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ABSTRACT

Mutation processes differ between types of point mutation, genomic locations, cells, and biological species.
For some point mutations, specific neighbouring bases are known to be mechanistically influential. Beyond
these cases, numerous questions remain unresolved including: what are the sequence motifs that affect
point mutations? how large are the motifs? are they strand symmetric? and, do they vary between
samples? We present new log-linear models that allow explicit examination of these questions along with
sequence logo style visualisation to enable identifying specific motifs. We demonstrate the performance
of these methods by analysing mutation processes in human germline and malignant melanoma. We
recapitulate the known CpG effect and identify novel motifs, including a highly significant motif associated
with A—G mutations. We show that major effects of neighbours on germline mutation lie within £2 of the
mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution
of the different point mutations). We show the spectra vary significantly between autosomes and X-
chromosome, with a difference in T—C transition dominating. Analyses of malignant melanoma confirmed
reported characteristic features of this cancer including statistically significant strand asymmetry and
markedly different neighbouring influences. The methods we present are made freely available as a
Python library https://bitbucket.org/pycogent3/mutationmotif.
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INTRODUCTION

Understanding the contributions of mutation processes to genetic diversity has broad relevance to topics
ranging from estimating genetic divergence (Huttley, [2004; [Schluter, [2009; [Harris, |2015)) to the aetiology
of disease (Peltomaki and Vasen, |1997; Ying and Huttley, |2011; Nik-Zainal et al.,|2012; |Alexandrov et al.,
2013a). While mutations occur on many scales, from single nucleotide point mutations to substantial
genomic rearrangements, we restrict our attention here to point mutation processes. A multitude of
mechanisms have been characterised that cause DNA lesions (Cooke et al., 2003 [Helleday et al., 2014).
Similarly, an array of processes repairing DNA lesions have also been described (Helleday et al.,[2014).
From examination of sequence composition alone it is apparent that mechanisms of mutagenesis (lesion
formation and subsequent failure of DNA repair) differ between genomic locations (Francioli et al., [2015),
between cell types (Nishino et al.,|1996) and between species (Karlin et al.||1998). In evaluating natural
systems, where only the starting and ending sequence states may be known, establishing the mechanistic
origins remains a challenge. In mammals, an informative exception is the case of C—T point mutations.
In this instance, a 3’ G strongly implies a mechanism of 5-methyl-cytosine (SmC) deamination. This
is due to the binding affinity of DNA methylases for the CpG sequence motif (Vinson and Chatterjee,
2012) and the greatly elevated mutation rate of 5SmC (Coulondre et al.| [1978)). As the CpG example
illustrates, predicting the contribution of a specific mechanism requires knowledge of a characteristic
mutation sequence signature. Motivated by this, we focus here on development of a statistical method and
associated visualisation approach for revealing signature sequence motifs associated with point mutations.
We refer to these as mutation motifs.
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Considerable evidence indicates that the influence of neighbouring bases on point mutations is a
general phenomenon. Early studies on inherited, and thus germline, mutations in humans supported
the hypermutability of the CpG dinucleotide as the dominant origin of C—T mutations (Cooper, [1995).
Subsequent work further suggested that the remaining 11 point mutations are also affected by neighbouring
bases (Krawczak et al |1998)). From analyses of mutations in human disease genes, Krawczak et al.
(1998)) inferred the influence of neighbours are confined to the positions immediately flanking the mutated
location. The work on human polymorphisms demonstrated these results applied more generally across
the genome (Zhao and Boerwinklel 2002). Recently, using trinucleotides where the mutated base is central,
distinctive mutation signatures that discriminate human cancer types have been identified (Alexandrov|
et al.l |2013a)). These results demonstrate the influence of neighbouring bases generalises to somatic
mutations. Early influential work on plant cpDNA completes the demonstration of the generality of
neighbouring influences across the tree-of-life (Morton et al.,|1997). While |Krawczak et al.| (1998) and
/hao and Boerwinkle|(2002) identified the influence of neighbours is proportional to distance, the work
of |/Alexandrov et al.[(2013a)) was focused on the immediate flanking bases.

