did not align to expected ones. The false positives do not 296 

necessarily include improperly truncated or extended spacers, which we suspect MinCED 297 

creates, leading to its artificially high spacer counts (Figure 3). We repeated this false 298 

positive spacer analysis using a weaker E-value threshold of 1e-1 (Figure S1). Using this 299 

weaker threshold decreased the number of false positive spacers identified in all 300 

conditions (Figure S1). 301 

We also evaluated relative speed of the detection methods using the Linux function 302 

time. We evaluated seven different combinations of algorithms, implementations, and 303 

parameters. We evaluated both Crass and MinCED with default parameters. For 304 

MetaCRAST, we evaluated five different conditions differing in parallelization and 305 

metagenome loading method - BioPerl for loading and 16 threads, BioPerl and a single 306 

thread, readfq with mce_open for loading and 16 threads, readfq with mce_open and a 307 

single thread, and readfq with the standard open routine and a single thread (Figure 7). 308 

We used CPU time (user and system time) rather than wall clock time (real time) as a 309 

measure of speed performance.  310 

We noticed steady increases in run time with increasing read length for all 311 

detection methods, metagenomes, and sequencing technologies (Figure 7). MetaCRAST 312 

showed a linear CPU time dependence on read length in all cases (R2 > 0.98 in all cases; 313 

p-values calculated from Pearson correlation were less than 1e-5 in all cases), while 314 

linear correlations for MinCED and crass were much weaker (R2 < 0.88 in all cases; p-315 

values calculated from the Pearson correlations were more than 0.05 for Illumina datasets 316 

but between 9e-4 and 8e-3 for 454 datasets). Among MetaCRAST implementations, the 317 
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readfq/open version used the least CPU time by statistically significant margins for all 318 

conditions (Figure 7; p < 0.05 in all cases using unpaired t-tests). MetaCRAST was slower 319 

than Crass for all read lengths by statistically significant margins (Figure 7; p < 0.05 in all 320 

cases using unpaired t-tests). On the other hand, it was faster than MinCED for 454 read 321 

lengths between 100 and 400 bp and Illumina read lengths between 100 and 250 bp 322 

(Figure 7; p < 0.05 using unpaired t-tests).  323 

Taxonomic affiliations of CRISPR direct repeats annotated in CRISPRdb 324 

To analyze how direct repeats affiliated to taxa, we examined all direct repeats 325 

annotated in microbial genomes using the CRISPRdb database. We used a Perl script to 326 

assign taxonomy information based on GenBank accession using the module 327 

Bio::DB::GenBank. The results of this analysis for species (binomial name) and genus-328 

level designations are presented in Table 2. The average number of unique taxon 329 

designations per DR was greater at the species level than the genus level (1.308 330 

compared to 1.063). Variation was also greater for species-level designations compared 331 

to genus-level (standard deviation of 1.567 compared 0.521). Both species- and genus-332 

level analyses identified DRs that were affiliated to many taxa (a maximum of 20 genuses 333 

and 46 species). We acknowledge that our analysis does not examine the number of 334 

unique DRs per taxon. It also only considers independent, unique DRs, ignoring the 335 

possibility that many unique DRs may have closely related sequences. 336 

Discussion 337 

 In this work, we present and evaluate a novel reference-guided method for 338 

CRISPR detection in unassembled metagenomic reads. This method searches 339 
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metagenomic reads for user-specified direct repeats which could be provided through 340 

taxonomy- or assembly-guided searches (Figures 1 and 2). We analyzed currently known 341 

DRs with respect to their taxonomic designations to determine the robustness of 342 

taxonomy-guided searches (Table 2). We found that most DRs in fact do affiliate to a 343 

single species or genus, but that there are exceptions that may have arisen through 344 

horizontal gene transfer (Table 2). This analysis does not consider small polymorphisms 345 

between closely related DRs. Depending on the circumstance, it may be important to 346 

consider whether one DR could be present in multiple taxa found in a sample.  347 

Our studies of simulated metagenomes show distinct advantages for Crass and 348 

MetaCRAST depending on average read length (Figure 3). While the modified assembly 349 

procedure and exhaustive searches Crass provides make it well suited for short read 454 350 

and Illumina metagenomes, MetaCRAST outperforms Crass for long read Illumina 351 

metagenomes (Figure 3). We speculate that heuristics to avoid misassembly of CRISPR 352 

arrays or improper repeat detection may hinder Crass in these long-read Illumina 353 

metagenomes. We also noted that all three algorithms detected far more spacers in 454 354 

compared to Illumina metagenomes (Figure 3). We have two possible explanations for 355 

this phenomenon. First, our algorithms may have handled homopolymer error better than 356 

the substitution error simulated in the Illumina metagenomes. Second, our Illumina model 357 

may have introduced higher error rates than the 454 error model, making it more difficult 358 

to find multiple similar DRs in the reads. The very high numbers of MinCED-detected 359 

spacers are deceptive because this algorithm has the potential for substantial errors in 360 

determining repeat and spacer lengths (Figures 3 and 4). Inconsistencies in defining 361 

repeat length leads to false splitting of identical spacers into different groups. 362 
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Studies on real metagenomes suggest substantial advantages for Crass and 363 

