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Abstract 

Antifreeze proteins (AFP) in living organisms play a key role in their tolerance to extremely cold 

temperatures and have wide range of biotechnological applications. But on account of diversity, 

their identification has been challenging to biologists. Earlier work explored in this area did not 

cover introduction of sequence order information, known to represent important properties of 

various proteins and protein systems for prediction of their attributes. In this study, the effect of 

Chou's pseudo amino acid composition that presents sequence order of proteins was 

systematically explored using support vector machines for AFP prediction. Our findings suggest 

that introduction of sequence order information helps identify AFPs with an accuracy of 84.75% 

on independent test dataset, outperforming approaches such as AFP-Pred and iAFP. The relative 

performance calculated using Youden’s Index (Sensitivity + Specificity -1) was found to be 0.71 

for our predictor (AFP-PseAAC), 0.48 for AFP-Pred and 0.05 for iAFP. We hope this novel 

prediction approach will aid in AFP based research for biotechnological applications. 

 

Keywords: 

Convergent evolution; Support Vector Machines; Sequence order effect; Pseudo amino acid 

composition; Ten-fold cross-validation. 
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1. Introduction 

Antifreeze proteins (AFPs), also known as ice-structuring proteins, are a diverse group of 

polypeptides found in animals, plants, microbes, especially in fish inhabitants of ice-laden sea 

water, which provide protection from freezing in extremely cold environments [1]. This defense 

is imparted to the organisms at cellular levels as AFPs have a unique ability to adsorb onto the 

surface of ice [2]. Depending upon the surrounding, organisms adopt two strategies namely 

freeze tolerance and freeze avoidance to survive at low and subzero temperatures [3, 4], which 

may account for the diversity observed among various species.  

 

Analyses of AFPs from fish, insects and plants have shown that there is no consensus sequence 

or structure for an ice-binding domain. Such an insight, at sequence or structural level, is 

important for understanding protein-ice interactions and freeze tolerance mechanisms of AFPs. 

Since these proteins hold a promising scope for wide range of biotechnological applications in 

industry, medicine, food technology, cell lines and organ preservation, cryosurgery and 

transgenics, gaining knowledge into their functional mechanisms has become increasingly 

essential [5]. 

 

With the enormous amount of genomic data available today, a rapid, specific and highly precise 

automated approach is desirable for identification and annotations of AFPs. Researchers, 

encouraged by the overwhelming success of machine learning methods in protein classification 

and function prediction [5-14], developed sequence based solutions such as AFP-Pred [5], 

AFP_PSSM [13] and iAFP approach [14]. These methods explored physicochemical properties 

[5], evolutionary information [13], n-peptide composition and feature based coding schemes [14] 
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for prediction. However, the scope for truly reflecting the intrinsic correlation of sequence 

representatives with the object to be predicted by machine learning remained.  

 

In this regard, amino acid composition (AAC) was explored to include sequence order 

information during prediction of protein attributes. Sequential and Discrete models were 

formulated to represent various proteins. But using these straightforward models was not so 

fruitful in preserving the sequence order information. To address this issue, the concept of 

pseudo amino acid composition (pseAAC) was proposed [15]. 

 

In pseAAC, protein sequences are represented as discrete models yet without completely losing 

the sequence order information. Ever since this idea of pseAAC was proposed, many models for 

addressing various kinds of problems in proteins and protein related systems have been put forth. 

Further, different modes of optimal pseAAC composition are known to correspond to different 

protein attributes. Subsequently, the process of key components selection from the trivial ones 

for obtaining its pseAAC has become challenging. However, as pseAAC gives important 

direction for further improvement of the quality of protein attribute prediction, it has captured the 

interest of biologists [15].  

 

In this study, we have explored the effect of introducing sequence order information in 

prediction of AFPs by using Chou's pseudo amino acid composition based protein features 

extracted from AFP dataset [5] followed by classification using Support Vector Machines [16]. 

Aspects of example selection, influence of large numbers of negative examples and pseAAC 

modes were searched for development of the AFP predictor. Training was done using ten-fold 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.224v1 | CC-BY 4.0 Open Access | received: 29 Jan 2014, published: 29 Jan 2014

P
re
P
rin

ts



5 

 

cross-validation [17] followed by testing on independent test dataset to analyze if sequence order 

information improved the overall prediction accuracy of AFPs. The findings of our study can 

facilitate AFP based studies and applications. 

