

Why respiratory viruses or bacteria have the highest probability to be deposited in the respiratory tract in flu seasons

Objective:

In this study the main aspects of influenza transmission via fine and ultrafine bioaerosols were considered. Here, we aimed to estimate the impact of the different environment conditions on the deposition rate of the infectious bioaerosols in the **respiratory tract (RT)**.

Background:

The latest researches show the infected people generate the fine and ultrafine infectious bioaerosols with submicron particles/droplets (size below 1 μ m). The airborne transmission of these particles/droplets in the environment is effective. It is considered the deposition of submicron particles in RT has very low probability. But most studies examined the deposition of the particles in RT under normal environmental conditions and did not paid attention to the different environmental factors.

Methods:

We review the problems of epidemiology of respiratory infections and aspects of airborne transmission/spread of infectious agents. We contrast these approaches with known data from next area: inhalation toxicology, respiratory drug delivery and physics of heat and mass transfer in the airways.

Results:

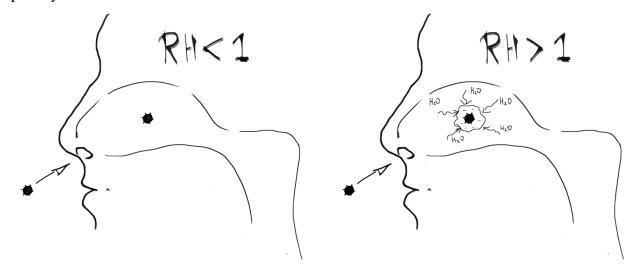
On the basis of these analyses, we propose the next main concepts:

- 1 Breathing cool air leads to the supersaturation of air in RT;
- 2 the air supersaturation leads to the intensive **condensational growth(CG)** of inhaled viruses or bacteria in RT;
- 3 CG leads to the intensive and dramatically growth of deposition rate of viruses or bacteria in RT.

We have shown:

- a) Under normal conditions of inhaled air (T>20°C; Relatively Humidity, RH=60%) there is no transition in supersaturated condition in RT and CG is insignificant and probability of virus deposition on epithelium of RT is low no more than 20%.
- b) Breathing cool/cold air of $T<+15^{\circ}C$ and RH of [30..60]% leads to the supersaturation in the airways and it can dramatically increase the deposition rate of inhaled bioaerosols in RT(up to 96%).
- c) With an increase in RH of inhaled air the supersaturation in RT occurs even at warm temperature of inhaled air (for inhaled air of $T<20^{\circ}C$ and RH>70%; $T<25^{\circ}C$ and RH>90%). It also indicates the high

deposition rate of bioaerosols in RT.


Conclusion:

Under specific environmental conditions (when flu seasons) the processes of supersaturation in the RT can be observed. These results indicate the high probability of virus deposition on epithelium of RT and correspond to influenza and seasonal respiratory infections in temperate and tropical climates.

We believe the effect of supersaturation in the lungs can be the key to understanding of 'the age-old epidemiologic mystery of influenza seasonality in the different climatic conditions.'

- 2 Why respiratory viruses or bacteria have the highest probability to be
- 3 deposited in the respiratory tract in flu seasons
- 4 Authors: Aleksandr N. Ishmatov (PhD)
- 5 **Correspondence to**: ANI; ishmatoff@rambler.ru; +79132497837
- 6 659540, Lenin st 90, Sovetskoe, Altai region, Russia
- 7 **Affiliation**: None (Temporarily Unemployed)
- 8 **Keywords:** influenza, flu, airborne transmission, respiratory infections, seasonality, airway,
- 9 epidemiology, public health
- 10 Highlights
- In this study the main aspects of influenza transmission via fine and ultrafine bioaerosols were
- 12 considered and investigated.
- 13 The main concept of the manuscript:
- step 1: breathing cool/cold air (which correspond to environmental conditions during flu seasons)
- leads to the supersaturation in the respiratory tract;
- step 2: the air supersaturation leads to the intensive condensational growth of inhaled viruses or
- bacteria in the respiratory tract;
- step 3: condensational growth leads to the intensive deposition of viruses or bacteria in the
- 19 respiratory tract.

22 Objective:

- 23 In this study the main aspects of influenza transmission via fine and ultrafine bioaerosols were
- 24 considered. Here, we aimed to estimate the impact of the different environment conditions on the
- 25 deposition rate of the infectious bioaerosols in the respiratory tract.

Background: 26

- 27 The latest researches show the infected people generate the fine and ultrafine infectious bioaerosols
- 28 with submicron particles/droplets (size below 1 µm). The airborne transmission of these
- 29 particles/droplets in the environment is effective.
- 30 It is considered the deposition of submicron particles in the respiratory tract (RT) has very low
- probability. But most studies examined the deposition of the particles in RT under normal 31
- 32 environmental conditions and did not paid attention to the different environmental factors.
- 33
- 34 We review the problems of epidemiology of respiratory infections and aspects of airborne
- 35 transmission/spread of infectious agents. We contrast these approaches with known data from next
- 36 area: inhalation toxicology, respiratory drug delivery and physics of heat and mass transfer in the
- 37 airways.
- 38 Results:
- 39 On the basis of these analyses, we propose the next main concepts:
- 1 Breathing cool air leads to the supersaturation of air in RT; 40
- 41 2 the air supersaturation leads to the intensive condensational growth(CG) of inhaled viruses or
- 42 bacteria in RT;
- 43 3 CG leads to the intensive and dramatically growth of deposition rate of viruses or bacteria in RT.
- 44 We have shown:
- 45 a) Under normal conditions of inhaled air (T>20°C; Relatively Humidity, RH=60%) there is no
- 46 transition in supersaturated condition in RT and CG is insignificant and probability of virus
- 47 deposition on epithelium of RT is low - no more than 20%.
- 48 b) Breathing cool/cold air of T<+15°C and RH of [30..60]% leads to the supersaturation in the
- 49 airways and it can dramatically increase the deposition rate of inhaled bioaerosols in RT(up to
- 50 96%).
- 51 c) With an increase in RH of inhaled air the supersaturation in RT occurs even at warm temperature
- of inhaled air (for inhaled air of T<20°C and RH>70%; T<25°C and RH>90%). It also indicates 52
- 53 the high deposition rate of bioaerosols in RT.
- 54 Conclusion:
- 55 Under specific environmental conditions (when flu seasons) the processes of supersaturation in the
- RT can be observed. These results indicate the high probability of virus deposition on epithelium of 56
- 57 RT and correspond to influenza and seasonal respiratory infections in temperate and tropical
- 58 climates.
- 59 We believe the effect of supersaturation in the lungs can be the key to understanding of 'the age-old
- epidemiologic mystery of influenza seasonality in the different climatic conditions.' 60

52 53	respiratory tract in flu seasons	1
54	1 Introduction // How Influenza viruses spread	4
55	1.1 Airborne transmission as one of main route for spreading of influenza	4
56	1.2 Humans as a source of fine and ultrafine bioaerosols	4
57 58	1.3 Problem of delivery and deposition of fine airborne particles with virus in human airways	5
59 70	1.4 Upper airways are target area of influenza viruses: Is it additional problem for targe virus delivery via ultrafine and fine bioaerosols?	
71	2 Why condensational growth is so important	8
72	2.1 The main concept	8
73	2.2 Hygroscopic and condensational growth in the lungs	8
74	2.2.1 Effects of Hygroscopic Growth	8
75	2.2.2 Effects of Condensational Growth	8
76	2.3 When the supersaturation occurs in the human airways	9
77	2.3.1 Breathing hot and warm saturated air	9
78	2.3.2 Breathing cold/cool air	9
79	3 Results and discussions	11
30	3.1 local supersaturation in the airways (preliminary estimation)	11
31	3.1.1 A few words about heat and mass transfer in the airways	12
32	3.2 Supersaturation and target deposition of fine bioaerosols in the airways	12
33	3.2.1 A few words about deposition rate of fine bioaerosols in the airways	12
34	3.3 Supersaturation in the airways and two global patterns of influenza seasonality	14
35 36	3.3.1 Flu seasons in temperate climate ("cold-dry pattern" and condensational growt	-
37 38	3.3.2 Flu seasons in tropical climate ("humid-rainy pattern" and condensational grow	vth)
39	3.3.3 Normal environmental conditions – No supersaturation in the airways – No Flu	16
90	Conclusion	17
91	Future directions	17
92	Afterword	18
93	Acknowledgements	20
94	Potential partnership	20
95	References	20

98 1 Introduction // How Influenza viruses spread

- 99 Marc Lipsitch and Cécile Viboud (2009) (Lipsitch and Viboud, 2009): "Seasonal variation in the
- 100 incidence of communicable diseases is among the oldest observations in population biology, dating
- back at least to ancient Greece, yet our understanding of the mechanisms underlying this 101
- 102 phenomenon remains hazy at best.

103 1.1 Airborne transmission as one of main route for spreading of influenza

- 104 There are the next main routes of transmission of influenza and common cold: by direct contact
- (person-to-person), by contact with contaminated objects and airborne(Hall, 2007; Shaman and 105
- Kohn, 2009; Milton et al., 2013). The relative importance of these transmission modes remains a 106
- subject of much debate (see review in (Shaman and Kohn, 2009)). 107
- 108 In the recent studies of Cowling et al and Killingley et al (Cowling et al., 2013; Killingley et al.,
- 109 2016) question the relative importance of the direct contact transmission of influenza and
- transmissions via contaminated surfaces and shown that airborne transmission of influenza viruses 110
- 111 via fine droplets and particles (below 5 μm) can play a major role in spread of influenza.

