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Recent years have brought about the realisation of an irreproducibility crisis in science,
which may have numerous causes, including common standards of statistical analysis. For
decades, the methodological paradigm of null hypothesis significance testing (NHST) has
remained under harsh, yet rather ineffective criticism. Here, we show that the vast
majority of contradictions between the results of distinct studies may be fictitious,
resulting from misbeliefs about NHST. To exemplify how they appear, we provide extensive
reanalyses of results from high-profile literature and reveal statistical uncertainties that
customarily remained obscured by the NHST paradigm. Widespread awareness of these
uncertainties accompanied with quantitative interpretation of the results is the first step in
assessing the actual scale of the irreproducibility problem and eradicating it.
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ABSTRACT12

Recent years have brought about the realisation of an irreproducibility crisis in science, which may have
numerous causes, including common standards of statistical analysis. For decades, the methodological
paradigm of null hypothesis significance testing (NHST) has remained under harsh, yet rather ineffective
criticism. Here, we show that the vast majority of contradictions between the results of distinct studies
may be fictitious, resulting from misbeliefs about NHST. To exemplify how they appear, we provide
extensive reanalyses of results from high-profile literature and reveal statistical uncertainties that cus-
tomarily remained obscured by the NHST paradigm. Widespread awareness of these uncertainties
accompanied with quantitative interpretation of the results is the first step in assessing the actual scale of
the irreproducibility problem and eradicating it.
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INTRODUCTION24

Science is said to study reproducible phenomena. However, in recent years, the recognition that this is25

not always so has grown, and an “irreproducibility crisis” has been proclaimed (Ioannidis (2005); Lehrer26

(2010); Nature Publishing Group (2013); Ioannidis (2014); Nature (2016)). In basic science, the term27

“irreproducibility” is often used in rather vague way, but it essentially refers to replicated experiments in28

which new results contradict findings of the original. Because practically no replication can be perfect,29

the criteria for defining a contradiction are of crucial importance. These criteria depend on standards of30

statistical analyses, which have been proposed as one of possible sources of the irreproducibility crisis31

(Johnson (2013); Nuzzo (2014); Halsey et al. (2015); Wasserstein and Lazar (2016)).32

Null hypothesis significance testing (NHST) is the common currency in many fields of scientific33

research. Its success is enormous despite harsh critiques over decades that include arguments ranging from34

logical to ethical (Morrison and Henkel (1970); Harlow et al. (1997); Cumming and Fidler (2011); Fidler35

(2011); Wasserstein and Lazar (2016)). As a hybrid between disparate statistical approaches (Gigerenzer36

and Murray (1987)), NHST likely gained its popularity due to over-interpretations. Two of them may37

be directly responsible for the occurrence of fictitious controversies, as they evoke a false, yet desired38

(Mullane and Williams (2015)), sense of certainty (Schmidt and Hunter (1997); Cumming (2011)). First,39

statistically significant results are commonly believed to be “true” in a sense that the true effect size is very40

close to the point estimate computed from the sample data, and observed effects are often automatically41

assumed to be scientifically relevant, regardless of their magnitude. Second, non-significant results often42

serve as support for the tested null hypothesis, i.e., the non-existence of an effect (Maxwell (2004)).43

Together, these two convictions must lead to fictitious contradictions between results of similar studies–44

fictitious because they are based only on false beliefs and are otherwise unjustified.45

We use a simple model to demonstrate that such fictitious cases may constitute the vast majority of all46
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contradictions (even up to 90%). We also reanalyse data from three separate sets of high-profile papers47

to exemplify in detail how fictitious debates emerge in scientific practice. Our intent is neither to settle48

the subject-matter issues of the traced debates nor to criticise particular papers– they serve merely as49

examples that might be substituted by many others. To avoid the pitfalls of NHST, we pay attention to50

effect sizes and adopt thinking in terms of confidence intervals (CIs) (Cumming (2011); Motulsky (2014))–51

following what we term the ESCI (Effect Size Confidence Interval) approach.52

METHODS53

We adopted the commonly-used 95% confidence level. CIs for Spearman correlations were found54

using the standard R environment. For independent and correlated correlations (Zou (2007)), we used55

cocor (Diedenhofen (2013)) and bootES (Kirby and Gerlanc (2013)) R packages. To prevent relying on56

“vibration of effects” due to the choice of the details of the statistical method applied (Ioannidis (2008);57