 

2. Materials and Methods 

2.1. Dataset 

We obtained AFP dataset used for the development of AFP-Pred [5]. Briefly, antifreeze protein 

sequences were collected from seed proteins of the Pfam database [18], enriched by performing 

Position Specific Iteration -Basic Local Alignment Search Tool (PSI-BLAST) [19] with a string 

threshold (E-value) of 0.001, and followed by manual inspection for presence of AFPs. Further, 

the dataset was free of incomplete sequences and homology bias at  40% sequence similarity. 

Altogether comprising of 481 AFPs (positive examples) and 9493 non-AFPs (negative 

examples). 

 

2.2. Pseudo amino acid composition 

Representing protein sequences with sequence order information herein is done using pseudo 

amino acid composition which is known for its applications in dealing with various kinds of 

problems in proteins and protein related systems. To develop an effective predictor, a powerful 

prediction algorithm with an effective mathematical expression, truly representing the protein 

sequence in correlation with the object to be predicted. Different properties of amino acids in the 

proteins correspond to different modes of pseAAC composition. The discrete models so derived 

from the proteins used in our study were based on the following mathematical function described 
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below [9, 15]. The composition of a given protein P containing amino acid residues of length L 

is depicted as: 

                         (1) 

where R1 represents the 1
st 

residue, R2 represents the 2
nd

 residue,… and RL the L-th residue, and 

they each belong to one of the 20 native amino acids.  

 

In the classical mode (Type 1), amino acid composition is expressed as: 

                             
                     (2) 

where the 20 + λ components are given by: 

    

  

        
 
   

  
   

                                 

      

        
 
   

  
   

                     
           (3) 

 

where ω is the weight factor and τk the k-th tier correlation factor that reflects the sequence order 

correlation between all the k-th most contiguous residues as formulated by: 

   
 

   
 

 

 
                  

                   
                 

     
     (4) 

 

where H1(Ri), H2(Ri) and M(Ri) are respectively the normalized hydrophobicity value, 

hydrophilicity value and the side chain mass for amino acid residue Ri; while H1(Ri+k) H2(Ri+k) 

M(Ri+k) are those for amino acid residue Ri+k.   

 

In the amphiphilic mode (Type 2), the given protein P can be represented as: 

                              
                     (5) 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.224v1 | CC-BY 4.0 Open Access | received: 29 Jan 2014, published: 29 Jan 2014

P
re
P
rin

ts



7 

 

where the 20 + 2λ components are given by: 

    

  

        
  
   

  
   

                                 

   

        
  
   

  
   

                      
        (6) 

And τj can be represented as follows: 

   
 

   
         

       
   
                 (7) 

   
 

   
         

       
   
                  (8) 

where m = 1, 3, 5, …, (2λ-1); n = 2, 4, 6, …, 2λ and l = 1, 2, 3, 4, …λ  (λ< L). The values of 

h
1
(Ri) and h

2
(Ri) represent the normalized hydrophobicity and hydrophilicity properties of amino 

acid residue Ri; while h
1
(Ri+l) and h

2
(Ri+l) are those for amino acid residue Ri+l.  

 

Multiple combination of λ in [5, 10, 15, 20, 30, 40] and ω in [0.05, 0.10, 0.30, 0.50, 0.70] were 

explored using the PseAAC web server available at 

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/ for prediction . 

 

2.3. Support vector machines 

To discriminate AFPs from non-AFPs using pseAAC features, a classifier popular for solving 

biological challenges related to prediction, classification and regression [14], the support vector 

machines (SVMs) was used. SVM is a supervised machine-learning tool based on the structural 

risk minimization principle of statistics learning theory. It looks for an optimal hyperplane which 

maximizes the distance between the hyperplane and the nearest samples from each of the two 

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.224v1 | CC-BY 4.0 Open Access | received: 29 Jan 2014, published: 29 Jan 2014

P
re
P
rin

ts



8 

 

classes. Mathematically, a training vector xi  R
n
, and class values yi {-1, 1}, i = 1, …, N are 

used to solve the problems using the following equation: 

         
 

 
         

 
              (9) 

               
                            (10) 

 

where w is the normal vector perpendicular to the hyperplane and i are slake variables for 

permitting misclassifications. Balancing the trade-off between the margin and the training error 

is done using C (> 0), the penalty parameter [16]. The user can choose and optimize number of 

parameters and kernels (e.g. linear, polynomial, radial basis function and sigmoidal) or any user-

defined kernel. In this study, we selected radial basis function for AFP prediction with grid 

searching of influencing parameters, C in [5 – 50] and γ in [0.00001 – 0.1] and developed models 

using SVM
light

 Version 6.02 package available at http://svmlight.joachims.org/. 

