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ABSTRACT8

Sharing and reusing data in research is a welcome and encouraged practice since it maximises the
scientific outcomes given limited financial, material and human resources. Interdisciplinary research is
considered to benefit from this practice, uniting researchers and data from two or more disciplines to
advance fundamental understanding or tackle problems whose solution is beyond the limit of an individual
body of knowledge. Here we discuss the challenges of combining data across disciplines, focusing in
particular on associating geographic location data with genetic data in the context of a project involving
Crop Science and Geospatial Information Science disciplines. This project aims to improve understanding
of how geographical, environmental and anthropocentric factors affect the genetic variation in a neglected
and underutilised crop called Bambara groundnut.
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INTRODUCTION19

Research challenges in the 21st century require an interdisciplinary approach, to advance fundamental20

understanding or to tackle problems whose solutions are beyond the scope of a single discipline or body21

of knowledge (Academies, 2004). Interdisciplinarity is encouraged, with funding organisations recently22

increasing support for research that integrates multiple disciplines. Interdisciplinary science represents23

the current reality for increasing numbers of scientists, through the composition of research teams and the24

nature of the hypotheses being examined (Dyer, 2015). In this context, sharing and reusing datasets from25

different disciplines is common practice and aims to strength the research by adding new dimensions to26

the data available or verifying the results obtained from a different perspective. However, integration of27

discipline-associated datasets is not a smooth process and is subject to varying concepts of quality and28

abundance.29

Geographic Information Science (GIScience) explores the location property of entities such as objects,30

events and processes, associating them with co-ordinates, such as longitude and latitude (Goodchild, 2010;31

Stevens and Pfeiffer, 2015). This process may seem straightforward, given the increasing presence of32

location-based sensors and mapping technologies in our daily lives. However, it is still a challenge because33

of the nature and contexts of the facts examined. In museums and herbaria, artefacts and specimens34

have usually been collected over decades or centuries and their finding location is often ambiguous or35

very imprecise (van Erp et al., 2015). In Health Science, investigation of historical records of disease36

occurrence in individuals relies on the names of locations and vague addresses. The lack of historical37

address databases undermines the potential use of those health data (Lash et al., 2012). In Crop Science,38

breeding programs rely on the collections of seeds available to germplasm banks. Knowledge about the39

origin of these seeds is necessary to characterise the environment around their collection location, and to40

go beyond basic measurements of diversity. However, again, location information about their origin may41

be vague or associated with markets where the seeds were obtained instead of where they grew or were42

originally sourced from (Richards, 2011).43
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A MODEL FOR INTEGRATION OF MULTIPLE DISCIPLINE DATA44

In the cases just mentioned, integration of data from other disciplines with GIScience is not straightforward.45

In fact, the integration often involves transformation and filtering operations using arbitrary criteria. Given46

two datasets from different disciplines, these operations typically discard or reduce records or items, often47

greatly, resulting in a relative subset of the original dataset that can be used in both disciplines. In Figure48

1, a Venn diagram shows this concept using three distinct disciplines. Given the initial amount of data in a49

discipline (D1), only a subset (D1 ∩ D2 or D1 ∩ D3) fits the criteria of both disciplines (D1 and D2 or D150

and D3). As the number of disciplines involved increases, so there is further diminution of the available51

data.52

These criteria involve requirements common and unique to the disciplines involved. Examples include53

the following cases: exclusion of records with missing data (i.e. records must have longitude and latitude54

or postcode); temporal scales (e.g. growing season must match respective weather data to investigate55

potential plant stress); spatial scales (e.g. association of soil and disease resistance among individuals in a56

small to medium farm demands detailed soil maps); sample units (e.g. if the location is available at the57

population level, the genetic information for individuals must be grouped by the same definition of the58

population).59

Another issue with integrating data from distinct disciplines concerns variation of concepts such as60

abundance and diversity. A dataset may fit criteria of relatively high abundance and diversity in discipline61

