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Abstract

Antifreeze proteins (AFP) in living organisms play a key role in their tolerance to extremely cold
temperatures and have wide range of biotechnological applications. But on account of diversity,
their identification has been challenging to biologists. Earlier work explored in this area did not
cover introduction of sequence order information, known to represent important properties of
various proteins and protein systems for prediction of their attributes. In this study, the effect of
Chou's pseudo amino acid composition that presents sequence order of proteins was
systematically explored using support vector machines for AFP prediction. Our findings suggest
that introduction of sequence order information helps identify AFPs with an accuracy of 84.75%
on independent test dataset, outperforming approaches such as AFP-Pred and iAFP. The relative
performance calculated using Youden’s Index (Sensitivity + Specificity -1) was found to be 0.71
for our predictor (AFP-PseAAC), 0.48 for AFP-Pred and 0.05 for iAFP. We hope this novel

prediction approach will aid in AFP based research for biotechnological applications.
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1. Introduction

Antifreeze proteins (AFPs), also known as ice-structuring proteins, are a diverse group of
polypeptides found in animals, plants, microbes, especially in fish inhabitants of ice-laden sea
water, which provide protection from freezing in extremely cold environments [1]. This defense
is imparted to the organisms at cellular levels as AFPs have a unique ability to adsorb onto the
surface of ice [2]. Depending upon the surrounding, organisms adopt two strategies namely
freeze tolerance and freeze avoidance to survive at low and subzero temperatures [3, 4], which

may account for the diversity observed among various species.

Analyses of AFPs from fish, insects and plants have shown that there is no consensus sequence
or structure for an ice-binding domain. Such an insight, at sequence or structural level, is
important for understanding protein-ice interactions and freeze tolerance mechanisms of AFPs.
Since these proteins hold a promising scope for wide range of biotechnological applications in
industry, medicine, food technology, cell lines and organ preservation, cryosurgery and
transgenics, gaining knowledge into their functional mechanisms has become increasingly

essential [5].

With the enormous amount of genomic data available today, a rapid, specific and highly precise
automated approach is desirable for identification and annotations of AFPs. Researchers,
encouraged by the overwhelming success of machine learning methods in protein classification
and function prediction [5-14], developed sequence based solutions such as AFP-Pred [5],
AFP_PSSM [13] and iAFP approach [14]. These methods explored physicochemical properties

[5], evolutionary information [13], n-peptide composition and feature based coding schemes [14]
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for prediction. However, the scope for truly reflecting the intrinsic correlation of sequence

representatives with the object to be predicted by machine learning remained.

In this regard, amino acid composition (AAC) was explored to include sequence order
information during prediction of protein attributes. Sequential and Discrete models were
formulated to represent various proteins. But using these straightforward models was not so
fruitful in preserving the sequence order information. To address this issue, the concept of

pseudo amino acid composition (pseAAC) was proposed [15].

In pseAAC, protein sequences are represented as discrete models yet without completely losing
the sequence order information. Ever since this idea of pseAAC was proposed, many models for
addressing various kinds of problems in proteins and protein related systems have been put forth.
Further, different modes of optimal pseAAC composition are known to correspond to different
protein attributes. Subsequently, the process of key components selection from the trivial ones
for obtaining its pseAAC has become challenging. However, as pseAAC gives important
direction for further improvement of the quality of protein attribute prediction, it has captured the

interest of biologists [15].

In this study, we have explored the effect of introducing sequence order information in
prediction of AFPs by using Chou's pseudo amino acid composition based protein features
extracted from AFP dataset [5] followed by classification using Support Vector Machines [16].
Aspects of example selection, influence of large numbers of negative examples and pseAAC

modes were searched for development of the AFP predictor. Training was done using ten-fold
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cross-validation [17] followed by testing on independent test dataset to analyze if sequence order
information improved the overall prediction accuracy of AFPs. The findings of our study can

facilitate AFP based studies and applications.

2. Materials and Methods

2.1. Dataset
We obtained AFP dataset used for the development of AFP-Pred [5]. Briefly, antifreeze protein
sequences were collected from seed proteins of the Pfam database [18], enriched by performing
Position Specific Iteration -Basic Local Alignment Search Tool (PSI-BLAST) [19] with a string
threshold (E-value) of 0.001, and followed by manual inspection for presence of AFPs. Further,
the dataset was free of incomplete sequences and homology bias at > 40% sequence similarity.
Altogether comprising of 481 AFPs (positive examples) and 9493 non-AFPs (negative

examples).