1.2 Humans as a source of fine and ultrafine bioaerosols

- 113 The infectious bioaerosol may be generated by individuals via coughing, sneezing, speaking and
- 114 breathing. Coughing and sneezing generate coarse bioaerosols (large-particles aerosols) containing
- 115 droplets varying in size: geometric mean diameter below of 13.5 µm; for speaking it is 16 µm
- 116 (Chao et al., 2009). It should be pointed that data on droplets size is various in the different studies
- 117 (see review in (Chao et al., 2009)). Such droplets may deposit in upper airways (the probability to
- 118 reach the lower airways is too small for such droplets), but such droplets settle rapidly in the
- 119 environmental air and are transmitted only over short time and distance(Hall, 2007).
- 120 Infected people also generate fine and ultrafine infectious bioaerosols (size of the exhaled particles
- 121 below 1 µm) by normal breathing and tidal breathing (Edwards et al., 2004; Fabian et al., 2008;
- 122 Chen et al., 2009; Tellier, 2009; Johnson and Morawska, 2009; Milton et al., 2013; Cowling et al.,
- 123 2013; Lindsley et al., 2016). Such bioaerosols practically do not settle in the environmental air and
- 124 can be transmitted over long distance(Hall, 2007).
- 125 Fabian et al. (Fabian et al., 2008) shown that "exhaled influenza virus RNA generation rates ranged
- 126 from <3.2 to 20 influenza virus RNA particles per minute" and over 87% of exhaled particles under
- 127 1 µm during tidal breathing. Papineni and Rosenthal (Papineni and Rosenthal, 1997) (reference
- 128 from (Cowling et al., 2013)) and Fabian et al. (Fabian et al., 2011) found that concentrations of
- 129 particles in exhale breath vary from 0.1 to >7200 particles per liter, with the majority <0.3 µm in
- 130 diameter.

- Lindsley et al. (Lindsley et al., 2016) pointed: "Because individuals breathe much more often than 131
- 132 they cough, these results suggest that breathing may generate more airborne infectious material than
- 133 coughing over time".
- 134 In this study the main aspects of influenza transmission via fine and ultrafine bioaerosols were
- 135 considered and investigated.

138

139 140

141 142

159

- 1. About limitations on bioaerosol measurements. It is important to note that there are many studies on measurement of respiratory aerosols producing by individuals (see search terms "respiratory droplet" and "respiratory aerosol"). But the measurement techniques in majority of these studies focused on microsized aerosols and have limitations on measurement of nanosized aerosols. These limitations may be critical and information on nanosized particles in exhaled air may be lost in many cases/studies.
- 143 The most techniques have the collection efficiencies <30% for nanosized aerosols (see review in (Yu et al., 2016)). It is dramatically small and due to this we can't to talk with 144 certainty in present time about the full picture of spreading of infections via ultrafine 145 146 bioaerosols.
- For example: It is pointed the collection efficiency for particles with diameters between 0.02 147 and 0.7μm less than 20% (Spanne et al., 1999); 30-100 nm – less than 20 % (Wei et al., 148 2010); and in (Hogan et al., 2005)was discovered that for particles in range of 30-100 nm 149 the collection efficiency was <10%. 150
- We believe that in near future the new insights on importance of ultrafine bioaerosols in 151 152 spreading on infectious will be appear due to the new precise measurements.
- 153 2. About the infectious doses and exposure. As mentioned by Cowling et al., 154 2013): "Individuals infected with influenza viruses generate infectious doses at a low rate, so that larger outbreaks would only result from prolonged exposures in optimal conditions 155 ... it is likely that the greatest risk of aerosol transmission is in close proximity to infected 156 persons (Tellier, 2009)". It is the important remark for understanding of first step of 157 158 infecting.

1.3 Problem of delivery and deposition of fine airborne particles with virus in human airways

- The airborne transmission of fine and ultrafine particles in the environmental air is effective 160
- 161 (Oberdorster et al., 2005; Halloran et al., 2012; Cowling et al., 2013), but the deposition of these
- particles in the respiratory tract has the very low probability (very low deposition 162
- efficiencies)(Hinds, 1999; Oberdorster, Oberdorster and Oberdorster, 2005; Tellier, 2009; 163
- Hoppentocht et al., 2014; Jinxiang et al., 2015). 164
- The deposition rate of fine and ultrafine particles in the airways depends on the substance of the 165
- particles and conditions of the inhaled air and breathing pattern (Longest et al., 2011; Ferron et al., 166
- 1984; 1985; 1988; Oberdorster, Oberdorster and Oberdorster, 2005; Winkler-Heil et al., 2014). 167
- For preliminary estimation of deposition rate of fine bioaerosol in the respiratory tract it is also 168
- 169 possible carry out independent calculations using a freely available software tools such as the
- 170 Multiple-Path Particle Dosimetry Model (MPPD) (by Applied Research Associates, 2016). Results
- of estimation for particles' size of 0.300 µm, 1 µm, 3 µm and 5 µm are presented in fig1. 171
- 172 For fine airborne particles of 0.3 µm (*is average of droplets size in the exhaled infectious aerosol),
- the deposition rate in the respiratory tract is very low (no more than 20% for total deposition in the 173
- 174 lungs, most particles are simply exhaled); within the range of 2-7 µm the deposition rate increases
- dramatically (Hinds, 1999; Longest et al., 2011; Oberdorster et al., 2005; Jinxiang et al., 2015). 175
- However, the aspects of deposition of submicron and ultrafine particles in the respiratory tract raise 176
- 177 a question. Particularly, Morawska et al. (Morawska et al., 1999) pointed that of the order of 50%
- 178 particles (tobacco smoke) in the lower submicrometer range deposit in the lungs.

Fig. 1. Deposition rate of airborne particles in the respiratory tract for nasal breathing (calculated by Multiple-Path Particle Dosimetry Model (MPPD) (by Applied Research Associates, 2016)): TB – Tracheabronchial tree;

0.2

0.0

d) 5 µm

Head

0.1051

P

Region

Total

0.0848

TB

P – Pulmonary region (respiratory bronchioles to terminal alveolar sacs). Breathing parameters. Tidal volume:624ml. Breathing frequency: 121/min. Geometric standard deviation of 1. Concentration: 1 mg/m3. Other parameters were the default values.

1.4 Upper airways are target area of influenza viruses: Is it additional problem for target virus delivery via ultrafine and fine bioaerosols?

181 Due to the fact that the most human influenza viruses predominantly infect the upper airways (we do not consider in this part of the study the avian influenza and pneumonia) (van Riel et al., 2007; 182 2010; Ettensohn et al., 2016). We suggested that the first step of virus infections is the deposition of 183

184 viruses on the epithelial cells of upper airways (see remark below #about virus attach).

0.1922

0.0861

TB

Region

The data in fig1 shows the deposition rate of the fine bioaerosol (particles size below 1 µm) in the upper airways has the critically low values. Under normal conditions the deposition rate about 4% (for 0.3 µm) - it is dramatically much smaller than total deposition rate, that is also confirmed by (Hinds, 1999; Oberdorster et al., 2005; Tellier, 2009; Hoppentocht et al., 2014; Jinxiang et al.,

189 2015).

179 180

185

186

187 188 0.18

0.0

c) 3 µm

Thus, under normal environmental conditions the probability of virus and bacteria deposition on epithelial cells of upper respiratory tract is very small. Further in the study the special attention is

epithelial cells of upper respiratory tract is very small. Further in the study the special attention is paid to the aspects of "target" delivery/deposition of fine and ultrafine bioaerosols in the upper airways under different environmental conditions (it is the most important aspect of the study and it is "the base" for a new hypothesis of influenza seasonality suggested in the present study).

195 Remark

1 About cells cooling

There is an opinion that it is caused by the upper airway during respiration are critically cooled by inhaled cold/cool air and it lead to the reduction of antiviral response of the cells, the inhibition of mucociliary clearance and cold stress of the cells (Tyrrell and Parsons, 1960; Salah et al., 1988; Eccles, 2002b; Mourtzoukou and Falagas, 2007; Makinen et al., 2009; Foxman et al., 2015; 2016).

Foxman et al. (Iwasaki lab) (Foxman et al., 2015) clearly shown the mechanism of reducing the immune response of cells of the respiratory tract of mice during cooling of cells. The ability of various strains of rhinoviruses replicate more better in the respiratory epithelial cells at 33 °C than at the normal lung temperature of 37 °C (the cooling process of respiratory epithelial cells is associated with influenza and common cold). Some similar data can also be found in (Tyrrell and Parsons, 1960; Eccles, 2002; Mourtzoukou and Falagas, 2007; Makinen et al., 2009; Foxman et al., 2016). In 2016 Foxman et al. published new results on rhinovirus infection in human bronchial epithelial cells and H1-HeLa cells and clearly shown the role of cells cooling in the host cell antiviral restriction mechanisms (restriction mechanism operating more effectively at 37°C than at 33°C) (Foxman et al., 2016).