D1, but be classed as scarce and uniform in discipline D2. Figure 2A shows one seedling being planted in62

the glasshouse. In the context of Crop Science, this individual has the potential to generate a significant63

amount of genetic data through genotyping or sequencing processes (see figure 2C), and the resulting64

dataset could be considered abundant. However, genetic information among individuals of the same65

species can be very similar and in order to get data that represents the differences it is important to choose66

highly polymorphic molecular markers in the genotyping process. In the context of GIScience, this67

individual seedling, whose origin information is available at the population level, has only one associated68

location, and would be considered scarce if the objective were to analyse the genetic data over a broad69

geographic area. Even if more seedlings from the same population were cultivated (see figure 2B), the70

number of population locations is still one, and all the genetic data generated from these samples are still71

associated with one point in space (see figure 2D). Cultivating seeds from different populations would72

provide a better representation of the geographic space. However, it would be necessary to investigate73

the characteristics of interest around this location in order to guarantee a reasonable representation of74

environmental variables. Experiment design and sampling strategy are important, and should be discussed75

taking into account the characteristics of the data of the disciplines involved.76

THE BAMBARA GROUNDNUT STUDY CASE77

Bambara groundnut is classed as a neglected and underutilised species of legume, mainly cultivated in78

Sub-Saharan Africa. It is believed that the process of its domestication and further cultivation started79

thousands of years ago. However, despite its long history, this crop is still cultivated from landraces80

(locally developed mixtures of genotypes) (Molosiwa et al., 2015).81

We used genetic and geographic datasets to explore spatial patterns of genetic variation. We in-82

cluded environmental datasets in order to analyse distinct measures of distance (geographic, genetic83

and environmental) of Bambara groundnut landraces. The genetic dataset was composed of the geno-84

typing information about the presence or absence of twenty Single Sequence Repeat (SSR) molecular85

markers of 33 distinct landraces of Bambara groundnut, with a total of 128 samples. We calculated the86

allele frequency for each group of landraces and based on the allele frequency we produced a matrix87

of genetic distance among each pair of landraces using Nei’s genetic distance method (Nei, 1972). The88

geographic information about the origin of these seeds was provided by the International Institute of89

Tropical Agriculture (IITA) at landrace level. The seeds were cultivated in glasshouses in England and90

Botswana (Molosiwa et al., 2015). We used the WorldClim database (Hijmans et al., 2005) to characterise91

temperature, rainfall and altitude around the origin locations (see Figure 3). Although the environmental92

and genetic dataset were large, putting the two together led to a small dataset that was only just big enough93

to analyse.94

So far, we have conducted exploratory analyses using the datasets and process presented here. We95

identified some imprecision in the location data that did not affect the initial analyses (mostly PCA and96
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k-means cluster analysis of the genetic data and mapping of the first and second axes); however, future97

analyses of distance matrices may require the exclusion of the most compromised samples. Although the98

environmental and genetic datasets were large, putting the two together led to a small dataset that was99

only just big enough to analyse.100

CONCLUSIONS101

If, as a scientific community, we are serious about interdisciplinarity then we need a lot more work102

in co-ordinating data-collection activities, to guarantee the data acquired are useful for all disciplines103

involved. We propose that existing research on interoperability, an established concept in GIScience, be104

extended to other areas of science, and particularly the co-ordination of data collection. It holds potential105

for helping to address the challenges presented in the integration of multidisciplinary data.106

Figure 1. This figure shows a model for integration of data from distinct disciplines. Circles in the Venn
diagram represent various disciplines (D1, D2 and D3) and their respective data criteria. Numbers
represent a hypothetical amount (%) of the data that only fit the criteria of each discipline (D1 = 78, D2 =
89 and D3 = 84), or the combined criteria of two disciplines (D1 ∩ D2 = 8, D1 ∩ D3 = 13, D2 ∩ D3 = 2),
or the combined criteria of all disciplines (D1 ∩ D2 ∩ 3 = 0.1). Given two or more datasets from different
disciplines, the combined criteria typically discard or reduce records or items, often greatly, resulting in a
relatively small subset of the original datasets that can be used by the combined bodies of knowledge.
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Figure 2. Integration of geographic and genetic datasets of Bambara groundnut. (A) shows a seedling to
be planted in the glasshouse. (B) shows a trial of Bambara groundnut planted in the glasshouse. (C)
genotyping results with highlighted data of a specific sample. (D) geographic localisation of the landraces
(populations) of Bambara groundnut used in this study.
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Figure 3. Flow of transformations and filter operations applied to the genetic, geographic and
environmental data.
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