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 6 

ABSTRACT 7 

Natural hazards and land management issues can benefit nowadays from the increasing availability of 8 

free, high-resolution satellite imagery that opens the way to fine scale detailed investigations. In high 9 

elevation catchments the analysis of vegetation dynamics deserves particular attention since little 10 

climatic modifications can be amplified in such fragile systems. For the same reasons, the dynamic of 11 

instability phenomena as response to an input hydrological forcing, requires a meticulous spatial 12 

representation in order to better represent the active processes at catchment scale.  13 

The present work focuses on the analysis of high-resolution freely available imagery (Microsoft® Bing 14 

Maps™ Platform) that enables the characterization of vegetation cover and the automatic mapping of 15 

shallow landslides in an alpine catchment. Semi-automatic detection of vegetation is carried out at the 16 

fine scale using both orthophotos and freely available satellite imagery. The analysis based on the 17 

satellite imagery showed a better accuracy in respect to the one based on the orthophotos. In particular, 18 

satellite imagery analysis showed high sensitivity and high specificity even in low illumination conditions, 19 

while, for the same circumstances, orthophotos-based analysis shows a significant wrong detection rate. 20 

In the framework of a long term, multi-temporal and high-resolution characterization of vegetation 21 

cover and for a rapid mapping of shallow instability phenomena, the effectiveness of the proposed 22 

approach can speed up the representation of the local conditions towards an improvement of land 23 

management strategies and hazard and risk assessment. 24 
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 28 

INTRODUCTION 29 

Classification and mapping of vegetation is a key methodological issue for the management of natural 30 

resources (Xie et al., 2008). The increasing availability of free and high-resolution imagery dataset offers 31 

a great potential to leverage for a detailed and multi-temporal assessment of the vegetation dynamic.  32 

Fine resolution vegetation cover assessment can help in setting up a correct soil properties 33 

parameterization for improved hydrological modelling (Oubeidillah et al., 2014). Furthermore, when 34 

focusing on uniform vegetated areas, the automatic detection of non-vegetated areas can be a good 35 

proxy of slope instability phenomena (Guzzetti et al., 2012). 36 

With the above-mentioned conditions, the analysis of high-resolution, freely available imagery can 37 

improve intrinsic efficiency of the detection of vegetation cover and the automatic recognition of 38 

shallow landslides at increasing time frequency. In the long run and on the global scale the integration of 39 

such techniques with morphometric assessment of landscape features can pave the way towards an 40 
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improvement of land management strategies and hazard and risk assessment. In the following the 41 

effectiveness of the approach is validated in a study area. 42 

 43 

DATA AND METHODS 44 

The study area is the Rio Vauz catchment (1.9 km2), an headwater catchment located in the Dolomites, 45 

Eastern Italian Alps (Figure 1). The site ranges in elevations between 1847 m a.s.l. and 3152 m a.s.l.. 46 

Average, temperatures vary during the year from -5.7 °C in January to 14.1 °C in July. Mean annual 47 

precipitation is about 1220 mm, 49% is in form of snow. Spring and early summer snowmelt is 48 

frequently associated with high-flow conditions but summer thunderstorms and autumn precipitation 49 

determine important flood events as well. The upper part of the catchment is dominated by Dolomitic 50 

outcropping bedrock and debris whereas the central and lower part are vegetated by alpine grassland 51 

and sparse trees. The morphology of the study site is deeply influenced by the geo-structural setting, in 52 

particular in relation to the characteristics of structural discontinuities. The catchment is object of 53 

several measurements campaigns: the hydrological response is monitored since several years both in 54 

the rocky subcatchments of the upper part and in soil-mantled subcatchments of the middle and lower 55 

part of the catchment (Penna et al., 2015, 2016a,b) and morphometric characterizations of rocky areas 56 

and scree slopes have been also carried out (Marchi et al., 2015; Trevisani et al., 2009).  57 

The first step of the analysis here proposed consisted in the mosaicking of the image tiles, downloaded 58 

at the maximum zoom level (with a pixel resolution of about 0.3 m) from Bing Maps™ (© 2016 59 

Microsoft, © 2016 HERE, 2014 DigitalGlobe) satellite terrain imagery. The download was performed 60 

with GMapCatcher (https://github.com/heldersepu/gmapcatcher), a free, offline maps viewer that can 61 

display maps from many providers; GMapCatcher is written in Python 2.7 & PyGTK, can run on Linux, 62 