2.2. Pseudo amino acid composition
Representing protein sequences with sequence order information herein is done using pseudo
amino acid composition which is known for its applications in dealing with various kinds of
problems in proteins and protein related systems. To develop an effective predictor, a powerful
prediction algorithm with an effective mathematical expression, truly representing the protein
sequence in correlation with the object to be predicted. Different properties of amino acids in the
proteins correspond to different modes of pseAAC composition. The discrete models so derived

from the proteins used in our study were based on the following mathematical function described
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below [9, 15]. The composition of a given protein P containing amino acid residues of length L
is depicted as:

P = R,R,R3R,Rs ...R, (1)
where R; represents the 1% residue, R, represents the 2" residue,... and Ry the L-th residue, and

they each belong to one of the 20 native amino acids.

In the classical mode (Type 1), amino acid composition is expressed as:

P = [p1, D2, s P20, P20+1s =+ P2042]", (A <L) (2)
where the 20 + A components are given by:

fu
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Yic fitwXi—q1Tk

Pu = Puz20 204+ 1<u<20+21)
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where w is the weight factor and z the k-th tier correlation factor that reflects the sequence order

correlation between all the k-th most contiguous residues as formulated by:

T = 2 SEEHIH R = Hy RO + [Hy(Ris) = Ho RO + M (Resid) = MCROI?Y (4)

where Hi(R;), Hz(Ri) and M(R;) are respectively the normalized hydrophobicity value,
hydrophilicity value and the side chain mass for amino acid residue R;; while Hi(Ri+) H2(Ri+)

M(Ri.«) are those for amino acid residue Rj«.

In the amphiphilic mode (Type 2), the given protein P can be represented as:

P = [p1, D2, -, D20, P20+1/ ---'P20+2/’L]T, (A<L) (5)
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where the 20 + 2A components are given by:
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And t;can be represented as follows:
T = = T RY R A (Ris) ™
Ty = ﬁzfz_f h*(Ry). h*(Riy)) (8)

wherem=1,3,5,...,2A-1);n=2,4,6,...,2 and | =1, 2, 3, 4, ...A (A<L). The values of
h*(Ri) and h?(R;) represent the normalized hydrophobicity and hydrophilicity properties of amino

acid residue R;; while h*(Ri+;) and h*(Ri.) are those for amino acid residue Rix..

Multiple combination of A in [5, 10, 15, 20, 30, 40] and ® in [0.05, 0.10, 0.30, 0.50, 0.70] were
explored using the PseAAC web server available at

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/ for prediction.

2.3. Support vector machines
To discriminate AFPs from non-AFPs using pseAAC features, a classifier popular for solving
biological challenges related to prediction, classification and regression [14], the support vector
machines (SVMs) was used. SVM is a supervised machine-learning tool based on the structural
risk minimization principle of statistics learning theory. It looks for an optimal hyperplane which

maximizes the distance between the hyperplane and the nearest samples from each of the two
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classes. Mathematically, a training vector x; € R", and class values y; e{-1, 1},i=1, ..., N are

used to solve the problems using the following equation:
Minimize %WT w+CYN & 9)

Subject to y;(wT -x; +b) =1—-¢&and ;>0  (10)

where w is the normal vector perpendicular to the hyperplane and & are slake variables for
permitting misclassifications. Balancing the trade-off between the margin and the training error
is done using C (> 0), the penalty parameter [16]. The user can choose and optimize number of
parameters and kernels (e.g. linear, polynomial, radial basis function and sigmoidal) or any user-
defined kernel. In this study, we selected radial basis function for AFP prediction with grid
searching of influencing parameters, C in [5—50] and y in [0.00001 — 0.1] and developed models

using SVM" \ersion 6.02 package available at http://svmlight.joachims.org/.