Button et al. (2013)), a portion of the results was verified using our own ad-hoc written Fortran programs58

that computed standard and percentile bootstrap (Manly (1997)) CIs. CIs for odds ratios were checked59

against CIs obtained from SAS/FREQ procedure (SAS Institute Inc. (2013)) using the exact method. To60

compare studies (as well as different gene expression measurements in Case I), we found CIs for the61

appropriate differences of differences (e.g., of correlations, medians); we term them “difference contrasts”62

or “contrasts” for short in the description of the results. For Case II, the same role is played by the63

ratio of odds ratios, i.e., relative odds ratio (Suzuki (2006)). We computed all the CIs for contrasts with64

ad-hoc written Fortran programs and we used standard and percentile bootstrap methods (Manly (1997)).65

Differences between their results were small enough not to change the overall picture and our conclusions.66

All details on methods and data sources are described in Supplemental Text S1.67

RESULTS68

Frequency of fictitious contradictions69

To estimate the frequency of fictitious contradictions in science, we contrast two ways of comparing70

results of identical but independent studies that aim to detect some effect in the same population (Fig. 1).71

In such a model, no genuine contradictions exist. If the correct method to compare studies is used, the72

controversy appears solely due to random sampling and its frequency equals to the significance level73

adopted.74

However, if both studies use NHST as the sole benchmark, the comparison is commonly, yet incor-75

rectly, performed by contrasting statistically significant versus non-significant results. In such a case, the76

vast majority of all contradictions that arise may be fictitious (see below). All of these false controversies77

are avoided when correct methods of comparison are applied.78

For example, assuming α = 0.05, 5% of comparisons between studies will yield significant differences79

between those studies due to random sampling. If the power of each study equals 0.5, in 50% of cases,80

one study reports a significant result and the other a non-significant result, which produces a potentially81

fictitious contradiction. Under such a scenario, fictitious contradictions are about ten times more frequent82

than those that cannot be avoided. Their proportion of about 90%, presented in Fig. 1, is the highest83

obtainable. However, even very cautious estimations (see Supplemental Text S1) show that for α = 0.0584

and statistical power between 0.09 and 0.91 this proportion is still higher than 50%. Since in practice85

of many disciplines statistical power is usually within this range (Jennions and Møller (2003); Smith86

et al. (2011); Button et al. (2013); Zeggini and Ioannidis (2009); Turner et al. (2013)), and fictitious87

contradictions may happen quite often also for more extreme values of power, the problem is serious and88

has been spotted already (Halsey et al. (2015)).89

This high frequency results entirely from an erroneously-supposed importance of the difference90

between statistically significant and non-significant results (Gelman and Stern (2006)). Within the NHST91

framework, the only way to avoid this problem is to suspend judgement in cases of statistically non-92

significant results by allowing for a “don’t know” category (Dempster (2008)). This leads, however, to the93

loss of information present in the analysed sample. In contrast, the ESCI framework preserves information94

and prevents fictitious contradictions at the same time, as illustrated below.95
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Figure 1. Schematic illustration of correct and incorrect comparisons between two identical
studies. The correct comparison points to the ESCI approach. Replacing it with tests, even proper, would
bring about the risk of misunderstandings. The incorrect comparison points to absurdities resulting from
the NHST approach. As the exemplary results of calculations show, the proportion of fictitious
contradictions may be astonishingly high (for derivation and details see Supplemental Text S1.

Case study I: Protein translation efficiency determinants96

The well-established explanation of biased codon usage states that it increases the efficiency and accuracy97

of translation (Ikemura (1981); Grosjean and Fiers (1982); Plotkin and Kudla (2011)). However, the98

expression analysis of 158 green fluorescent protein (GFP) synonymous sequences (Kudla et al. (2009))99

revealed that codon bias did not have “significant effects” on protein levels. This conclusion was achieved100

mainly by obtaining a statistically non-significant correlation between GFP’s expression levels (as gauged101

by their fluorescence) and codon bias. In response, a related study (Tuller et al. (2010)) on endogenous102

genes of E.coli and S.cerevisiae reported a statistically significant association between codon bias and103

expression (measured by protein abundance normalised to mRNA level) and concluded that codon bias is104

an important determinant of translation efficiency. The discrepancy of results was attributed to differences105

in mRNA’s folding energies of synthetic and endogenous genes (Tuller et al. (2010)).106

Our analysis demonstrated, however, that due to the smaller number of analysed GFP sequences,107

CIs for their correlations between codon bias and expression are much wider than for endogenous genes108