2 (about virus attach)

Human influenza viruses attached more strongly to human trachea and bronchi (van Riel et al., 2007; 2010; Ettensohn et al., 2016). Most strains of rhinovirus and the common cold virus, replicate better in the nasal cavity (Foxman et al., 2015; 2016). And pattern of viral attachment of avian influenza is rare in the trachea and increased progressively toward the bronchioles(van Riel et al., 2007).

220 **2.1** The main concept

- The main concept of the present study (the main hypothesis):
- breathing cool/cold air leads to the supersaturation in the respiratory tract;
- 223 supersaturation in the respiratory tract leads to the intensive condensational growth of inhaled
- fine and ultrafine bioaerosol (and viruses and bacteria) in the respiratory tract;
- condensational growth leads to the intensive depositing of the bioaerosols (respiratory viruses
- or bacteria) in the respiratory tract.

227 Summary:

236

- 228 The mechanism of deposition of viruses or bacteria in the respiratory tract due to the intensive
- 229 condensation growth when breathing cool/cold air has a great value for understanding of 'the
- epidemiologic mystery of influenza seasonality' (discussions on this matter see below);
- this effect significantly increases the risk of the influenza and respiratory infections (more
- viruses deposit on the respiratory cells, the more probability of the infection and the severity
- of the disease);
- this effect is the strongest when breathing cool/cold air when seasons of respiratory
- infections and influenza are observed.

2.2 Hygroscopic and condensational growth in the lungs

- When airborne particles enter the respiratory tract the condensational and hygroscopic growth may
- occur. Particles and droplets become massive and freely/easily/effectively deposit on epithelial cells
- of the respiratory tract.
- 240 The hygroscopic and condensational growth are one of the main mechanisms that determine the
- 241 effectiveness of deposition of fine and ultrafine particles in the upper airways. The hygroscopic and
- 242 condensational growth are determined by local humidity of the air in the respiratory tract. The more
- oversaturated air, the more intensive growth of the inhaled particles in the respiratory tract (some
- information see in (Martonen et al., 1982; Ferron et al., 1984; Zhang et al., 2006; Martonen et al.,
- 245 1985; Li and Hopke, 1993; Robinson and Yu, 1998; Longest and Hindle, 2011; Vu et al., 2015;
- Winkler-Heil et al., 2014; Grasmeijer et al., 2016)).

247 2.2.1 Effects of Hygroscopic Growth

- 248 Hygroscopic growth factor for airborne hygroscopic particles is determined by relative humidity
- 249 (RH) below 100%. The hygroscopic growth of fine particles in the respiratory tract (RH=99.5%) is
- expected to be a small size change (factor = 1.4 1.7 with maximum of 4 for rare case) (Martonen
- 251 et al., 1982; 1985; Li and Hopke, 1993; Robinson and Yu, 1998; Longest and Hindle, 2011; Vu et
- 252 al., 2015; Winkler-Heil et al., 2014; Grasmeijer et al., 2016; Vu et al., 2016).

253 **2.2.2** Effects of Condensational Growth

- 254 Condensational growth factor for airborne particles is determined by relative humidity (RH) in the
- 255 airways >100% (oversaturated and supersaturated conditions). The growth of the fine and ultrafine
- particles by condensation is not particularly limited.

257 For significant growth of the droplets and particles in multiple sizes (growth factor up to 20 (Ferron VED)

- et al., 1984; Jinxiang et al., 2015)) it is necessary that the air in the respiratory tract to be
- oversaturated.

263

- 260 The effects of oversaturation and supersaturation of the air in the respiratory tract are used for
- 261 controlled respiratory drug delivery of ultrafine drug particles to a target area of the upper
- respiratory tract (Zhang et al., 2006; Longest et al., 2011; Jinxiang et al., 2015).

2.3 When the supersaturation occurs in the human airways

- 264 It is known that when the breathing air under normal conditions (T=20..25 °C; RH=60%) there is no
- 265 transition in oversaturated condition in the respiratory tract (RH in the arways always <100%)
- 266 (Ferron et al., 1984; Longest et al., 2011; Jinxiang et al., 2015; Golshahi et al., 2013; Winkler-Heil
- et al., 2014). And under these conditions the particle growth by condensation is insignificant and
- 268 probability of deposition of fine and ultrafine particles (and virus or bacteria) on the epithelium of
- 269 the respiratory tract is low.
- But there are specific conditions of environmental air when the effect of supersaturation occurs in
- the airways when breathing air (see next sections). The supersaturation is possible in the nasal
- turbinate region and upper airways, it has been shown in (Ferron et al., 1984; Longest et al., 2011;
- Jinxiang et al., 2015; Golshahi et al., 2013; Winkler-Heil et al., 2014).

274 2.3.1 Breathing hot and warm saturated air

- Longest et al., 2011; Kim et al., 2013; Kim et al., 2013;
- Jinxiang et al., 2015) that supersaturation (RH>100%) occurs in the human airways when breathing
- 277 hot/warm saturated air of temperature above of 40°C; they did improve a drug delivery efficiency of
- 278 the submicron and ultrafine particles to the upper airways under these conditions. Longest and Xi
- 279 (Worth Longest and Xi, 2008) considered the mechanism of deposition of cigarette smoke in upper
- airways, when initially 200 nm and 400 nm particles to increase in size due condensational growth
- in the airways to above 3-8 µm near the trachea inlet. The same results obtained by Xi et al
- 282 (Jinxiang et al., 2015) for submicron particles when inhaling saturated air of 47°C.

283 **2.3.2 Breathing cold/cool air**

- 284 It is important to note that it has been paid little attention to the effect of supersaturation in the
- airways (very few studies). And there are practically no studies on supersaturation in the airways
- when inhaled cold/cool air.
- 287 The effect of supersaturation in the respiratory tract when breathing cold/cool air was pointed by
- 288 (Ferron, Haider and Kreyling, 1984; 1985; Zhang et al., 2006b; Longest, Tian and Hindle, 2011).
- Ferron et al (Ferron, Haider and Kreyling, 1984) have determined the local supersaturation in the
- 290 lungs under conditions of inhaled cold/cool air; the supersaturation starts in the nose and lasts until
- 291 the entrance of the trachea. Based on the numerical calculation they found that supersaturation of
- the air in the airways occurs during the inhalation of cold/cool air (less than 10°C) and nearly
- saturated air of 20°C, RH=100%.
- 294 Longest et al (Longest, Tian and Hindle, 2011) have pointed that supersaturation can occur in the
- 295 airways like the supersaturation when cool humid airstream passing through a channel with warm
- 296 wet walls. This effect is similar to the principle behind water-based condensation particle counters
- 297 (Hering and Stolzenburg, 2005).

Zhang et al (Zhang, Kleinstreuer and Kim, 2006b) based on the numerical calculations pointed that starting with an inhaled air temperature of 283K (10°C) and RH=80%, the RH in the airways reach

starting with an inhaled air temperature of 283K (10°C) and RH=80%, the RH in the airways reach supersaturation condition (RH about 104% in the pharynx/larynx region).

The known data (based on a systematic literature review) on the supersaturation in the lungs under different conditions of inhaled air is shown in the table 1.

Table 1 - Supersaturation in the airways for different conditions of inhaled air

Inhaled air		Maximum of RH(%) in the	Growth factor (change of particle size)	Ref.
T,°C	RH	airways	particle size)	
47°C	100%	>=101%	up to 17.5 (for hydroscopic particles of 0.2 μm)	(Jinxiang et al., 2015)
20°C	60%	<100%	no effect	(Ferron et al., 1984; Longest et al., 2011; Jinxiang, Xiuhua and Jong, 2015; Golshahi et al., 2013; Winkler-Heil et al., 2014)
21.8°C	97.5%	101%	2.5 (for hydroscopic particle of 0.9 μm)	(Longest, Tian and Hindle, 2011)
20°C	100%	102	4 (for dry NaCl particle with an aerodynamic diameter of 0.3 μm)	(Ferron, Haider and Kreyling, 1984)
10°C	80%	104%		(Zhang et al., 2006)
10°C	50%	105%	5 (for dry NaCl particle with an aerodynamic diameter of 0.3 μm)	(Ferron, Haider and Kreyling, 1984)
0°C	50%	125%	20 and 8 (for dry NaCl particle with an aerodynamic diameter of 0.1 μm and 0.3 μm)	(Ferron, Haider and Kreyling, 1984)

300

- The data in the table1 shows an **important connection/correlation** of the effect of supersaturation in the airways and environmental conditions and flu seasons:
- supersaturation in the airways occurs when **flu seasons in the temperate climate** (note: influenza season when a temperature of the air below 18°C (Lipsitch and Viboud, 2009; Tamerius et al., 2011; Shaman et al., 2011; Tamerius et al., 2013));
- supersaturation in the airways occurs when **flu seasons in the tropical climate** (note: influenza seasons when rainy seasons; when the RH of environmental air rise to saturated conditions and air temperature falls below 25 °C (Viboud et al., 2006; Lipsitch and Viboud, 2009; Moura et al., 2009; Tamerius et al., 2011; Shaman et al., 2011; Tamerius et al., 2013)

315 Remark:

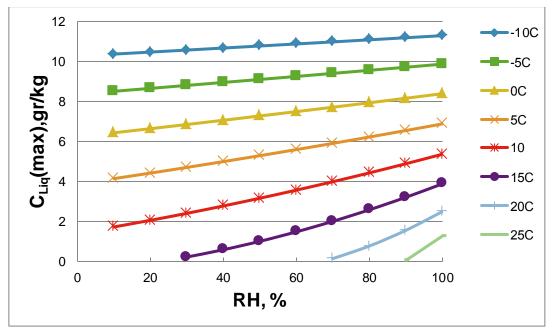
316

317

318

319

320


321 322

323324

It is the first observation of such sort -I have not found any such observation in any studies and researches (see <u>search strategy</u> and <u>table 2</u> in the end of the manuscript).