 

2.4. Performance Evaluation 

Models of AFPs and non-AFPs were generated in various combinations of pseAAC and SVM 

parameters on randomly selected 300 positive and 300 negative examples (training dataset) 

followed by ten-fold cross-validation [17] and performance analysis using the following 

mathematical formula for sensitivity (recall), specificity, accuracy and Matthew's correlation 

coefficient (MCC). Since the number of AFPs i.e. 481 positive examples were much smaller than 

9423 negative examples, we investigated for bias in identification due to selection process, by 

keeping the number of positive examples constant to 300. Briefly, we selected 300 negative 
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examples, three times randomly for model generation and evaluated the prediction using the 

above mentioned mathematical formulae after ten-fold cross-validation. Then, we explored the 

influence of number of negative examples on the AFP prediction also. We did this by including 

900 negative examples instead of the original ratio 1:1 for development of models followed by 

performance assessment using same evaluation parameters as mentioned above after ten-fold 

cross-validation. Once we gained insights into the selection bias and influence of negative 

examples on prediction, the best performing models were selected for prediction on independent 

test dataset. This comprised of examples in section 2.1 not included in training, i.e., 181 AFPs 

and 8293 non-AFPs. Subsequently, their performance was evaluated and compared with existing 

AFP prediction approaches. The mathematical formula for evaluation parameters: 

                             (11) 

                              (12) 

                                       (13) 

                                                             

(14) 

where, TP (true positives): Proteins correctly predicted as AFPs, FP (false positives): Proteins 

incorrectly predicted as AFPs, TN (true negatives): Proteins correctly predicted as non-AFPs and 

FN (false negatives): Proteins incorrectly predicted as non-AFPs. 
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3. Results and Discussion 

3.1. Optimal parameters for feature extraction 

Prediction of protein attributes requires selection of key representative parameters for improved 

quality. In this study, various combination of ,  and modes of pseudo amino acid composition 

and SVMs were generated for predictor development by grid searching on 300 positive and 300 

negative examples. Since the number of positive examples was limited, we considered the same 

set of 300 antifreeze proteins as positive examples for all training purposes.  Figure 1 shows the 

performance evaluation (MCC and Accuracy) for various ,  and modes of pseAAC. MCC and 

Accuracy were highest for  = 0.05. Further, it can be seen that with increase in , the quality of 

prediction is compromised. The best performing model was achieved for  = 0.05 and   = 5; in 

the amphiphilic mode, closely followed by performance with  = 0.05 and  = 10; in the 

amphiphilic mode. Optimal features i.e.  = 0.05 and lower values of  in the amphiphilic mode 

(Type 2) were reserved for development of the predictor. 

 

3.2. Bias during selection of negative examples 

To understand if selecting 300 examples from a 9493 proteins biased the prediction, we 

performed random selection of negative examples three times on non-overlapping datasets. As 

shown in Table 1 from the prediction performance, the average of  mathematical parameters of 

evaluation mentioned in Section 2.4 for all the generated models suggested the best values for  

= 10. The highest prediction accuracy was 89.69 (0.706) %, MCC = 0.800 (0.0095), sensitivity = 

88.89 (1.835) % and specificity = 91.00 (0.330) %. The standard deviation observed in the 

performance evaluation parameters over prediction performed three times was negligible. 
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Therefore, it can be said that the bias associated with selection of negative examples was 

minimally influential, if at all.  

 

3.3. Bias on account of number of negative examples 

After exploring the selection bias, we investigated into the influence of the number of negative 

examples on prediction. We included 900 non-AFPs (three times higher than the number of 

positive examples = 300) during the prediction. This showed increase in accuracy from 89.69 % 

to 91.25 %; specificity from 91.00 % to 96.78 %; decrease in MCC from 0.800 to 0.762; and 

compromised sensitivity from 88.89 % to 77.67 %. However, if analyzed in relation with 

positive and negative examples used in the ratio 1:1, the performance of the predictor models 

was better with balanced dataset, as can be seen in Section 3.2. Therefore, 1:1 ratio of examples 

in dataset was maintained throughout the predictor development process.  