The influence of neighbouring bases on mutagenesis can have multiple causes. The chemical properties
of DNA alone can confer a neighbour influence on mutation susceptibility. Adjacent pyrimidines are
vulnerable to a dimerisation in the presence of UV light (Brown, 2002, p 426) with TpT being most
susceptible. As the influence of DNA methylase preference for CpG dinucleotides demonstrates, DNA
binding properties of macromolecules are a further likely source of neighbouring base influences. With
numerous DNA-protein binding interactions central to DNA repair processes, any affinity to specific
sequence motifs of these molecules may result in those motifs being under-represented in mutated
sequences.

Analysis techniques for estimation of neighbouring base influences on mutation draw on different
approaches. Krawczak et al (Krawczak et al,[1998)) quantified neighbouring base influence by contrasting
observed base frequencies against an equiprobable frequency distribution via a Euclidean distance. Zhao
and Boerwinkle (Zhao and Boerwinkle} 2002) used just the base frequencies per position except beyond
+10bp where averages across position ranges were used. In both these approaches, the background
sequence distribution is assumed to be random occurrence of bases. These approaches therefore potentially
obscure the real signal by confounding it with the non-random occurrence of bases characteristic of DNA
sequences.

The distinctive mutagenic biology of cancer has motivated development of methods to identify specific
mutation signatures across all point mutations. The related methods of (Alexandrov et al.l 2013b)) and
(Shiraishi et al.| 2015)) tackle the problem of resolving the signatures of different mutational processes. As
these signatures can contain instances of the different point mutation directions, they are a composite of
distinct underlying mutational processes operating across multiple types of point mutations. The different
mutation signatures may, therefore, contain component(s) that are identical and are not well suited to
examining the influence of neighbouring bases on single point mutation directions.

More recently, the influence of neighbouring bases has been examined by using a probability of
polymorphism that was conditioned on the sequence context (Aggarwala and Voight, 2016). A 7-
mer context was identified as accounting for a median of 81% of the variability in the probability of
polymorphism across point mutations. This result indicated inclusion of higher order (three-way and
greater) interactions accounted for as much as 50% of the model predictive power. However, k-mers
exhibit a non-random distribution within the human genome (Karlin|, {1998} |Chor et al., 2009). Moreover,
variation in sequence composition is correlated with variation in substitution rate (Hodgkinson and
Eyre-Walker, [2011). These suggest that by averaging across all occurrences of the sequence context, the
results of (Aggarwala and Voight, 2016) could reflect the relationship between genomic location and the
probability of polymorphism rather than the mechanistic influence of neighbours on mutation.

Detection of functional sequence motifs is a related problem to which information theoretic techniques
have been extensively applied. Mutual information (MI) per position in a sequence alignment is computed
by subtracting the position’s Shannon entropy from entropy of the uniform distribution (Shannon, |1948)).
Coupling of this metric with the sequence logo visualisation approach has led to its widespread application
for discovery of functional motifs (Schneider and Stephens| [1990). The display used the MI statistic to
define a stack of colour coded letters, representing the sequence states, with each letter’s height scaled
proportional to its contribution to the total MI (Schneider and Stephens, |1990). For this application it is
conventional to assume an independent equifrequent reference distribution. As removing the constraint
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of equal frequencies can lead to negative values of MI, which are not readily interpretable, MI is not
appropriate for examination of most DNA sequences as the equifrequent property typically does not hold.