3.1 local supersaturation in the airways (preliminary estimation)

To make an additional preliminary estimation of the probability of the local supersaturation when mixed the warm air (whose parameters correspond to those inside the airways*) and inhaled ambient air the psychrometric chart may be used (Mollier's chart. It is widely-used as the tool for determining of isobaric psychrometric processes of moist air (Barenbrug, 1974; Siemens Switzerland Ltd HVP, 2016; Shaviv, 2015)). The results of preliminary estimation are presented in fig3.

Fig.2. Concentration of liquid water in the mixed air in the oversaturated state (mixture of the inhaled air at different humidity and temperatures with the air which parameters corresponding to the air inside of the airways (initial conditions: RH=99.47; T=37°C)).

 $C_{Liq}(\text{max})$ – is maximal local concentration of liquid water in the mixed air (g of water / kg of air); RH – Relative humidity of the inhaled air, %.

(not indicated in the fig) estimation data for hot and warm air saturated airs (RH=100%, T>40 °C): $40 ^{\circ}\text{C}$ – boundary conditions— air in the airways is slightly oversaturated; $47 ^{\circ}\text{C}$ – air in the airways is supersaturated; $C_{Liq}(max)=1.7g/kg$.

Results of the mathematical modeling and complicated numerical calculations on supersaturation

- for real conditions of respiratory tract when breathing air can be found in table1; these results
- 327 correspondence to the results of the preliminary estimation in <u>fig2</u>. The some additional data also
- may be found in fig3 (see below).

329

343

360

3.1.1 A few words about heat and mass transfer in the airways

- 330 Most researchers pay attention only to the processes of heating and humidification of the inhaled
- cold/cool air and don't take under consideration another important process which takes place in the
- respiratory tract when breathing cold air. It is the process of local cooling of warm and humid air in
- the respiratory tract by cold/cool inhaled air (for information: volume of inhaled air is 500cm3;
- volume of warm air in upper airways before inhalation is 150-180cm3; the functional residual
- 335 capacity of the lungs is 3000cm3; T=37°C; RH=99.47% (Winkler-Heil et al., 2014)).
- 336 The process of local cooling of the internal air (the air in the respiratory tract) occurs when the
- inhaled cool air mixes with the warm and moist air in the respiratory tract. The process of local
- cooling of the internal air causes the local oversaturation in the airways. This process has a fleeting
- character and occurs in the boundary of the mixing airs in the upper respiratory tract.
- 340 The heat and mass transfer in the lungs occurs by convection (is the principal means of heat transfer
- in the upper airways) and conduction (in the lower airways) (see reviews in (McFadden et al., 1982;
- 342 Jinxiang et al., 2015; Grasmeijer et al., 2016)).

3.2 Supersaturation and target deposition of fine bioaerosols in the airways

- 344 The effects of supersaturation and condensational growth in the upper airways may dramatically
- increase the deposition rate of the fine and ultrafine particles in the respiratory tract (Ferron et al.,
- 346 1984; Longest et al., 2011; Jinxiang et al., 2015; Golshahi et al., 2013; Winkler-Heil et al., 2014).
- 347 The fig3 and fig1 (see above the section 1.4) may be used for preliminary estimation of the
- 348 deposition rate.
- Fig 3d (reprinted from (Jinxiang, Xiuhua and Jong, 2015)) shows the intensive deposition of the
- 350 fine particles in the upper airways due to condensational growth under supersaturated conditions.
- Fig 3c shows that even slightly oversaturated conditions (see data on supersaturation in fig2) may
- lead to the intensive deposition of fine aerosol in the upper airways.
- 353 The data in the fig3c and fig3d can be correlated with processes of deposition of fine bioaerosols
- when supersaturation occurs in the airways when breathing cold/cool air (breathing cold/cool air
- leads to the supersaturation like breathing hot air see above $\underline{\text{fig2}}$ and $\underline{\text{table1}}$).
- 356 It is important to note that the calculations (similar to the calculation in the fig 3) for inhalation of
- 357 cold/cool air were not conducted before (we did not found any data on these matters). The some
- 358 calculation data and experimental results on the inhaling cool/cold airs can be found in (Ferron et
- 359 al., 1984; 1985; Zhang et al., 2006; Longest et al., 2011) see also the table1.

3.2.1 A few words about deposition rate of fine bioaerosols in the airways

- 361 As mentioned above the supersaturation in the airways when breathing cold/cool or hot/warm
- saturated air leads to the intensive condensational growth of the inhaled particles. Here the results of
- 363 the estimation for inhalation hot/warm saturated air (Worth Longest and Xi, 2008; Jinxiang et al.,
- 364 2015) can be used for preliminary estimation of the growth factor and deposition rate of the inhaled
- particles when breathing cold air (remark: on the basis of the fact that breathing cold air lead to the
- *supersaturation like breathing hot air see the data in the table 1, fig 2 and fig 3*).

- Under conditions of supersaturation in the airways (RH>101% for the inhalation of saturated air of 367 47°C), for the inhalation, initially 0.2-0.4 µm particles were observed the increasing in size to above 368 7-8µm entering the trachea(Worth Longest and Xi, 2008; Jinxiang et al., 2015). 369 370 Xi et al (Worth Longest and Xi, 2008; Jinxiang et al., 2015) have shown that the deposition rate of 371 the fine particles in the upper airways for this circumstance dramatically rise: up from 3% (normal conditions) to 10%-12% (supersaturated conditions), for adult and 5-years-old child upper airways. 372 373 Thus deposition rate of inhaled fine particles in the upper respiratory tract under supersaturated 374 conditions to rise up by 400%; it is may be connected/correlated with breathing cold air when flu 375 seasons in the world (note: the full deposition for initially 0.2 µm particles in therespiratory tract and the lung may rise up to >96% as for particles of 7-8 μ m – see above fig1). 376 377 378 I'M SORRY[^] THE FIG CAN'T BE USED UNDER CC BY 4.0 LICENSE 379 // PLEASE FINDE THE FIG IN 380 1 (Jinxiang, Xiuhua and Jong, 2015) Heat Transfer and Fluid Flow in Biological Processes / editors: Sid Becker and 381 Andrey Kuznetsoy/chapter 5: Characterizing Respiratory Airflow and Aerosol Condensational Growth in Children and 382 Adults Using an Imaging-CFD Approach, by Jinxiang Xi, Xiuhua A.Si and Jong,, W.K., P.125-155 383 Page 141/fig 5.9 http://www.sciencedirect.com/science/article/pii/B9780124080775000055 384 2 THE SAME FIG AND ESTIMATIONS FOR CHILDREN CAN BE FOUND IN OPEN 385 386 **ACCCESS** 387 Jong Won Kim, Jinxiang Xi, Xiuhua A. Si Hygroscopic Growth of fine Aerosols in the Nasal Airway of a 5-year-old Child // in Risk Assessment and Management // Publisher: Academy 388 Publish // Publish date: 2012-11-03 // ISBN: 978-0-9835850-0-8 // Editor: Prof. Zhang // P 312-389 390 325. 391 page 317 / fig 4 392 page 318 / fig 6 393 http://www.academypublish.org/papers/pdf/454.pdf 394 395 3 See also the same fig (9 and 10) in 396 Kim, J. W., Xi, J. and Si, X. A. (2013), Dynamic growth and deposition of hygroscopic aerosols 397 in the nasal airway of a 5-year-old child. Int. J. Numer. Meth. Biomed. Engng., 29: 17-39. 398 doi:10.1002/cnm.2490 399 400 Fig 3. Particle condensation growth and surface deposition in the adult nasal airway under four psychrometric inhalation conditions for initially 200 nm particles. 401 402 (*fig3c,d can be correlated with processes when breathing cold air (breathing cold air lead to the
- 403 *supersaturation like breathing hot air – see fig2 and table1)*

405

406

407

408

Reprinted from: (Jinxiang, Xiuhua and Jong, 2015) Heat Transfer and Fluid Flow in Biological Processes / editors: Sid Becker and Andrey Kuznetsov/chapter 5: Characterizing Respiratory Airflow and Aerosol Condensational Growth in Children and Adults Using an Imaging-CFD Approach, by Jinxiang Xi, Xiuhua A.Si and Jong, , W.K., P.125-155, Copyright (17 june 2016: License Number: 3891311134700 for Alex Ishmatov), with permission from Elsevier.

409 3.3 Supersaturation in the airways and two global patterns of influenza seasonality - REVIEWED

- Here I will not list all of the existing theories and hypotheses of seasonality of influenza and
- 411 respiratory infections. I note only the fact that two distinct types of climatic conditions associated
- with influenza and common colds were observed globally by many explorers: "cold-dry" type (for
- 413 temperate climate) and "humid-rainy" type (for tropical countries) (Viboud et al., 2006; Lipsitch
- and Viboud, 2009; Moura et al., 2009; Tamerius et al., 2011; Shaman et al., 2011; Tamerius et al.,
- 415 2013). The main difference consists in the problem of influence of the humidity of the air on the
- seasonality of influenza in different climatic condition.