(Fig. 2A), which may be the main cause of statistically non-significant results obtained in the reference109

study (Kudla et al. (2009)). Additionally, for some GFP–yeast comparisons the hypothesis that correlations110

are identical for both types of genes cannot be rejected (Fig. 2B); thus, no discrepancy between studies111

can be declared. In the juxtaposition of E.coli with GFP sequences, the true correlation for bacteria was112

larger by at least 0.03 (Fig. 2B). To analyse the relevance of this effect, we created controlled sets of yeast113

genes and compared within them several analogous correlations of codon bias and gene expression. The114

latter was measured by different, yet in principle equivalent, experiments (see Fig. 3, and Fig. S1 – Fig.115

S2 for other selections of gene subsets). Thus, within identical sets of genes, we obtained alternative116

correlations for the same variables that appear strikingly dissimilar (Fig. 3B). Approximately half of the117
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Figure 2. Codon bias vs. expression in three sets of genes. a, 95% CI for Spearman correlation
coefficients between codon bias and expression for three sets of genes from Kudla et al. (2009) (GFP),
and Tuller et al. (2010) (Yeast and E.coli). Correlations are simple or partial (codon bias vs. protein levels
when controlled for mRNA levels), n = sample size. b, 95% CIs for correlation differences for pairwise
comparisons.

alternative correlations differ from the original correlation (calculated as in Tuller et al. (2010)) by at118

least 0.05, while for the most extreme cases, this difference may be at least as high as 0.32. Thus, either119

the signs of correlation differences between two contradicting studies by Kudla et al. (2009) and Tuller120

et al. (2010)– the origin of controversy– cannot be stated, or their sizes make them virtually impossible to121

distinguish from the noise caused merely by the variability of gene expression measurements in distinct122

experiments.123

To explain this mistakenly-observed discrepancy, one group postulated that folding energy modulates124

the relation between codon bias and translation efficiency (Tuller et al. (2010)). To demonstrate this125

claimed phenomenon, sets of analysed E.coli and S.cerevisiae genes were divided into five equally-126

sized bins according to the folding energy of their transcripts, a correlation between the codon bias and127

translation efficiency was computed separately for each bin, and it was observed that the association128

strength depended on the folding energy levels (Tuller et al. (2010)). These results are reproduced in129

Fig. S3, but each reported correlation coefficient is supplemented with its CI, and interval estimates of130

correlation differences for each pair of bins are also provided. The sign of the correlation difference131

cannot be determined for any single pair of bins, which indicates that these data do not provide evidence132

that folding energy modulates the association between codon bias and expression. This effect may exist,133

being too weak to be reliably estimated by the existing means (see Supplemental Text S1 for details).134

Case study II: PTPRC (CD45) association with the development of multiple sclerosis135

An association between multiple sclerosis (MS) and the 77G allele of the PTPRC gene was claimed on136

the basis of comparison of the allele frequencies in MS patients and controls (Jacobsen et al. (2000)).137

In similar studies by Vorechovsky et al. (2001) and Barcellos et al. (2001) no statistically significant138

difference of allele frequencies was found, and the authors concluded no link between the 77G allele139

and disease. To explain this discrepancy, we compared all nine pairs of patient groups by computing140

CIs for the relative odds ratios for bearing the mutated 77G allele (Fig. 4). On this basis, the American141

and Hannover populations from Jacobsen et al. (2000) and all populations from Vorechovsky et al.142

(2001) and Barcellos et al. (2001) are practically indistinguishable from each other. Only two Marburg143

populations from Jacobsen et al. (2000) show a clearly higher odds ratio than the others. This result may144

indicate a genuine difference between populations, but we have identified another probable cause. In two145
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Figure 3. Codon bias vs. expression gauged by different experiments. a, 95% CIs for Spearman
correlation coefficients between codon bias (tAI) and gene expression. Main part: correlations for 302
yeast genes with expression defined as a quotient of any possible combination of protein and mRNA
abundances gauged from experimental data marked by two-letter shortcuts (see Supplemental Text S1).
The Ne/Wh combination was used originally by Tuller et al. (2010). b, 95% CIs for correlation
differences between the original and alternative correlations derived from other data sources. c, 95% CIs
for contrasts between each correlation difference shown in the top of panel b and three correlation
differences from Fig. 2.