Many of the developed techniques are confounded by common properties of genome DNA sequences.
The ordering of nucleotides in DNA sequences is not random (Karlin, [1998). For the genomes of many
organisms, such as vertebrates, there is also considerable within genome variation in k-mer frequencies
(Karlin, [1998}; |Chor et al., 2009). For instance, trinucleotide frequencies within a protein coding exon
are not well explained by the product of their monomer frequencies. Moreover, trinucleotide frequencies
can differ between protein coding and non-protein coding sequences due to the differing influence
of natural selection. Thus, neighbour affect analyses on exons may exhibit greater error rates unless
such confounding is accounted for. Most available methods also do not distinguish contributions from
independent positions compared with joint contributions from multiple positions. For instance, are
mutations affected by the sequence of bases present at two positions (Zhang and Mathews||1995)? Log-
linear models allow flexible parameterisations for hierarchical hypothesis testing of categorical data and
have been previously applied to examination of neighbouring influences (Huttley et al., 2000). Their
generality allows for controlling of potential confounding differences, such as differences in sample size
and nucleotide composition. The support for comparing hypotheses in a hierarchical manner enables
explicit examination of hypotheses such as strand symmetry and absence of higher-order effects, which
have been assumed by some approaches (Aggarwala and Voight, |2016). Thus, they provide an objective
basis for identifying parametrically succinct models.

In this study, we develop log-linear approaches for examination of mutation processes. Our work is
distinguished from previous methods by conditioning on the mutation event, rather than the sequence
context, and employs a control distribution that is matched for genomic location. We present hierarchical
hypothesis tests for evaluating whether: (i) neighbouring bases associate with mutation direction, (ii)
neighbouring base associations are equal between samples, and (iii) the spectrum of mutations (the
relative abundance of the 12 point mutations) are equal between samples. A sequence logo inspired
visualisation approach is also presented. We demonstrate application of the models by applying them
to data previously reported to exhibit distinctive mutation processes; namely, germline mutations in
different sequence classes (e.g. transcribed, untranscribed) and chromosome classes (e.g. autosome
and sex-chromosome), and somatic mutations in cancer. Mutation events in both human germline and
somatic tissues were inferred from single nucleotide genetic variants available in Ensembl. In addition
to replicating the well known CpG effect, our results indicate that neighbourhood size can be quite
large and, as we demonstrate for the A—G transition mutation, the influence of neighbours does not
decay monotonically with distance. We further show that both independent and dependent position
influences contribute to mutational process. Through formal testing of equivalence between samples,
we demonstrate significant differences between sequence classes, chromosome classes and between
melanoma and germline mutations. Software implementing all these methods, released under an open
source license, is made available https://bitbucket.org/pycogent3/mutationmotif.

MATERIALS AND METHODS

Data sampling

We infer mutation events in humans from published genetic variant records. Germline mutations were
inferred from single nucleotide polymorphic (SNP) sites. Somatic mutations were inferred from genetic
variants identified in cancers. In both cases, the mutation direction, location and associated flanking
sequence were sampled from Ensembl (Flicek et al.| 2013) release 79 using PyCogent’s Ensembl querying
capabilities (Knight et al.,2007). The Ensembl variation database records whether a variant is classified
as somatic. We sampled germline SNPs using that flag and required the Ensembl record indicate the
SNP was validated, had an inferred ancestral allele and that its flanking sequence matched the reference
genome. For each such filtered SNP, we recorded the alleles, ancestral allele, strand, sequence class
(exonic, intronic or intergenic), genomic coordinates and 300bp of flanking sequence either side of the
SNP location.

Sampling somatic genetic variants involved both the COSMIC (Forbes et al., [2015) and Ensembl
databases. Complete mutant export data was obtained from COSMIC, which included variant identifiers
and the primary pathology from which a variant had been reported. Flanking sequence was derived by
obtaining the Ensembl records for the variant identifiers, ensuring the record was flagged as somatic and
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then following the same procedure as for the germline variants. We restricted our attention to variants
identified from malignant melanoma.