417 Remark:

- One can read a long series of studies describing different kinds of hypotheses and theories explaining the seasonality of influenza and colds in different climatic conditions, but there is no a reliable theory of the incidence of influenza in tropical countries nor a unified theory for all regions, for wide climatic conditions (see reviews and additional references in (The Eurowinter Group, 1997; Lofgren et al., 2007; Mourtzoukou and Falagas, 2007; Lipsitch
- 423 and Viboud, 2009; Tellier, 2009; Shaman et al., 2011; Tamerius et al., 2013; Foxman et al.,
- 424 *2015*)). See also the panel 'Search strategy' and table2 (in the end of the manuscript).
- The main question is: 'Why the disease is the same one but the etiology and epidemiology
- for different climatic conditions are different?').

427 3.3.1 Flu seasons in temperate climate ("cold-dry pattern" and condensational growth)

- 428 In accordance with (Gregg et al., 1978; The Eurowinter Group, 1997; Lofgren et al., 2007; Falagas
- 429 et al., 2008; Bishop et al., 2009; Makinen et al., 2009; Shaman et al., 2010; 2011; Elert, 2013;
- 430 Centers for Disease Control and Prevention., 2015): the peak of incidence and the most severe
- influenza outbreaks in the countries with temperate climate occur at the temperatures of T<+15°C
- and at low humidity RH<60%.
- The preliminary estimation (fig2) and the data in the table 1 shown that for conditions of breathing
- cool air of T [-15..+15]°C and Relatively Humidity (RH) of [30..60]% the concentration of liquid
- water in the mixed air (C_{Liq}) may reach of [0.2..12.1] g/kg. Under these conditions the growth of
- inhaled particles (viruses or bacteria) by condensation in the respiratory tract may be significant
- 437 (much greater than their original size). These results indicate the high probability of deposition of
- 438 influenza viruses or bacteria on the epithelium of the upper respiratory tract when breathing
- cold/cool air and may be correspond to influenza and seasonal respiratory infections in temperate
- 440 climate.
- Thus, the low relative humidity (RH) of the environmental air is the determining parameter for the
- transmission of the respiratory viruses in the air by airborne route (Lowen et al., 2007; Halloran,
- Wexler and Ristenpart, 2012); and low temperatures are favorable for the emergence of the effects
- of supersaturation in the upper airways and dramatic growth/rise of the deposition rate of the
- respiratory viruses or bacteria in the upper airways due to the intensive condensational growth.
- There is an imbalance if the temperature and humidity of the environmental air will deviate in any
- direction either the effect of supersaturation in the airways is not so strongly expressed, or the
- 448 conditions do not contribute to the spreading of the influenza viruses in the air and in this case the
- influenza outbreaks do not reach full strength.

458

459

460

461

462

463 464

465

466

467 468

469

470

471 472

473

474

475

476

477

478

479

480

481 482

483

484

485

486

487

488

452 I have to make remarks here.

1. Respiratory cells cooling

Additional processes of cooling of respiratory cells when breathing cold/cool air should be 454 455 taken into account. As mentioned above (section 1.4), the cooling (from 37°C to 33°C) of the 456 respiratory cells leads to the critical reduction of the immune response of epithelial 457 respiratory cells.

> Also the inhibition of mucociliary clearance by the inhalation of cold-dry air (Salah et al., 1988) should be taken into account. It is evident that the time during which there is an influence of the 'bad conditions' on the respiratory tract can play an important role (see also remark regarding the infectious doses and exposure in the beginning of the manuscript). The more attention will be given to the cooling process in the next parts of the study (see "Afterword" and "Potential partnership" sections in the end of the manuscript). Some aspect were discussed in (Ishmatov, 2016).

2. Remark on body cooling and immune function

For countries with temperate and cold climates there is opinion (cite from (Ikaheimo et al., 2016)) that cooling of the body surface and even acute chilling of the feet could elicit a reflex of vasoconstriction in the nose and upper airways, inhibit the respiratory defense and convert an asymptomatic subclinical viral infection into a symptomatic clinical infection (Eccles, 2002; Johnson and Eccles, 2005).

But as mentioned in (Ikaheimo et al., 2016) there is no clear association between immune function and cold exposure of body. Douglas et al (Douglas Jr and Lindgren, 1968) demonstrate that there was no evidence altered host resistance to cold virus as a result of whole-body cold exposure.

3 (!!!) Remark on virus survival and aerosol transmission (question on humidity)

Relative humidity is major factor in airborne transmission of pathogens. The more low humidity the more effective the airborne transmission (low humidity leads to the fast evaporation of droplets. Droplets decreases in sizes and may be transmitted over long distance) (Lowen et al., 2007; Halloran et al., 2012). In some studies was pointed that relative humidity affects the virus survival (see review in (Shaman and Kohn, 2009; Shaman et al., 2011; Ikaheimo et al., 2016)).

It is pointed that influenza virus survival increases as RH decreases, such that the airborne virus remains viable longer at lower relative humidity (Shaman and Kohn, 2009). Even a hypothesis of bimodal pattern has been suggested with altered virus survival and transmission in different climatic conditions: very low humidity for cold and temperate climates (survival is high) and high humidity for tropics (pathogens survival is high too) (Tamerius et al., 2013).

3.3.2 Flu seasons in tropical climate ("humid-rainy pattern" and condensational growth)

- 489 In the tropics and subtropics, flu season driven by the high humidity or the heavy monsoon rains 490 (Tamerius et al., 2013).
- 491 As mentioned before: there is no clear theory of influenza seasonality in tropical climate (pattern of
- 492 'humid-rainy type') – it is the one of the aspects of the' age old mystery of epidemiology of
- 493 influenza'.

- 494 Data form table 1 and fig2 (see above) shown that probability of supersaturation in the airways
- under conditions of 'humid-rainy' pattern of seasonality of influenza is high and probability of virus 495 496 deposition in the upper airways is high too:
- 497 for inhaled air of T=20°C, RH>70% - C_{Liq} <2.4g/kg;
- for T=25°C; RH>90% C_{Lia} <1.2g/kg. 498
- 499 These results may be correspond to the seasons of influenza and respiratory infections in the
- tropical and subtropical climates and indicate that under these conditions the growth of inhaled fine 500
- 501 and ultrafine particles (and viruses or bacteria) by condensation in the respiratory tract can occur,
- 502 and the probability of deposition of virus or bacteria on the epithelium of the respiratory tract is
- 503 high.

- Remark on virus spreading in tropics
- 505 However, outbreaks of influenza were not observed in regions comparable in strength to the 506 cold ones (in temperate climate). This is explained by the fact that the climate in the tropical 507 countries does not sufficiently contribute to airborne spreading of influenza viruses (Note: this aspect raises questions in most studies) (Lowen et al., 2007; Halloran et al., 2012). In 508 my opinion, the mechanism of the virus transmission in tropics may occur by the fine and 509 510 ultrafine bioaerosols when close contacts occurs (distance at 'arm's length'; see also 511 remark regarding the infectious doses and exposure in the beginning of the manuscript;
- 512 more data will be posted in the next parts of the main study).
 - 3.3.3 Normal environmental conditions No supersaturation in the airways No Flu
- 514 Under normal environmental conditions (T>20°C; RH=60%) there is no transition in oversaturated
- condition in the respiratory tract. In this circumstance the condensation growth is insignificant and 515
- 516 probability of the deposition of fine and ultrafine bioaerosols (virus or bacteria) on the epithelium of
- 517 the respiratory tract is low. This conclusion is also confirmed by (Ferron et al., 1984; Longest et al.,
- 518 2011; Jinxiang et al., 2015; Golshahi et al., 2013; Winkler-Heil et al., 2014), where as a result of the
- 519 numerical simulations and the experimental data it is shown that at such circumstances along the
- entire length of the respiratory tract there is no transition in oversaturated condition (RH<1). 520
- Therefore, these parameters can be accepted with a high level of confidence as the boundary 521
- 522 conditions.
- 523 remark:
- 524 *Under these conditions the risk of influenza exists, but the probability of the deposition of* 525 the influenza viruses in the airways is small and the risk of infection is small too. I think as
- 526 due from above the probability of infection is correlated with probability of deposition of viruses on epithelial of respiratory tract. The experimental study on airborne transmission 527
- 528 of influenza viruses between guinea pigs (Lowen et al., 2006; 2007) may be used for more
- 529 information – in these studies the experimental data on probability of infections of animals
- 530 presented by Lowen et al.