Marburg populations, the recruitment procedure for the control groups was highly restrictive compared to146

the remaining cases– in particular, it excluded healthy donors with a family history of MS (for whom the147

probability of having the 77G allele is higher if the tested hypothesis is true). This effect would explain148

the lack of 77G bearers in control groups of the Marburg studies and could exaggerate the observed149

association between 77G and disease. Slight contamination of these two control groups with 3 and 5150

allele bearers (out of 117 and 194 control patients, respectively) is sufficient to make the observed effect151

statistically non-significant (Fig. 4, “modified data”) and eliminate the observed discrepancy between this152

( Jacobsen et al. (2000)) and remaining studies by Vorechovsky et al. (2001); Barcellos et al. (2001) (see153

Supplemental Text S1 for details).154

Case study III: Divergence of X-linked and autosomal genes in Drosophila155

Under certain conditions X-chromosome loci are expected to have higher rates of adaptive evolution than156

those located on the autosomes (Charlesworth et al. (1987)). To test this hypothesis in Drosophila, several157

groups examined the evolutionary rates of X-linked and autosomal genes, and checked whether their158

average divergence– (synonymous (dS) and non-synonymous (dN))– “differ significantly”. Some stated159

“no difference” in divergence (Betancourt et al. (2002); Begun and Whitley (2000)), while others reported160

that it was “significantly higher” (Thornton and Long (2002)). These discrepancies were attributed to161
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Figure 4. Odds ratios and relative odds ratios for multiple sclerosis. a, 95% CI for the ratio of odds
of disease given the 77G allele compared to 77C allele for study groups from three contradicting studies
by Jacobsen et al. (2000); Vorechovsky et al. (2001); Barcellos et al. (2001). Numbers of 77G bearers are
in brackets. The CIs for modified data (for explanation see text) do not allow us to determine whether
disease odds are higher or lower given the 77G allele. b, 95% CIs for the relative odds ratios calculated
between pairs of studies. When the supposedly-missing carriers are added to Marburg control groups
(modified data), the results of studies become indistinguishable.

different types of analysed genes or to unrepresentative sample sizes. Indeed, the hypothesis of faster162

evolution of sex chromosomes remained disputable until the sequencing of several fly genomes, which163

enabled testing among samples even 500 times larger (Begun et al. (2007)).164

We complemented the results of contradicting studies (Betancourt et al. (2002); Begun and Whitley165

(2000); Begun et al. (2007)) with CIs for median and median divergence differences between each166

analysed pair of X-linked and autosomal sets of genes (Fig. 5, Fig. S4). Only with a considerable increase167

in sample sizes in the genome-wide study of Begun et al. (2007) do the differences between X-linked and168

autosomal loci become detectable by significance tests. As CIs for appropriate contrasts show (panels169

c), signs of the differences between results of particular studies cannot be determined. This indicates170

that, based on these data sets, the compared X-autosome divergence differences from two smaller studies171

by Betancourt et al. (2002); Begun and Whitley (2000) and one genome-wide study by Begun et al. (2007)172

cannot be distinguished, and no controversy between them may be claimed.173

Regarding the faster-X evolution hypothesis itself, most of the statistically significant X-autosome174

divergence differences reported by Begun et al. (2007) appear only slightly greater than zero after175

inspecting CIs. Moreover, some are negative, which suggests the opposite effect: faster autosome evolution.176

Despite their modest size, the possibility cannot be ruled out that these values may have noticeable177

biological and evolutionary consequences. For comparison, we examined divergence differences between178

subsets of autosomal loci (2nd vs. 3rd autosome and left vs. right arms of autosomes 2 and 3), for which179

any hypothesis concerning differing speeds of evolution has probably never been proposed. For both180

pairwise and lineage specific dN and dS, the analysed data set does not provide evidence that the faster-X181

effect is larger than the inter- or intra-autosomal divergence variability (Fig. S5 and Fig. S6). A similar182

conclusion arises for X-linked and autosomal introns and intergenic regions (Fig. S7 and Fig. S8), with183

the exception of lineage-specific divergence in D.melanogaster introns. For these introns, the X-autosome184

difference was negative and larger (in absolute value) than any of the inter- and intra-autosomal differences,185

suggesting the possibility of a biologically-relevant effect of faster evolution of autosomes. UTRs (Fig.186