MinCED in terms of numbers of detected spacers (Figure 5). While in most cases 364 

MetaCRAST detected fewer spacers than Crass or MinCED, it did identify spacers unique 365 

to those from the two other methods. This suggests that it can complement these 366 

methods, finding spacers missed due to the heuristics that Crass and MinCED use to 367 

avoid false positives (Figure 5). We had expected that MetaCRAST would underperform 368 

compared to Crass and MinCED in these real metagenomes, because the taxonomy-369 

guided queries we used did not fully account for all the taxa found with taxonomic profiling. 370 

We only used one or two genomes to simulate the AMD and EBPR metagenomes, 371 

making the simulated metagenomes much simpler in taxonomic diversity. This 372 

simplification was what made MetaCRAST detection performance comparable to that of 373 

Crass and MinCED for the simulations. 374 

Accuracy was roughly similar amongst the three tools (Figure 6). Relaxing the error 375 

threshold reduced false positive spacers detected by all tools, suggesting sequencing 376 

error rather than algorithm issues could account for some of these false positive spacers 377 

(Figure S1). MetaCRAST follows the same pattern of increasing run time with average 378 

read length as the other two tools, and it is comparable in run time to MinCED (Figure 7). 379 

MetaCRAST run time increases linearly with average read length (Figure 7). We 380 

acknowledge that implementation of the algorithm in a compiled language or increasing 381 

the number of threads used to parallelize the search could further improve MetaCRAST 382 

speed. Nonetheless, while MetaCRAST is not as fast as the compiled algorithm Crass 383 

under the conditions tested, it does identify spacers distinct from these methods in real 384 
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metagenomes and outperforms it in overall spacer detection for simulated Illumina 385 

metagenomes.  386 

 Recent studies of computational methods for determining phage-host interactions 387 

suggest CRISPR spacer alignment is a highly accurate signature of phage-host 388 

interaction but that most identified CRISPR spacers do not align to known phage 389 

genomes (Edwards et al., 2015). This suggests that it is critical to improve metagenomic 390 

CRISPR spacer detection to increase the chances of matching spacers to viral genomes. 391 

More broadly, increasing spacer matching would provide a fuller appreciation of a 392 

microbial ecosystem’s phage-host interaction space. We have recently used MetaCRAST 393 

to improve our determination of virus-host interactions in solar salterns (Moller & Liang, 394 

2017), complementing Crass with our spacer detection method. MetaCRAST 395 

complements de novo methods like Crass because it avoids the heuristics they use to 396 

reduce false positive spacers. Using a targeted direct repeat query, our tool can avoid the 397 

false negative bias of these approaches. We anticipate that MetaCRAST will be of great 398 

interest to microbial ecologists interested in phage-host interactions because it 399 

complements existing de novo methods to improve metagenomic CRISPR detection. 400 
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Figures 513 

Figure 1: This diagram outlines relationships amongst different metagenomic CRISPR 514 

detection methods. CRISPR detection can be performed either using specified direct 515 

repeats (reference-guided detection) or without prior knowledge of direct repeat 516 

sequences (de novo detection). De novo detection searches raw metagenomic reads for 517 

direct repeat sequences of the appropriate length and spacing (i.e., 25-60 bp long repeats 518 

with 25-60 bp spacers between them). De novo detection techniques either detect 519 

spacers in reads only (MinCED) or assemble reads into arrays (Crass). Reference-guided 520 

CRISPR detection, on the other hand, searches reads for user-specified direct repeat 521 

sequences, and extracts spacers from between direct repeat sequences identified in 522 

reads containing direct repeats. While the query is user-specified, general strategies for 523 

generating a query include using direct repeats found in assembled metagenomic contigs 524 

with CRISPR array detection tools (e.g., PILER-CR) or direct repeats found in genomic 525 

CRISPR arrays (e.g., those found in microbial genomes included in CRISPRdb) that 526 

might be expected based on taxonomic profiles. An example of the latter strategy would 527 

be searching for known genomic Streptococcus pyogenes direct repeats if Streptococcus 528 

pyogenes is found in the metagenome’s taxonomic profile.  529 

 530 

 531 
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Figure 2: A comparison of per-read CRISPR detection strategies (A) between 532 

MetaCRAST and existing de novo detection tools (e.g., Crass, MinCED) and an outline 533 

of the MetaCRAST workflow (B). DR represents direct repeat, while S represents spacer. 534 

 535 

  536 

 537 

 538 

 539 

 540 

 541 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2278v3 | CC BY 4.0 Open Access | rec: 19 Aug 2017, publ: 19 Aug 2017



Figure 3: Evaluation of MetaCRAST, Crass, and MinCED performance on simulated AMD 542 