 

3.4. Performance evaluation and comparison with AFP-Pred and iAFP 

After selection of optimal parameters and search for possible bias as mentioned in above 

sections, the best model was selected for AFP predictor development and named as AFP-

PseAAC. Precisely, this included pseAAC parameters  = 0.05 and  = 10 in amphiphilic mode; 

SVM parameters C = 25 and γ = 0.0005 and 1:1 ratio of training dataset. 
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Upon screening of protein examples excluded from training of the predictor (independent test 

dataset) an accuracy of 84.75%, sensitivity of 86.19 % and specificity of 84.72 % was obtained 

as shown in Table 2.  These findings encouraged us to compare the performance of our method 

with that of other previously published methods, if their implementations were readily 

accessible.  

 

AFP-PseAAC was assessed in relation with AFP-Pred and iAFP to gain insights into its relative 

prediction power on the independent test dataset. While AFP-PseAAC achieved an accuracy and 

specificity of (84.75 %, 84.72 %); these values seen for AFP-Pred and iAFP were (69.86 %, 

69.67 %) and (95.46%, 97.38 %) respectively. The high accuracy and specificity achieved for 

iAFP, i.e., above 95%, was notably accompanied with extremely low sensitivity, i.e., 7.18%. On 

the contrary, AFP-PseAAC showed sensitivity of 86.19%, followed by AFP-Pred which reached 

close to 78.45%. Clearly, AFP-PseAAC outperformed AFP-Pred and iAFP.   

  

Additionally, to quantify the relative performance of AFP-PseAAC we applied the Youden’s 

Index (J = Sensitivity + Specificity -1) [20] used for gaining insights into the relative 

performance of tests in general. Youden’s index gives the probability of an informed decision 

and is advantageous as it offers comparison of AFP prediction quality by means of a single 

informative parameter. AFP-PseAAC showed J = 0.71, followed by AFP-Pred with J = 0.48 and 

then iAFP with J = 0.05, as shown in Table 2. Since J value for AFP-PseAAC is much higher 
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than the two approaches, it can be suggested that introduction of sequence order effect using 

Chou's pseAAC enhances AFP identification by SVMs. 

 

4. Conclusion 

Diversity renders difficulty towards accurate identification of antifreeze proteins. Earlier work 

reported sequence based solutions but sequence order effect which is known to improve 

prediction of protein attributes remained to be explored. Since Chou's pseudo amino acid 

composition features represents diverse proteins as discrete models yet without entirely losing 

the sequence order information, we hoped to develop a novel effective approach AFP-PseAAC 

for prediction of antifreeze proteins using pseAAC and SVMs. The overall performance shown 

by AFP-PseAAC was better than previous AFP predictors. Interested users may find relevant 

details for using this approach at https://sites.google.com/site/sukantamondal/software. We 

anticipate this predictor to facilitate faster and broader applications of AFPs in biotechnology. 
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Table 1 

Influence of negative examples during AFP prediction  

Dataset  MCC 
Accuracy 

(%) 

Sensitivity 

(%) 
Specificity (%) 

300 AFPs and 

300 non-

AFPs
a 

05 0.797 (0.0035) 89.61 (0.344) 88.45 (1.072) 91.00 (0.670) 

10 0.800 (0.0095) 89.69 (0.706) 88.89 (1.835) 91.00 (0.330) 

15 0.796 (0.0148) 89.61 (0.919) 89.22 (1.575) 90.52 (0.790) 

20 0.786 (0.0078) 89.17 (0.440) 88.89 (1.018) 90.33 (0.665) 

300 AFPs and 

900 non-AFPs 

05 0.755 90.92 78.67 96.0 

10 0.762 91.25 77.67 96.78 

15 0.775 91.83 76.67 97.11 

20 0.773 91.83 77.33 97.22 

 

a
Format: Average evaluation parameter (Standard deviation) upon random selection of negative 

examples three times. 
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Table 2 

Performance of AFP-PseAAC compared with AFP-Pred [5] and iAFP [14] on independent test 

dataset 

Predictor Accuracy (%) Sensitivity (%) Specificity (%) Youden's Index
a 

AFP-PseAAC
 

84.75  86.19  84.72  0.71 

AFP-Pred 69.86  78.45 69.67 0.48 

iAFP 95.46 7.18 97.38 0.05 

a
Youden’s Index [20] = Sensitivity + Specificity - 1 
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Figure legend 

Fig. 1 

Exploring optimal pseudo amino acid composition parameters (Type, λ and ω) on the training 

dataset for the development of the AFP predictor.  
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