S9 and Fig. S10) constitute the only case that may support the faster-X evolution hypothesis. Apart from187

the lineage-specific divergence in D.melanogaster, all X-autosomal divergence differences are positive188

and at least somewhat larger than inter- and intra- autosomal differences. This result still does not prove189

that the higher X divergence in UTRs is biologically significant, but at least there is cause to consider the190
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Figure 5. Median dS, median X-autosome dS differences and contrasts in three studies of
Drosophila. a, 95% CIs for median divergence in dS for X-linked and autosomal loci for three
contradicting studies by Begun et al. (2007); Betancourt et al. (2002); Begun and Whitley (2000).
Bootstrap CIs are shown in brackets, n = sample size. b, 95% CIs for the median dS difference between
X-linked and autosomal loci for each research. c, 95% CIs for contrasts, i.e., the differences of the
X-autosome dS differences for genes analysed by two contradicting studies. Their signs cannot be
identified, and thus no controversy between the studies can be claimed.

possibility.191

In the 17 of 18 lineage-specific cases that (according to Begun et al. (2007)) confirm the faster-X192

evolution, only 5 remained after our revision. For pairwise divergence, the success rate dropped from193

4 of 6 to 2 of 6 confirming cases. For most gene elements, the magnitude of the “faster-X effect” was194

indistinguishable from the quite unexpected magnitude of the “faster-2nd-autosome effect” or “faster-left-195

autosomal-arms effect” (see Supplemental Text S1 for details).196

Summary of case studies197

All three examples demonstrate that contradictions often disappear when a “significant vs. non-significant”198

approach is replaced with a proper method (preferably ESCI) of comparing the results of the studies; there-199

fore, these contradictions are fictitious. We stress, however, that if the studies do not differ significantly, it200

does not mean that they agree perfectly but only that their plausible differences lie within the calculated201

confidence interval. Additionally, even if the differences of results remain statistically significant, they202

often cannot be declared large enough in comparison with the variability caused by the details, protocols203

and approaches of research procedures– a phenomenon called “vibration of effects” (Ioannidis (2008);204

Button et al. (2013)). The choice of the measurement method (Case I) and the selection of individuals205

for controls (Case II) are examples. Unexpected variation unrelated to the hypothesis that is tested (Case206

III) is even more challenging. Focusing on statistical significance alone hides these problems because it207

draws attention from quantitative questions. In none of the analysed papers does the matter of quantitative208

importance of an effect appear at the foreground.209

Further examples from the literature210

Although the prevalence of fictitious controversies stemming from NHST misinterpretations is difficult to211

assess, our analysis is not isolated. Similar examples, causing serious scientific and practical problems,212

were described in medicine and psychology (Fidler (2011); McCormack et al. (2013)). Two studies (Knape213

and de Valpine (2012); Osenberg et al. (2002)) concerning key issues in ecology stress the importance of214

the uncertainties acknowledgement, one of them (Osenberg et al. (2002)) arrives at conclusions strictly215
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consonant with ours. In genetics, a recent critique of the ENCODE project by Graur et al. (2013)216

demonstrates how “absurd conclusion” may be reached when statistical significance is exalted above the217

magnitude of the effect.218

The latest examples come from the recent effort of Open Science Collaboration to reproduce 100219

psychological findings (Collaboration (2015)). One of the criterion used to evaluate replication was an220

”intuitively appealing” and ”consistent with common heuristics” test whether the replication shows a221

statistically significant (p-value < 0.05) effect with the same direction as the original study, however,222

some attempts to involve the ESCI framework were also made. The authors came to conclusion that only223

36-47% of the original studies could be successfully replicated. A debate emerged soon after, whether224

this number is (Gilbert et al. (2016)) or is not (Anderson et al. (2016)) in agreement with by-chance-alone225

expectations, and does it justify the proclamation of the reproducibility crisis in psychology (Maxwell et al.226

(2015); Baker (2016)). Similarly confusing indicators of replicability were used by Camerer et al. (2016)227

to evaluate the laboratory experiments in economics. As a result, a significant effect in the same direction228

as in the original study was found in only 61% of experiment replications, while measures partially based229

on ESCI methods scored 67-78% of successfully replicated studies. The only indicator that yielded230

83-89% was the one that acknowledged sampling variation in both the original and replicated studies by231

counting how many replicated effects lay in 95% prediction intervals derived from original studies (Leek232

et al. (2015)). This methodology is close to ours and does not lead to fictitious contradictions, however, it233

was used rather as a supplementary method and its less exciting results were not even mentioned in the234

abstract. When the same method was used to evaluate the psychological findings of the Open Science235

Collaboration (Collaboration (2015)), the fraction of successfull replicates increased from 36-47% to236