2.4. Performance Evaluation
Models of AFPs and non-AFPs were generated in various combinations of pseAAC and SVM
parameters on randomly selected 300 positive and 300 negative examples (training dataset)
followed by ten-fold cross-validation [17] and performance analysis using the following
mathematical formula for sensitivity (recall), specificity, accuracy and Matthew's correlation
coefficient (MCC). Since the number of AFPs i.e. 481 positive examples were much smaller than
9423 negative examples, we investigated for bias in identification due to selection process, by

keeping the number of positive examples constant to 300. Briefly, we selected 300 negative
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examples, three times randomly for model generation and evaluated the prediction using the
above mentioned mathematical formulae after ten-fold cross-validation. Then, we explored the
influence of number of negative examples on the AFP prediction also. We did this by including
900 negative examples instead of the original ratio 1:1 for development of models followed by
performance assessment using same evaluation parameters as mentioned above after ten-fold
cross-validation. Once we gained insights into the selection bias and influence of negative
examples on prediction, the best performing models were selected for prediction on independent
test dataset. This comprised of examples in section 2.1 not included in training, i.e., 181 AFPs
and 8293 non-AFPs. Subsequently, their performance was evaluated and compared with existing

AFP prediction approaches. The mathematical formula for evaluation parameters:
Sensitivity = TP/(TP + FN) (11)

Specificity =TN/(TN + FP) (12)

Accuracy = (TP +TN)/(TP + FN + TN + FP) (13)

MCC = ((TP X TN) — (FP x FN))/V((TP + FP) x (TP + FN) X (TN + FP) x (TN + FN))

(14)

where, TP (true positives): Proteins correctly predicted as AFPs, FP (false positives): Proteins
incorrectly predicted as AFPs, TN (true negatives): Proteins correctly predicted as non-AFPs and

FN (false negatives): Proteins incorrectly predicted as non-AFPs.
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3. Results and Discussion

3.1. Optimal parameters for feature extraction
Prediction of protein attributes requires selection of key representative parameters for improved
quality. In this study, various combination of A, @ and modes of pseudo amino acid composition
and SVMs were generated for predictor development by grid searching on 300 positive and 300
negative examples. Since the number of positive examples was limited, we considered the same
set of 300 antifreeze proteins as positive examples for all training purposes. Figure 1 shows the
performance evaluation (MCC and Accuracy) for various A, » and modes of pseAAC. MCC and
Accuracy were highest for © = 0.05. Further, it can be seen that with increase in o, the quality of
prediction is compromised. The best performing model was achieved for @ =0.05and A =5;in
the amphiphilic mode, closely followed by performance with @ = 0.05 and A = 10; in the
amphiphilic mode. Optimal features i.e. ® = 0.05 and lower values of A in the amphiphilic mode

(Type 2) were reserved for development of the predictor.

3.2. Bias during selection of negative examples

To understand if selecting 300 examples from a 9493 proteins biased the prediction, we
performed random selection of negative examples three times on non-overlapping datasets. As
shown in Table 1 from the prediction performance, the average of mathematical parameters of
evaluation mentioned in Section 2.4 for all the generated models suggested the best values for A
= 10. The highest prediction accuracy was 89.69 (0.706) %, MCC = 0.800 (0.0095), sensitivity =
88.89 (1.835) % and specificity = 91.00 (0.330) %. The standard deviation observed in the

performance evaluation parameters over prediction performed three times was negligible.
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Therefore, it can be said that the bias associated with selection of negative examples was

minimally influential, if at all.

3.3. Bias on account of number of negative examples

After exploring the selection bias, we investigated into the influence of the number of negative
examples on prediction. We included 900 non-AFPs (three times higher than the number of
positive examples = 300) during the prediction. This showed increase in accuracy from 89.69 %
to 91.25 %); specificity from 91.00 % to 96.78 %; decrease in MCC from 0.800 to 0.762; and
compromised sensitivity from 88.89 % to 77.67 %. However, if analyzed in relation with
positive and negative examples used in the ratio 1:1, the performance of the predictor models
was better with balanced dataset, as can be seen in Section 3.2. Therefore, 1:1 ratio of examples

in dataset was maintained throughout the predictor development process.

3.4. Performance evaluation and comparison with AFP-Pred and iAFP

After selection of optimal parameters and search for possible bias as mentioned in above
sections, the best model was selected for AFP predictor development and named as AFP-
PseAAC. Precisely, this included pseAAC parameters o = 0.05 and A = 10 in amphiphilic mode;

SVM parameters C = 25 and y = 0.0005 and 1:1 ratio of training dataset.