Windows and Mac OSX. The downloaded tiles were subsequently merged using a Matlab script. For the 63 

same area, a 0.15 m orthophoto dated 2006 was available. The satellite image was georeferenced in 64 

ArcGIS (ESRI, 2014) identifying common and stable features in the two images. The images were 65 

compared in terms of effectiveness in detecting the vegetation. To this purpose a common set of 66 

training areas has been selected for the two images; training areas were a priori classified among 67 

vegetation and no-vegetation classes. A Maximum Likelihood Estimation Classification (MLE) (Strahler, 68 

1980) was then performed on the two images and an initial assessment of the effectiveness of the two 69 

outcomes was carried out. 70 

 71 

RESULTS AND CONCLUSIONS 72 

 73 

At catchment scale (Figure 1) the quality of the orthophoto is excellent in terms of resolution and color 74 

clearness, the only apparent limitation being related to the poor illuminating conditions, shadowed 75 

areas cover in fact significant part of the orthophoto. The satellite image shows instead an overall good 76 

quality both in terms of light and shadows conditions and as respects to the high resolution of the data.  77 

 78 
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 79 
Figure 1. Study area with satellite terrain dataset (a) and orthophoto (c) and results of MLE classification on the 80 

presence or absence of vegetation at catchment scale using satellite image (b) and orthophoto (d) 81 

 82 

A qualitative assessment of the georeferencing accuracy exhibits a good matching between the images 83 

with slightly higher distortion effects and uneven matching related to the rock cliff areas. 84 

First results and visual interpretation on the semi-automatic detection of the presence or absence of 85 

vegetation in the study area show a very good performance in the case of satellite imagery analysis 86 

while the orthophoto based classifications seems to be characterized by a low specificity related to a 87 

high wrong detection rate. 88 
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 89 
Figure 2. Shallow landslides within the study area: satellite image (a) satellite image-derived classification results 90 

(b), orthophoto (c) and orthophoto-derived classification results (d) 91 

 92 
Figure 3. Dolomitic cliffs and sparse grasslands within the study area: satellite image (a) satellite image-derived 93 

classification results (b), orthophoto (c) and orthophoto-derived classification results (d) 94 
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 95 

A detailed analysis of the results focusing on an area where several shallow landslides are affecting the 96 

slope and a sparse trees are present in the lower portion (Figure 2 and Figure 4), highlights the 97 

effectiveness of the satellite image-derived classification not only considering the correct interpretation 98 

of shadowed areas but also in relation to the more precise boundary detection of the instability 99 

phenomena. The same behavior is shown when considering the upper portion of the catchment (Figure 100 

3), characterized mainly by dolomitic cliffs and sparse herbaceous vegetation or even when focusing on 101 

an anthropic structure in the middle-lower part of the catchment. Markedly wrong classifications 102 

emerge in relation to the orthophoto-based classification both in shadowed areas in the upper part of 103 

the catchment and under medium illuminating condition in the middle-lower portion. Satellite image-104 

based classification is instead very precise also in the above-mentioned conditions without significant 105 

wrong classification neither in the rocky headwater catchments, nor close by the anthropic structure. 106 

In all the analyzed cases, in shadowed areas, a clear different behavior between the two images 107 

emerged (Figure 2 to 5 ) This discrepancy in behavior is partially related to the Red, Green and Blue 108 

(RGB) pixel values of the two images especially in shadowed conditions. RGB bands show similar values 109 

between shadowed areas under vegetation and shadowed areas close by rocky cliffs in the orthophoto, 110 

while different values are observed, for the same two settings, in the satellite image. This discrepancy is 111 

likely ascribed to the different spectral bandwidth acquired by the two technologies, with a finer spatial 112 

resolution panchromatic band associated to the satellite images. 113 

 114 

 115 
Figure 4. Shallow landslides and sparse forest within the study area: satellite image (a) satellite image-derived 116 

classification results (b), orthophoto (c) and orthophoto-derived classification results (d) 117 
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 118 
Figure 5. Artificial structure within the study area: satellite image (a) satellite image-derived classification results 119 

(b), orthophoto (c) and orthophoto-derived classification results (d) 120 

 121 

In conclusion, an overall good performance of the satellite analysis emerged and, when sticking on 122 

vegetation-covered slopes, the semi-automatic detection of areas without vegetation could be a useful 123 

instrument for a first characterization and mapping of shallow landslides. 124 

 125 
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