70-77% (Leek et al. (2015)). All this indicates that replicability is still poorly understood and before237

proclaiming its new, haunting crisis, we should first define its effective, ESCI-based and ready-to-use238

measures.239

DISCUSSION & CONCLUSIONS240

Controversies and debates are at the core of scientific progress, but it is hardly believable that controversies241

about random events play a constructive role. As long as statistical significance is a benchmark of research242

results, it also serves as a basis for their comparisons (Miller (2009); Collaboration (2015); Camerer et al.243

(2016)).244

Consequently, fictitious contradictions are inevitable (Leek et al. (2015)) and cannot be differentiated245

from real contradictions without labour-intensive reanalyses, as exemplified here. Even if the original raw246

data are not available, approximations of confidence intervals may be obtained by “reverse engineering”247

from the reported tabular and graphical information. Such work is worth doing, as it would help to estimate248

the scale of the problem and it would promote awareness of statistical uncertainties and quantitative249

interpretation of results. Our analysis demonstrates that the question whether separate studies agree or250

disagree is not a proper one, as it is exposed to the pitfalls of NHST. It is better to ask, following the251

ESCI framework, about the plausible ranges of differences between results of studies, i.e., to consider the252

problem in quantitative terms taking statistical uncertainties into account.253

ACKNOWLEDGMENTS254

We thank Volker Grimm and Marian Siwiak for critical discussions and comments on the manuscript;255

Geoff Cumming, the author of the acronym ESCI, for permission to assign a new meaning to it; and256

Grzegorz Kudla for supplementary data access.257

REFERENCES258

Anderson, C. J., Bahnik, ., Barnett-Cowan, M., Bosco, F. A., Chandler, J., Chartier, C. R., Cheung,259

F., Christopherson, C. D., Cordes, A., Cremata, E. J., Della Penna, N., Estel, V., Fedor, A., Fitneva,260

S. A., Frank, M. C., Grange, J. A., Hartshorne, J. K., Hasselman, F., Henninger, F., van der Hulst,261

M., Jonas, K. J., Lai, C. K., Levitan, C. A., Miller, J. K., Moore, K. S., Meixner, J. M., Munafo,262

M. R., Neijenhuijs, K. I., Nilsonne, G., Nosek, B. A., Plessow, F., Prenoveau, J. M., Ricker, A. A.,263

Schmidt, K., Spies, J. R., Stieger, S., Strohminger, N., Sullivan, G. B., van Aert, R. C., van Assen,264

M. A., Vanpaemel, W., Vianello, M., Voracek, M., and Zuni, K. (2016). Response to Comment on265

”Estimating the reproducibility of psychological science”. Science, 351(6277):1037.266

8/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2249v1 | CC BY 4.0 Open Access | rec: 5 Jul 2016, publ: 5 Jul 2016



Baker, M. (2016). Psychology’s reproducibility problem is exaggerated – say psychologists. Nature.267

Barcellos, L. F., Caillier, S., Dragone, L., Elder, M., Vittinghoff, E., Bucher, P., Lincoln, R. R., Pericak-268

Vance, M., Haines, J. L., Weiss, A., Hauser, S. L., and Oksenberg, J. R. (2001). PTPRC (CD45) is not269

associated with the development of multiple sclerosis in U.S. patients. Nat. Genet., 29(1):23–4.270

Begun, D. J., Holloway, A. K., Stevens, K., Hillier, L. W., Poh, Y., Hahn, M. W., Nista, P. M., Jones,271

C. D., Kern, A. D., Dewey, C. N., Pachter, L., Myers, E., and Langley, C. H. (2007). Population272

genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS273

Biol., 5(11):doi:10.1371/journal.pbio.0050310.274

Begun, D. J. and Whitley, P. (2000). Reduced X-linked nucleotide polymorphism in Drosophila simulans.275

Proc. Natl. Acad. Sci. U.S.A., 97(11):5960–5.276

Betancourt, A. J., Presgraves, D. C., and Swanson, W. J. (2002). A test for faster X evolution in Drosophila.277

Mol. Biol. Evol., 19(10):1816–1819.278

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., and Munafo,279

M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nat.280

Rev. Neurosci., 14(5):365–376.281

Camerer, C. F., Dreber, A., Forsell, E., Ho, T.-H., Huber, J., Johannesson, M., Kirchler, M., Almenberg,282

J., Altmejd, A., Chan, T., Heikensten, E., Holzmeister, F., Imai, T., Isaksson, S., Nave, G., Pfeiffer,283

T., Razen, M., and Wu, H. (2016). Evaluating replicability of laboratory experiments in economics.284