- Main points of the part I:

 1 Breathing cold/cool air leads to the supersaturation of air in the respiratory tract.

 2 Supersaturation in the respiratory tract leads to the intensive condensational growth of inhaled fine and ultrafine bioaerosols (and viruses or bacteria) in the respiratory tract.
- 3 Intensive condensational growth leads to the dramatically growth/rise of the deposition rate of the
- 537 fine and ultrafine bioaerosols (and viruses or bacteria) in the upper airways (up to 4x for upper
- airways) and full deposition of fine bioaerosol in the respiratory tract can reach 97%.
- 4. Effect of the supersaturation in the lungs connected/correlated with flu seasons for different
- climatic conditions (in temperate, tropical and subtropical climates).
- Thus we have originally shown the delivery and deposition of fine and ultrafine infectious
- 542 bioaerosols (and viruses or bacteria) in the respiratory tract connected with environmental
- 543 conditions: in flu seasons the deposition rate of these bioaerosols in the human airways can
- dramatically rise from 3%..20% (for normal conditions) up to 97% (when flu seasons).
- Thus the present study has originally shown for the first time the next important observation. Two
- distinct patterns of seasonality of influenza and respiratory infections: "cold-dry" for temperate
- 547 climate and "humid-rainy" for tropical climate, in fact, may be considered as unified pattern if take
- into account the processes of supersaturation and condensational growth in the lungs when
- breathing cold/cool air. It may have great value for understanding of 'the age-old epidemiologic
- mystery of influenza seasonality' in the different climatic conditions.
- 551 Some aspect were discussed in (Ishmatov, 2016; Ishmatov, 2016b).
- Some additional information on the factors of predictors of flu seasons see in
- 553 <u>table2: "Patterns of influenza for different climatic conditions and reasons for influenza</u>
- 554 <u>seasonality</u>" (in the end of the manuscript).

Future directions

- The next parts of the study will be posted in near feature:
- part II: Concept of open door in the airways and critical reduction of the antiviral immune
- defense of epithelial respiratory cells;
- part III: Concept of open door and critical changes in physical and chemical environment
- inside the lungs;
- part IV: Concept of open door and infections of the lower airways (Pneumonia);
- part V: Aspect of the climatic factors in the statistical study of cases of influenza in the countries with 'borderline' climate (And some aspects of epidemiology in 'European
- migrant crisis").
- part VI: "Does size matters? Are there limits for experiments with small animals for the
- study of the epidemiology of influenza?" (2016-17).

I believe the supersaturation in the airways is very important for environmental health risks (as high 567 568

risk of deposition of fine and ultrafine aerosols in the lungs), asthma, COPD and other respiratory

569 diseases.

I believe the effects of supersaturation in the lungs can dramatically change the current views on air 570

- 571 pollution by ultrafine aerosols and their deposition in the lung under various weather conditions.
- 572 Moreover, differences in the structure of the respiratory tract of an adult, a child, physiological and
- pathological age-associated changes in the respiratory tract may have an impact on the gas-dynamic 573
- 574 processes and as a consequence to influence on the processes of heat and mass transfer in the lungs
- while breathing and have impact on the etiology and epidemiology of respiratory infections. 575

Afterword

- During the preparation of the project: "Concentrated ultrafine aerosol forms of drugs: problems of 577
- 578 portable personalized devices for pulmonary drug delivery" (grant RSCF №15-15-10008), I had a
- question burning in my mind: "Can respiratory viruses or bacteria to use the same mechanism of 579
- deposition in the respiratory tract as the mechanism of controlled respiratory drug delivery?" 580
- 581 And now I can answer on this question: Yes! – the influenza and respiratory viruses and bacteria
- 582 use the mechanism of "controlled respiratory delivery" in flu seasons.
- 583 PS₁

576

- 584 I spent an analogy of supersaturation and intensive condensational growth of fine infectious
- 585 bioaerosol in the human airways with process of the mist formation in a wet steam room while
- 586 opening a door (mist formation occur by condensational growth when cool air enters throw the door
- 587 in the hot and humid environmental air). Therefore, I called this effect the "The concept of open
- door". Metaphorically, this effect "opens the door" of the immune system to respiratory infections 588
- 589 and influenza.
- 590 PS₂

594

- 591 All findings and conclusions in this part of the study are made on the basis of the well-known data.
- 592 But no one had ever come to such conclusions and no one look at the problem of seasonality of
- 593 respiratory infection in different climatic condition from this point of view.

*Search strategy and selection criteria

I searched PubMed, Google and Google Scholar for studies published before sept, 2016.

I used the search terms "Influenza" or "Flu" or "Respiratory Diseases" or "Respiratory Infections" or "common cold" in combination with "Supersaturation", or "oversaturation", or "condensational growth", or "Condensation", or "Aerosols", or "Theory", or "Models", or "Pattern", or "Hypothesis", or "Climatic Condition", or "Seasonality", or "Seasonal Factors", or "Weather", or "Environmental Factors", or "Humidity", or "Temperature", or "UV irradiation", or "Solar Radiation", or "Melatonin", or "Vitamin D", or "Mucociliary Clearance", or "Hyperthermia", or "Cells Temperature", or "Cells Cooling", or "Airway Epithelium", or "Airways Cooling", or "Immune Response", or "Antiviral Immune Response", or "Survival", or "Transmission", or "Spread", or "Coronavirus", or "Epidemiology", or "Virology", or "Management", or "Prevention", or "spread", or "bioaresol", or "virus deposition", or "pulmonary delivery".

I also searched websites of global and national public health agencies such as system for searching of new studies http://www.storkapp.me, the Influenzavir.com, WHO National Influenza Centre of Russia, the European Centre for Disease Prevention and Control, Public Health England, the US Centers for Disease Control and Prevention. I selected publications in English, in Russian. I also searched the reference lists of articles identified by my search strategy.

**In the study I excluded from consideration of the reasons of flu connected with the solar radiation, UV irradiation, the inhibition of mucociliary clearance, a vitamin deficiency, melatonin, vitamin D because they do not relate to the "humid-rainy" type (for countries with warm tropical climate.

Table 2

595

596 597

Patterns of influenza for different climatic conditions and reasons for influenza seasonality

		<u> </u>					
	<u>Cold-Dry</u>	<u>Humid-Rainy</u>					
1	RH < 60%;	RH > 70%;					
	T = -15C +15C;	T = 1725C					
	(Absolute Himidity<7g/kg)	(Absolute Himidity>17g/kg)					
2		local rainy season (without					
	Cold seasons (highly synchronized with	well-defined influenza seasons)					
	winter months) (Gregg et al., 1978; Bishop et	(Viboud et al., 2006; Lipsitch					
	al., 2009; Shaman et al., 2010; 2011; Elert, 2013;	and Viboud, 2009; Moura et al.,					
	Centers for Disease Control and Prevention.,	2009; Tamerius et al., 2011;					
	2015)	Shaman, Goldstein and Lipsitch,					
		2011; Tamerius et al., 2013)					
3	Decreased exposure of solar radiation vitamin						
	D deficiency (Dowell, 2001; Cannell et al.,	not associated					
	2006; Ginde et al., 2009; Camargo et al., 2012)						
4	Inhibition of mucociliary clearance by the						
	inhalation of cold-dry air (Salah et al., 1988;	not associated					
	Eccles, 2002)						
5	School cycles (crowding as a factor) = flu	not clear					
	cycles (see review in (Cauchemez et al., 2008))						
6	Main mechanism of transmission: airborne	not clear					
	(Edwards et al., 2004; Fabian et al., 2008; Chen						
	et al., 2009; Tellier, 2009; Milton et al., 2013;						
	Cowling et al., 2013; Lindsley et al., 2016;						
	Killingley et al., 2016)						
7	Respiratory cells cooling (Tyrrell and Parsons,	not clear					
	1960; Eccles, 2002; Mourtzoukou and Falagas,						
	2007; Makinen et al., 2009; Foxman et al., 2015)						
	'Effect of supersaturation and condensational growth in the airways'						
	Effect Occurs						

Effect Occurs

(Common reason of Flu Seasons for two pattern of seasonality) T < +18°C, RH = 30% ...60% (cold seasons in temporal climate); T<20°C, RH>70% (rainy seasons in tropics); T<25°C; RH>90% (rainy seasons in tropics); T>40°C; RH>99% (when inhaled hot air is cooled in the airways -notassociated with influenza);

No Effect

- I report no competing interests. The study was conducted without the involvement of any funding 600
- sources. The opinions expressed in this manuscript are those of the author and do not necessarily 601
- reflect the opinions of the institutions with which he is affiliated. 602

603 Acknowledgements

- 604 I thank Prof. Vladislav I. Maslowski as first man who support and discussed my ideas; Anna
- 605 Shandenkova for help in English.

606 Potential partnership

- 607 I open for suggestions (numerical calculation and models; in vivo and in vitro experiments;
- epidemiology; preventive of influenza and common colds). 608
- 609 Contact me directly if you have any questions.