(A and B) and EBPR (C and D) metagenomes. The procedure used to generate the 543 

simulated metagenomes is described in Materials and Methods. All data points represent 544 

the averages of six individual simulations and are presented with error bars representing 545 

two times the standard error above and two below the average. The true number of 546 

spacers expected in each simulated metagenome is marked with a black line (138 547 

expected in the AMD metagenomes; 219 in the EBPR metagenomes).   548 
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Figure 4: Evaluation of MetaCRAST, Crass, and MinCED performance on simulated 557 

metagenomes with varying proportions of Ferroplasma acidarmanus fer1 and 558 

Leptospirillum sp. Group II 'CF-1' genome sequences. Simulated metagenomes were 559 

generated with Grinder. The data points shown represent the average number of <true 560 

positive= spacers detected that matched spacers in corresponding Ferroplasma or 561 

Leptospirillum CRISPR arrays (A and B, respectively). All data points represent the 562 

averages of six individual simulations and are presented with error bars representing two 563 

times the standard error above and two below the average. The true number of spacers 564 

expected for each genome is marked with a black line (20 expected in the Ferroplasma 565 

genome; 118 in the Leptospirillum genome).   566 
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Figure 5: Evaluation of MetaCRAST, Crass, and MinCED on real AMD and EBPR 573 

metagenomes. A) Total number of CRISPR spacers detected in real AMD and EBPR 574 

metagenomes using four different detection methods 3 Crass (de novo), MetaCRAST 575 

(using assembly-guided queries), MetaCRAST (using taxonomy-guided queries), and 576 

MinCED (de novo). Taxonomy-guided and assembly-guided queries are provided as 577 

Tables S3-S4 and S6-S7. B) Comparison of spacers detected in the real AMD 578 

metagenome using Crass (de novo), MetaCRAST (using taxonomy-guided queries), 579 

MetaCRAST (using assembly-guided queries), and MinCED (de novo). Comparison was 580 

performed using Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/). C) Comparison of 581 

spacers detected in the real EBPR metagenome using the same methods as in B. 582 

Comparison was performed using Venny 2.1. 583 
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Figure 6: Evaluation of MetaCRAST, Crass, and MinCED false positive detection on 586 

simulated AMD (A and B) and EBPR (C and D) metagenomes. The procedure for 587 

generating the simulated metagenomes is described in Materials and Methods. The 588 

number of detected spacers matching expected ones was subtracted from the total 589 

number of spacers detected to determine the number of false positive spacers for a 590 

particular method and condition.  All data points represent the averages of three 591 

individual simulations and are presented with error bars representing two times the 592 

standard error above and two below the average. 593 
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Figure 7: Evaluation of MetaCRAST, Crass, and MinCED run times on simulated AMD (A 602 

and B) and EBPR (C and D) metagenomes. We evaluated seven different combinations 603 

of algorithms, implementations, and parameters. We evaluated both Crass and MinCED 604 

with default parameters. For MetaCRAST, we evaluated five different conditions differing 605 

in parallelization and metagenome loading method - BioPerl loading and 16 threads, 606 

BioPerl and a single thread, readfq with mce_open for loading and 16 threads, readfq 607 

with mce_open and a single thread, and readfq with the standard open routine and a 608 

single thread. The procedure for generating the simulated metagenomes is described in 609 

Materials and Methods. Run time was calculated as the sum of the user and system time 610 

(together the total CPU time). All data points represent the averages of three individual 611 

simulations and are presented with error bars representing two times the standard error 612 

above and two below the average. 613 
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Tables 619 

Table 1: Command line arguments for MetaCRAST. Required arguments are in bold. 620 

Argument Description 

-p Pattern file containing query DR sequences in FASTA or FASTQ format 

-i Input metagenome in FASTA or FASTQ format 

-o Output directory for detected reads and spacers 

-d Allowed edit distance (insertions, deletions, or substitutions) for initial read 
detection with the Wu-Manber algorithm and subsequent DR detection steps 

-t Temporary directory to put metagenome parts (use this if -n option also 
selected) 

-q Input metagenome is a FASTQ file (directs use of fastq-splitter.pl instead 
of fasta-splitter.pl) 

-h Use Hamming distance metric (substitutions only - no insertions or 
deletions) to find direct repeat locations in reads (default: use Levenshtein 
distance metric - look for sequences matching DR within insertion, deletion, 
and/or substitution edit distance) 

-r Search for reverse complement of CRISPR direct repeat sequences 

-l Maximum spacer length in bp 

-c CD-HIT similarity threshold for clustering spacers detected for each query 
direct repeat (value from 0 to 1) 

-a CD-HIT similarity threshold for clustering all detected spacers (value from 0 
to 1) 

-n Number of processors to use for parallel processing (and number of 
temporary metagenome parts) 

 621 
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Table 2: Distribution statistics for binomial name and genus-level taxonomic affiliation of 626 

CRISPRdb direct repeats. A library of direct repeats labeled with respective GenBank 627 

accessions from CRISPRdb was processed to assign taxonomy information based on 628 

GenBank accession. Taxonomy information was extracted from GenBank records with 629 

the Perl module Bio::DB::GenBank. Statistics describing the distribution of binomial 630 

names or genuses to which individual direct repeats affiliated were compiled with 631 

Microsoft Excel. 632 

Statistic Binomial names Genuses 

Mean 1.308 1.063 

Median 1 1 

Mode 1 1 

Minimum 1 1 

Maximum 46 20 

Standard deviation 1.567 0.521 

 633 
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