Science, 351(6280):1433–1436.285

Charlesworth, B., Coyne, J. A., and Barton, N. H. (1987). The relative rates of evolution of sex286

chromosomes and autosomes. Am. Nat., 130(1):113–146.287

Collaboration, O. S. (2015). Estimating the reproducibility of psychological science. Science,288

349(6251):aac4716+.289

Cumming, G. (2011). Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-290

Analysis. Routledge Academic, New York City, USA.291

Cumming, G. and Fidler, F. (2011). From hypothesis testing to parameter estimation: An example of292

evidence-based practice in statistics. In Panter, A. and Sterba, S., editors, Handbook of Ethics in293

Quantitative Methodology, pages 293–312. Routledge, New York City, USA.294

Dempster, A. P. (2008). The Dempster-Shafer calculus for statisticians. Int. J. Approx. Reasoning,295

48(2):365–377.296

Diedenhofen, B. (2013). cocor: Comparing correlations. (Version 0.01-4).297

Fidler, F. (2011). Ethics and statistical reform: lessons from medicine. In Panter, A. and Sterba, S., editors,298

Handbook of Ethics in Quantitative Methodology, pages 445–462. Routledge, New York City, USA.299

Gelman, A. and Stern, H. (2006). The difference between “significant” and “not significant” is not itself300

statistically significant. Amer. Statist., 60(4):328–331.301

Gigerenzer, G. and Murray, D. (1987). Cognition as Intuitive Statistics. Lawrence Erlbaum Associates302

Inc, Mahwah, USA.303

Gilbert, D. T., King, G., Pettigrew, S., and Wilson, T. D. (2016). Comment on ”Estimating the repro-304

ducibility of psychological science”. Science, 351(6277):1037.305

Graur, D., Zheng, Y., Price, N., Azevedo, R. B. R., Zufall, R. A., and Elhaik, E. (2013). On the immortality306

of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE.307

Genome Biol. and Evol., 5(3):578–590.308

Grosjean, H. and Fiers, W. (1982). Preferential codon usage in prokaryotic genes: the optimal codon-309

anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene,310

18(3):199–209.311

Halsey, L. G., Curran-Everett, D., Vowler, S. L., and Drummond, G. B. (2015). The fickle P value312

generates irreproducible results. Nature Methods, 12(3):179–185.313

Harlow, L., Mulaik, S., and Steiger, J., editors (1997). What If There Were No Significance Tests?314

Lawrence Erlbaum Associates Inc, Mahwah, USA.315

Ikemura, T. (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the316

occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice317

that is optimal for the E. coli translational system. J. Mol. Biol., 151(3):389–409.318

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Med.,319

2(8):doi:10.1371/journal.pmed.0020124.320

Ioannidis, J. P. (2008). Why most discovered true associations are inflated. Epidemiology, 19(5):640–648.321

9/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2249v1 | CC BY 4.0 Open Access | rec: 5 Jul 2016, publ: 5 Jul 2016



Ioannidis, J. P. A. (2014). How to make more published research true. PLoS Med.,322

11(10):doi:10.1371/journal.pmed.1001747.323

Jacobsen, M., Schweer, D., Ziegler, A., Gaber, R., Schock, S., Schwinzer, R., Wonigeit, K., Lindert, R. B.,324

Kantarci, O., Schaefer-Klein, J., Schipper, H. I., Oertel, W. H., Heidenreich, F., Weinshenker, B. G.,325

Sommer, N., and Hemmer, B. (2000). A point mutation in PTPRC is associated with the development326

of multiple sclerosis. Nat. Genet., 26(4):495–9.327

Jennions, M. D. and Møller, A. P. (2003). A survey of the statistical power of research in behavioral328

ecology and animal behavior. Behav. Ecol., 14(3):438–445.329

Johnson, V. E. (2013). Revised standards for statistical evidence. Proc. Natl. Acad. Sci. U.S.A.,330

110(48):19313–19317.331

Kirby, K. N. and Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect332

sizes. Behav. Res. Methods., 45(4):905–927.333

Knape, J. and de Valpine, P. (2012). Are patterns of density dependence in the Global Population334

Dynamics Database driven by uncertainty about population abundance? Ecol. Lett., 15(1):17–23.335