References 610

- 611 Barenbrug, A. W. T., 1974. Psychrometry and psychrometric charts. Chamber of Mines of South Africa; 3rd 612 edition (1974), 59.
- 613 Bishop, J. F., Murnane, M. P., and Owen, R., 2009. Australia's winter with the 2009 pandemic influenza A 614 (H1N1) virus. N. Engl. J. Med 361, 2591-4.
- 615 Camargo, C. A., Ganmaa, D., Frazier, A. L., Kirchberg, F. F., Stuart, J. J., Kleinman, K., Sumberzul, N., and
- 616 Rich-Edwards, J. W., 2012. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics 130, e561-7. 617
- 618 Cannell, J. J., Vieth, R., Umhau, J. C., Holick, M. F., Grant, W. B., Madronich, S., Garland, C. F., and 619 Giovannucci, E., 2006. Epidemic influenza and vitamin D. Epidemiol. Infect 134, 1129-40.
- 620 Cauchemez, S., Valleron, A. J., Boelle, P. Y., Flahault, A., and Ferguson, N. M., 2008. Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452, 750-4. 621
- 622 Centers for Disease Control and Prevention., , 2015. The Flu Season.
- 623 http://www.cdc.gov/flu/about/season/flu-season.htm.
- 624 Chao, C. Y. H., Wan, M. P., Morawska, L., and Johnson, G. R., 2009. Characterization of expiration air jets 625 and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science 40, 122–133.
- 626 Chen, S. C., Chio, C. P., Jou, L. J., and Liao, C. M., 2009. Viral kinetics and exhaled droplet size affect 627 indoor transmission dynamics of influenza infection. Indoor Air 19, 401-13.
- 628 Cowling, B. J., Ip, D. K., Fang, V. J., Suntarattiwong, P., Olsen, S. J., Levy, J., Uyeki, T. M., Leung, G. M.,
- 629 Malik Peiris, J. S., Chotpitayasunondh, T., et al., 2013. Aerosol transmission is an important mode of
- 630 influenza A virus spread. Nat Commun 4, 1935.
- 631 Douglas Jr, R. G., and Lindgren, K. M., 1968. Exposure to Cold Environment and Rhinovirus Common Cold 632 — Failure to Demonstrate Effect. N Engl J Med 279, 742-747.
- 633 Dowell, S. F., 2001. Seasonal variation in host susceptibility and cycles of certain infectious diseases.
- 634 Emerging Infect. Dis 7, 369-74.
- 635 Eccles, R., 2002a. Acute cooling of the body surface and the common cold. Rhinology 40, 109-14.
- 636 Eccles, R., 2002b. An explanation for the seasonality of acute upper respiratory tract viral infections. Acta 637 Otolaryngol 122, 183-91.
- 638 Edwards, D. A., Man, J. C., Brand, P., Katstra, J. P., Sommerer, K., Stone, H. A., Nardell, E., and Scheuch,
- 639 G., 2004. Inhaling to mitigate exhaled bioaerosols. Proc. Natl. Acad. Sci. U.S.A 101, 17383-8.

- Elert, E., 2013. Why is There a Winter Flu Season? Popular Science. 640
- 641 http://www.popsci.com/science/article/2013-01/fyi-why-winter-flu-season 2013.
- 642 Ettensohn, D. B., Frampton, M. W., Nichols, J. E., and Roberts, N. J., 2016. HUMAN ALVEOLAR
- 643 MACROPHAGES MAY NOT BE SUSCEPTIBLE TO DIRECT INFECTION BY A HUMAN
- 644 INFLUENZA VIRUS. J. Infect. Dis.
- 645 Fabian, P., Brain, J., Houseman, E. A., Gern, J., and Milton, D. K., 2011. Origin of exhaled breath particles 646 from healthy and human rhinovirus-infected subjects. J Aerosol Med Pulm Drug Deliv 24, 137-47.
- 647 Fabian, P., McDevitt, J. J., DeHaan, W. H., Fung, R. O., Cowling, B. J., Chan, K. H., Leung, G. M., and
- Milton, D. K., 2008. Influenza virus in human exhaled breath: an observational study. PLoS ONE 3, 648
 - 649 e2691.
 - 650 Falagas, M. E., Theocharis, G., Spanos, A., Vlara, L. A., Issaris, E. A., Panos, G., and Peppas, G., 2008.
- 651 Effect of meteorological variables on the incidence of respiratory tract infections. Respir Med 102, 733-7.
- 652 Ferron, G. A., Haider, B., and Kreyling, W. G., 1985. A method for the approximation of the relative 653 humidity in the upper human airways. Bull. Math. Biol 47, 565-89.
- 654 Ferron, G. A., Haider, B., and Kreyling, W. G., 1984. Conditions for measuring supersaturation in the human 655 lung using aerosols. Journal of Aerosol Science 15, 211-215.
- 656 Ferron, G. A., Haider, B., and Kreyling, W. G., 1988. Inhalation of salt aerosol particles—I. Estimation of 657 the temperature and relative humidity of the air in the human upper airways. Journal of aerosol science

658 19, 343-363.

- 659 Foxman, E. F., Storer, J. A., Fitzgerald, M. E., Wasik, B. R., Hou, L., Zhao, H., Turner, P. E., Pyle, A. M., 660 and Iwasaki, A., 2015. Temperature-dependent innate defense against the common cold virus limits viral 661 replication at warm temperature in mouse airway cells. Proc. Natl. Acad. Sci. U.S.A 112, 827-32.
- 662 Foxman, E. F., Storer, J. A., Vanaja, K., Levchenko, A., and Iwasaki, A., 2016. Two interferon-independent 663 double-stranded RNA-induced host defense strategies suppress the common cold virus at warm 664 temperature. Proc. Natl. Acad. Sci. U.S.A 113, 8496-501.
- 665 Ginde, A. A., Mansbach, J. M., and Camargo, C. A., 2009. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. 666 667 Arch. Intern. Med 169, 384-90.
- 668 Golshahi, L., Tian, G., Azimi, M., Son, Y. J., Walenga, R., Longest, P. W., and Hindle, M., 2013. The use of 669 condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation 670 high flow therapy. Pharm. Res 30, 2917-30.
- 671 Grasmeijer, N., Frijlink, H. W., and Hinrichs, W. L. J., 2016. An adaptable model for growth and/or 672 shrinkage of droplets in the respiratory tract during inhalation of aqueous particles. Journal of Aerosol

673 Science 93, 21-34.

- 674 Gregg, M. B., Hinman, A. R., and Craven, R. B., 1978. The Russian flu. Its history and implications for this 675 year's influenza season. JAMA 240, 2260-3.
- 676 Hall, C. B., 2007. The spread of influenza and other respiratory viruses: complexities and conjectures. Clin. 677 Infect. Dis 45, 353-9.
- 678 Halloran, S. K., Wexler, A. S., and Ristenpart, W. D., 2012. A comprehensive breath plume model for 679 disease transmission via expiratory aerosols. PLoS ONE 7, e37088.
- 680 Hering, S. V., and Stolzenburg, M. R., 2005. A method for particle size amplification by water condensation 681 in a laminar, thermally diffusive flow. Aerosol Science and Technology 39, 428–436.
- 682 Hinds, W. C., 1999. Aerosol technology: properties, behavior, and measurement of airborne particles 2nd 683 ed. (John Wiley & Sons Inc).
- 684 Hogan, C. J., Kettleson, E. M., Lee, M. H., Ramaswami, B., Angenent, L. T., and Biswas, P., 2005.
- 685 Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol 686 particles. Journal of Applied Microbiology 99, 1422-1434.