Determining base counts

For each mutation direction (e.g. C—T) we obtained base counts from paired mutated and reference base
locations. Neighbour positions were indexed relative to the position of the chosen location. For a mutated
base, the chosen location was the annotated site of the variant (Figure[I). With knowledge of the mutation
direction, a location with the same starting base as that affected by the mutation was randomly sampled
within 300bp of the annotated variant. (e.g. a random choice of a position with a C in the case of a C—T
mutation), but excluded the variant location. This is the paired reference base. In each case, a Sbp long
sequence centred on the chosen location was extracted and the bases observed per relative position were
recorded. We refer to these as neighbourhoods. As the total number of possible neighbourhoods was
256, a single file was written with counts for each of the possible neighbourhoods for both the mutated
and reference locations. This approach to identifying the reference distribution also confers a substantial
computational advantage, both in terms of memory required and compute time.
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Figure 1. Sampling mutated and reference base neighbourhoods. The neighbourhood of a position at
which a C—T mutation occurred is compared with the neighbourhood of a reference occurrence of C
randomly selected from within £300bp of the C—T mutation. (The example sequence is greatly
shortened to simplify the figure.) The location of the C—T variant is the central position for the mutated
base and is assigned the index 0. The C at position 4 was randomly chosen as the reference location and
the sequence is shifted so it is centred on this position (see Determining base counts for fuller
explanation).

Log-linear modelling of neighbour effects
We first demonstrate the general approach of applying log-linear models for understanding neighbour
influences on mutation by focusing on the influence of a single neighbouring position. Expected counts
are modelled using the Poisson distribution for all the log-linear models described in this work. We then
consider the extension of comparing neighbour contributions between samples. Both of these analyses are
concerned with the independent contribution of bases at a position to mutation status.

For a single position, we evaluate whether base and mutation status occur independently using a
straightforward log-linear model. Under the most saturated log-linear model, the log of the expected
frequency fi; for base i and mutation status s can be expressed as

Infiy=A+ xibase 4 ptatus 4 )Ll_lgase:starus "

where A represents the intercept (i.e., common to all counts), ),l-"““e, the contribution to the frequency
of being base i, A" the contribution to the frequency of being mutation status s, and the interaction
between base and status lil;“s”"” “S_ The latter expresses the degree of non-independence between base
and mutation status. The number of levels for each factor are: base, 4 levels (A, C, G, T); and mutation
status, 2 levels (mutated, M and reference, R). Because the total counts for M and R are identical by
design, A%4# = () for all s. The fit of a log-linear model is measured as the deviance (D). We specify the
null hypothesis that bases occur independent of mutation status by setting A2%¢54/4s — () for all i, s. The
alternate is the fully saturated model. The difference in D between the null and alternate, nested models,
is taken as 2 with degrees of freedom equal to the difference in the number of free parameters. In this
instance, the degrees of freedom is 3.

When comparing groups, e.g. autosome versus X-chromosome, we add another factor (18"%7) to the
log-linear model (2). The fully parameterised version of this log-linear model requires addition of three
interaction parameters: 2 two-way interactions and the three-way interaction parameter A >@e:starus:group
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This parameter represents the influence of group on the base : status interaction. We therefore evaluate
the null hypothesis of no difference between samples by setting all A b4sesratus:group — () and compare this
against the fully saturated model. If the group factor has only 2 levels, then the degrees of freedom for the
resulting D is 3.

lnfi.vg =i+ )Libase + )Lsstatus + 7L§m”p

+ )bil;ase:status + Aigumg”mp + A’Sséatus:group 2)
base:status:group
+ A "

We now extend this approach to consider the simultaneous influence on mutation status of bases at
multiple positions. To illustrate, consider the two neighbours following the base C in Figure[I] There
are sixteen possible dinucleotides at the 1,2 positions. The goal of this model is to establish whether
the dinucleotides at these two positions associate with mutation status of C after taking account of the
independent contributions of these positions. In order to achieve this, our two-position interaction model
extends the independent contribution model (I)), adding factors for the additional position and then
interaction terms between the parameters. The fully saturated two-position interaction model is