Kudla, G., Murray, A. W., Tollervey, D., and Plotkin, J. B. (2009). Coding-sequence determinants of gene336

expression in Escherichia coli. Science, 324(5924):255–258.337

Leek, J. T., Patil, P., and Peng, R. D. (2015). A glass half full interpretation of the replicability of338

psychological science. arXiv:1509.08968 stat.AP.339

Lehrer, J. (2010). The truth wears off. The New Yorker.340

Manly, B. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall,341

London, UK.342

Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: causes,343

consequences, and remedies. Psychol. Methods, 9(2):147–63.344

Maxwell, S. E., Lau, M. Y., and Howard, G. S. (2015). Is psychology suffering from a replication crisis?345

what does “failure to replicate” really mean? American Psychologist, 70(6):487–498.346

McCormack, J., Vandermeer, B., and Allan, G. M. (2013). How confidence intervals become confusion347

intervals. BMC Med. Res. Methodol., 13:134.348

Miller, J. (2009). What is the probability of replicating a statistically significant effect? Psychon. Bull.349

Rev., 16(4):617–40.350

Morrison, D. and Henkel, R., editors (1970). The Significance Test Controversy. Aldine Publ., Chicago,351

USA.352

Motulsky, H. (2014). Intuitive Biostatistics, 3rd edition. Oxford University Press, New York City, USA.353

Mullane, K. and Williams, M. (2015). Unknown unknowns in biomedical research: does an inability to354

deal with ambiguity contribute to issues of irreproducibility? Biochemical Pharmacology.355

Nature (2016). Reality check on reproducibility. Nature, 533(7604):437.356

Nature Publishing Group (2013). Announcement: Reducing our irreproducibility. Nature, 496:398.357

Nuzzo, R. (2014). Scientific method: statistical errors. Nature, 506(7487):150–152.358

Osenberg, C., St Mary, C., R.J., S., Holbrook, S., Chesson, P., and Byrne, B. (2002). Rethinking ecological359

inference: density dependence in reef fishes. Ecol. Lett., 5:17–23.360

Plotkin, J. B. and Kudla, G. (2011). Synonymous but not the same: the causes and consequences of codon361

bias. Nat. Rev. Genet., 12(1):32–42.362

SAS Institute Inc. (2013). SAS/STAT 12.3 User’s Guide.363

Schmidt, F. and Hunter, J. (1997). Eight common but false objections to the discontinuation of significance364

testing in the analysis of research data. In Harlow, L., Mulaik, S., and Steiger, J., editors, What If There365

Were No Significance Tests?, pages 37–64. Lawrence Erlbaum Associates.366

Smith, D. R., Hardy, I. C. W., and Gammell, M. P. (2011). Power rangers: no improvement in the367

statistical power of analyses published in Animal Behaviour. Anim. Behav., 81(1):347–352.368

Suzuki, S. (2006). Conditional relative odds ratio and comparison of accuracy of diagnostic tests based369

on 2 x 2 tables. J. Epidemiol., 16(4):145–153.370

Thornton, K. and Long, M. (2002). Rapid divergence of gene duplicates on the Drosophila melanogaster371

X chromosome. Mol. Biol. Evol., 19(6):918–25.372

Tuller, T., Waldman, Y. Y., Kupiec, M., and Ruppin, E. (2010). Translation efficiency is determined by373

both codon bias and folding energy. Proc. Natl. Acad. Sci. U.S.A., 107(8):3645–50.374

Turner, R. M., Bird, S. M., and Higgins, J. P. T. (2013). The impact of study size375

on meta-analyses: examination of underpowered studies in Cochrane reviews. PLoS One,376

10/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2249v1 | CC BY 4.0 Open Access | rec: 5 Jul 2016, publ: 5 Jul 2016



8(3):doi:10.1371/journal.pone.0059202.377

Vorechovsky, I., Kralovicova, J., Tchilian, E., Masterman, T., Zhang, Z., Ferry, B., Misbah, S., Chapel, H.,378

Webster, D., Hellgren, D., Anvret, M., Hillert, J., Hammarstrom, L., and Beverley, P. C. (2001). Does379

77C→G in PTPRC modify autoimmune disorders linked to the major histocompatibility locus? Nat.380

Genet., 29(1):22–3.381

Wasserstein, R. L. and Lazar, N. A. (2016). The ASA’s statement on p-values: context, process, and382

purpose. The American Statistician.383

Zeggini, E. and Ioannidis, J. P. (2009). Meta-analysis in genome-wide association studies. Pharmacoge-384

nomics, 10(2):191–201.385

Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychol. Methods,386

12(4):399–413.387

11/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2249v1 | CC BY 4.0 Open Access | rec: 5 Jul 2016, publ: 5 Jul 2016