11

PeerJ PrePrints | http://dx.doi.org/10.7287/peer].preprints.224v1 | CC-BY 4.0 Open Access | received: 29 Jan 2014, published: 29 Jan 2014




Upon screening of protein examples excluded from training of the predictor (independent test
dataset) an accuracy of 84.75%, sensitivity of 86.19 % and specificity of 84.72 % was obtained
as shown in Table 2. These findings encouraged us to compare the performance of our method
with that of other previously published methods, if their implementations were readily

accessible.

AFP-PseAAC was assessed in relation with AFP-Pred and iAFP to gain insights into its relative
prediction power on the independent test dataset. While AFP-PseAAC achieved an accuracy and
specificity of (84.75 %, 84.72 %); these values seen for AFP-Pred and iAFP were (69.86 %,
69.67 %) and (95.46%, 97.38 %) respectively. The high accuracy and specificity achieved for
IAFP, i.e., above 95%, was notably accompanied with extremely low sensitivity, i.e., 7.18%. On
the contrary, AFP-PseAAC showed sensitivity of 86.19%, followed by AFP-Pred which reached

close to 78.45%. Clearly, AFP-PseAAC outperformed AFP-Pred and iAFP.

Additionally, to quantify the relative performance of AFP-PseAAC we applied the Youden’s
Index (J = Sensitivity + Specificity -1) [20] used for gaining insights into the relative
performance of tests in general. Youden’s index gives the probability of an informed decision
and is advantageous as it offers comparison of AFP prediction quality by means of a single
informative parameter. AFP-PseAAC showed J = 0.71, followed by AFP-Pred with J = 0.48 and

then 1AFP with J = 0.05, as shown in Table 2. Since J value for AFP-PseAAC is much higher
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than the two approaches, it can be suggested that introduction of sequence order effect using

Chou's pseAAC enhances AFP identification by SVMs.

4. Conclusion

Diversity renders difficulty towards accurate identification of antifreeze proteins. Earlier work
reported sequence based solutions but sequence order effect which is known to improve
prediction of protein attributes remained to be explored. Since Chou's pseudo amino acid
composition features represents diverse proteins as discrete models yet without entirely losing
the sequence order information, we hoped to develop a novel effective approach AFP-PseAAC
for prediction of antifreeze proteins using pseAAC and SVMs. The overall performance shown
by AFP-PseAAC was better than previous AFP predictors. Interested users may find relevant
details for using this approach at https://sites.google.com/site/sukantamondal/software. We

anticipate this predictor to facilitate faster and broader applications of AFPs in biotechnology.
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Table 1

Influence of negative examples during AFP prediction

Accuracy Sensitivity o
Dataset A MCC (%) (%) Specificity (%)
05 0.797 (0.0035) 89.61 (0.344) 88.45 (1.072) 91.00 (0.670)
300 AFPs and 10 0.800 (0.0095) 89.69 (0.706)  88.89 (1.835) 91.00 (0.330)
300 non-
AFPs? 15 0.796 (0.0148) 89.61 (0.919)  89.22 (1.575) 90.52 (0.790)
20  0.786 (0.0078) 89.17 (0.440) 88.89 (1.018)  90.33 (0.665)
05 0.755 90.92 78.67 96.0
10 0.762 91.25 77.67 96.78
300 AFPs and
900 non-AFPs 45 0.775 91.83 76.67 97.11
20 0.773 91.83 77.33 97.22

®Format: Average evaluation parameter (Standard deviation) upon random selection of negative
examples three times.
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Table 2

Performance of AFP-PseAAC compared with AFP-Pred [5] and iAFP [14] on independent test
dataset

Predictor Accuracy (%)  Sensitivity (%) Specificity (%) Youden's Index®
AFP-PseAAC 84.75 86.19 84.72 0.71
AFP-Pred 69.86 78.45 69.67 0.48
IAFP 95.46 7.18 97.38 0.05

®Youden’s Index [20] = Sensitivity + Specificity - 1
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Figure legend

Fig. 1

Exploring optimal pseudo amino acid composition parameters (Type, A and ®) on the training

dataset for the development of the AFP predictor.
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