- 687 Hoppentocht, M., Hagedoorn, P., Frijlink, H. W., and de Boer, A. H., 2014. Technological and practical challenges of dry powder inhalers and formulations. Advanced drug delivery reviews. 688
- 689 Ikaheimo, T. M., Jaakkola, K., Jokelainen, J., Saukkoriipi, A., Roivainen, M., Juvonen, R., Vainio, O., and 690 Jaakkola, J. J., 2016. A Decrease in Temperature and Humidity Precedes Human Rhinovirus Infections in 691 a Cold Climate. Viruses 8, % 244.
- 692 Ishmatov, A. N., 2016. Mist in the Lungs as a Reason of Influenza and Colds Seasonality in Temperate and 693 Tropical Climates. Options IX for the control of influenza 24-28 August 2016, Chicago, Illinois, USA, 694 ABSTRACT# P-507.
- 695 Ishmatov, A. N., 2016. Seasonality of influenza. The Role of environmental factors and supersaturation in 696 the lungs in airborne transmission of respiratory infections. Proceedings of the "Science of the Future" 697 Conference - Kazan 2016 (2ND INTERNATIONAL SCIENTIFIC CONFERENCE SCIENCE OF THE
- 698 FUTURE September 20-23, 2016, Kazan) // Life Sciences & Medicine, 249.
- 699 Jinxiang, X. i., Xiuhua, A. .. S. i., and Jong, W. .. K., 2015. Characterizing Respiratory Airflow and Aerosol 700 Condensational Growth in Children and Adults Using an Imaging-CFD Approach. In Heat Transfer and 701 Fluid Flow in Biological Processes. ISBN: 978-0-12-408077-5, Sid Becker and Andrey Kuznetsov ed. 702 (Elsevier B.V), pp. 125-155.
- 703 Johnson, C., and Eccles, R., 2005. Acute cooling of the feet and the onset of common cold symptoms. Fam 704 Pract 22, 608-13.
- 705 Johnson, G. R., and Morawska, L., 2009. The mechanism of breath aerosol formation. J Aerosol Med Pulm 706 Drug Deliv 22, 229-37.
- 707 Killingley, B., Greatorex, J., Digard, P., Wise, H., Garcia, F., Varsani, H., Cauchemez, S., Enstone, J. E., 708 Hayward, A., Curran, M. D., et al., 2016. The environmental deposition of influenza virus from patients 709 infected with influenza A(H1N1)pdm09: Implications for infection prevention and control. J Infect Public 710 Health 9, 278-88.
- 711 Kim, J. W., Xi, J., and Si, X. A., 2013. Dynamic growth and deposition of hygroscopic aerosols in the nasal 712 airway of a 5-year-old child. Int J Numer Method Biomed Eng 29, 17-39.
- 713 Li, W., and Hopke, P. K., 1993. Initial size distributions and hygroscopicity of indoor combustion aerosol 714 particles. Aerosol Science and technology 19, 305-316.
- 715 Lindsley, W. G., Blachere, F. M., Beezhold, D. H., Thewlis, R. E., Noorbakhsh, B., Othumpangat, S.,
- 716 Goldsmith, W. T., McMillen, C. M., Andrew, M. E., Burrell, C. N., et al., 2016. Viable Influenza A Virus
- 717 in Airborne Particles Expelled during Coughs vs. Exhalations. Influenza Other Respir Viruses. 2016
- 718 Sep;10(5):404-13. doi: 10.1111/irv.12390. Epub 2016 Apr 15.
- 719 Lipsitch, M., and Viboud, C., 2009. Influenza seasonality: lifting the fog. Proc. Natl. Acad. Sci. U.S.A 106, 720 3645-6.
- 721 Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J., and Naumova, E. N., 2007. Influenza seasonality: 722 underlying causes and modeling theories. J. Virol 81, 5429-36.
- 723 Longest, P. W., Tian, G., and Hindle, M., 2011. Improving the lung delivery of nasally administered aerosols 724 during noninvasive ventilation-an application of enhanced condensational growth (ECG). J Aerosol Med 725 Pulm Drug Deliv 24, 103-18.
- 726 Longest, P. W., and Hindle, M., 2011. Numerical Model to Characterize the Size Increase of Combination 727 Drug and Hygroscopic Excipient Nanoparticle Aerosols. Aerosol Sci Technol 45, 884-899.
- 728 Lowen, A. C., Mubareka, S., Steel, J., and Palese, P., 2007. Influenza virus transmission is dependent on 729 relative humidity and temperature. PLoS Pathog 3, 1470-6.
- 730 Lowen, A. C., Mubareka, S., Tumpey, T. M., Garcia-Sastre, A., and Palese, P., 2006. The guinea pig as a 731 transmission model for human influenza viruses. Proc. Natl. Acad. Sci. U.S.A 103, 9988-92.
- 732 Makinen, T. M., Juvonen, R., Jokelainen, J., Harju, T. H., Peitso, A., Bloigu, A., Silvennoinen-Kassinen, S.,
- 733 Leinonen, M., and Hassi, J., 2009. Cold temperature and low humidity are associated with increased
- 734 occurrence of respiratory tract infections. Respir Med 103, 456-62.

Morawska, L., Barron, W., and Hitchins, J., 1999. Experimental deposition of environmental 735

736 tobacco smoke submicrometer particulate matter in the human respiratory tract. Am Ind Hyg 737 Assoc J 60, 334-9.

- 739 Martonen, T. B., Barnett, A. E., and Miller, F. J., 1985. Ambient sulfate aerosol deposition in man: modeling 740 the influence of hygroscopicity. Environ. Health Perspect 63, 11-24.
- 741 Martonen, T. B., Bell, K. A., Phalen, R. F., Wilson, A. F., and Ho, A., 1982. Growth rate measurements and 742 deposition modelling of hygroscopic aerosols in human tracheobronchial models. Ann Occup Hyg 26, 93-743 108.
- 744 McFadden, E. R., Denison, D. M., Waller, J. F., Assoufi, B., Peacock, A., and Sopwith, T., 1982. Direct 745 recordings of the temperatures in the tracheobronchial tree in normal man. J. Clin. Invest 69, 700-5.
- 746 Milton, D. K., Fabian, M. P., Cowling, B. J., Grantham, M. L., and McDevitt, J. J., 2013. Influenza virus 747 aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog 748 9, e1003205.
- 749 Moura, F. E., Perdigao, A. C., and Siqueira, M. M., 2009. Seasonality of influenza in the tropics: a distinct 750 pattern in northeastern Brazil. Am. J. Trop. Med. Hyg 81, 180-3.
- Mourtzoukou, E. G., and Falagas, M. E., 2007. Exposure to cold and respiratory tract infections [Review 751 752 Article]. Int J Tuberc Lung Dis 11, 938-943.
- 753 Oberdorster, G., Oberdorster, E., and Oberdorster, J., 2005. Nanotoxicology: an emerging discipline 754 evolving from studies of ultrafine particles. Environ. Health Perspect 113, 823-39.
- 755 Papineni, R. S., and Rosenthal, F. S., 1997. The size distribution of droplets in the exhaled breath of healthy 756 human subjects. J Aerosol Med 10, 105-16.
- 757 Robinson, R. J., and Yu, C. P., 1998. Theoretical analysis of hygroscopic growth rate of mainstream and 758 sidestream cigarette smoke particles in the human respiratory tract. Aerosol Science and Technology 28, 759 21-32.
- 760 Salah, B., Dinh Xuan, A. T., Fouilladieu, J. L., Lockhart, A., Regnard, J., 1988. Nasal mucociliary transport 761 in healthy subjects is slower when breathing dry air. Eur. Respir. J 1, 852-5.
- 762 Shaman, J., Goldstein, E., and Lipsitch, M., 2011. Absolute humidity and pandemic versus epidemic 763 influenza. Am. J. Epidemiol 173, 127-35.
- 764 Shaman, J., Pitzer, V. E., Viboud, C., Grenfell, B. T., and Lipsitch, M., 2010. Absolute humidity and the 765 seasonal onset of influenza in the continental United States. PLoS Biol 8, e1000316.
- 766 Shaman, J., and Kohn, M., 2009. Absolute humidity modulates influenza survival, transmission, and 767 seasonality. Proc. Natl. Acad. Sci. U.S.A 106, 3243-8.
- 768 Shaviv, N. J., 2015. Condensation of your exhaled breath [Electronic resource]: URL: 769 http://www.sciencebits.com/exhalecondense.
- 770 Siemens Switzerland Ltd HVP, , 2016. The training module B05HV en "Psychrometric chart: Structure and 771 application".
- 772 Spanne, M., Grzybowski, P., and Bohgard, M., 1999. Collection Efficiency for Submicron Particles of a 773 Commonly Used Impinger. American Industrial Hygiene Association Journal 60, 540-544.
- 774 Tamerius, J., Nelson, M. I., Zhou, S. Z., Viboud, C., Miller, M. A., and Alonso, W. J., 2011. Global
- 775 influenza seasonality: reconciling patterns across temperate and tropical regions. Environ. Health Perspect 776 119, 439-45.
- 777 Tamerius, J. D., Shaman, J., Alonso, W. J., Alonso, W. J., Bloom-Feshbach, K., Uejio, C. K., Comrie, A., 778 and Viboud, C., 2013. Environmental predictors of seasonal influenza epidemics across temperate and 779 tropical climates. PLoS Pathog 9, e1003194.
- 780 Tellier, R., 2009. Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 6 781 Suppl 6, S783-90.

- 782 The Eurowinter Group, , 1997. Cold exposure and winter mortality from ischaemic heart disease, REVIEWED
- cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet 349, 1341-6.
- 785 Tyrrell, D. A., and Parsons, R., 1960. Some virus isolations from common colds. III. Cytopathic effects in tissue cultures. Lancet 1, 239-42.
- van Riel, D., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D., and Kuiken, T., 2007. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol 171, 1215-23.
- van Riel, D., den Bakker, M. A., Leijten, L. M., Chutinimitkul, S., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D., and Kuiken, T., 2010. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am. J. Pathol 176, 1614-8.
- Viboud, C., Alonso, W. J., and Simonsen, L., 2006. Influenza in tropical regions. PLoS medicine 3, e96.
- Vu, T. V., Delgado-Saborit, J. M., and Harrison, R. M., 2015. A review of hygroscopic growth factors of
 submicron aerosols from different sources and its implication for calculation of lung deposition efficiency
 of ambient aerosols. Air Quality, Atmosphere & Health 8, 429-440.
- Vu, T. V., Ondracek, J., Zdimal, V., Schwarz, J., Delgado-Saborit, J. M., and Harrison, R. M., 2016. Physical
 properties and lung deposition of particles emitted from five major indoor sources. Air Quality,
 Atmosphere & Health.
- Winkler-Heil, R., Ferron, G., and Hofmann, W., 2014. Calculation of hygroscopic particle deposition in the human lung. Inhal Toxicol 26, 193-206.
- Worth Longest, P., and Xi, J., 2008. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Science and Technology 42, 579-602.
- Yu, K., Chen, Y., Gong, J., Chen, Y., and Cheng, C., 2016. Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration. Journal of Aerosol Science 101, 133-143.
- Zhang, Z., Kleinstreuer, C., and Kim, C. S., 2006a. Isotonic and hypertonic saline droplet deposition in a human upper airway model. J Aerosol Med 19, 184-98.
- Zhang, Z., Kleinstreuer, C., and Kim, C. S., 2006b. Isotonic and hypertonic saline droplet deposition in a human upper airway model. J Aerosol Med 19, 184-98.
- by Applied Research Associates, R. a. l. e. i. g. h., 2016. ARA Multiple-path particle deposition (MPPD 2.1, beta version): A model for human and rat airway particle dosimetry. https://www.ara.com/node/561.