. base base, status base :status
Infijs=A+4""" + 4,72 + AT+ A

basey:status baseq:base baseq:basey:status
+ a’js 2 + )“ij 1 24 )‘ijs 1 2

3

where 12951 and A%%¢2 represent the base contributions at positions one and two. In addition to including
factors for the independent contributions of the two positions on mutation status, the 4245¢1:245¢2 accounts
for non-independent occurrence of bases at the positions, a key property of DNA sequences. The
null hypothesis of no interaction between dinucleotides and mutation status is specified by setting all
Abasey:baseyistatus — () and comparing this against the fully saturated model. The resulting D has 9 degrees
of freedom. For a given mutation direction, we perform this analysis for all possible combinations of pairs
of sites.

These approaches are further extended to consider interactions amongst three positions, amongst four
positions and for comparison of these effects amongst groups.

Log-linear model of mutation spectra

For analysis of mutation spectra, we evaluate the null hypothesis that the distribution of mutations is the
same between groups. The opportunity for a specific mutation direction is affected by the total occurrence
of the starting base. This quantity can be difficult to ascertain, such as in cancers where there may be
major genomic rearrangements (e.g. deletions) relative to a reference group. To avoid this uncertainty, we
restrict the analysis to point mutations from a specific base, comparing the relative counts of each of the 3
possible mutations between groups. This is a test of independence between ending base and group.

For a specific base, the log of the expected frequency is defined as

lnfdg = A+ )ﬂjirection + Aégroup + lj;rectmn:gmup @

where the factor A47°“!o" represents the counts of the 3 different point mutation directions, A&“? the
counts in the different groups, and A #rection:group the interaction between these factors. We specify the null
hypothesis of equivalent proportions between the groups by setting A47¢ctior:grour — (). For two groups,
comparing against the fully saturated model, the D has 2 degrees of freedom.

Visualisation

Sequence logo’s display motifs using the mutual information as the letter stack height, and the fraction
contributed to the mutual information (MI) by individual bases is derived from their individual terms in
the MI calculation. We adopt a similar approach here. Instead of using MI, we use relative entropy (RE).
The log likelihood ratio D is converted to RE by dividing by twice the sample size. RE from a log-linear
analysis specifies the letter stack height. We use the terms in the RE equation to determine the proportion
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of the stack height attributable to a specific base. We differ from the conventional sequence logo approach
by distinguishing between bases that are under or over represented in the mutated class, relative to the
unmutated class. Under-represented bases are indicated by a 180° rotation.

Interpretation of the logo is straightforward. A higher RE value indicates that a position(s) has a
greater influence on mutation. Support for concluding a stack height reflects a meaningful influence
on mutation derives from the p-value, from the log-linear model, that the data arose under the null
hypothesis. The magnitudes and orientations of letters further conveys meaning in that ordinary letter
orientation is indicative of over representation in the mutated group while inverted orientation indicates
under representation. We note here that we make a choice to use residuals from the mutated class for
display. Using residuals from the unmutated class would generate an image with the opposite letter
orientations.

For multi-position models (e.g. equation [3), the stack height is equal between the indicated positions.
For the two-position model, the characters for the nucleotide pair at the two positions share the same
proportion and orientation. For the more complicated analyses involving contrasting neighbour effects
between groups, the reference category is the one provided first to the software.

Differences in mutation spectra are visualised using a grid with rows corresponding to the starting
base and columns the base resulting from the mutation. Each row corresponds to a single log-linear
test for equivalent distribution of the possible point mutations from the base indicated by the row label
(see Log-linear model of mutation spectra). The RE for each row is computed from the deviance of the
corresponding spectra test. Letter heights for each base are scaled proportional to the corresponding term
in the RE equation. The sum of letter heights in a row is the total RE for that test. Bases over-represented
in the reference group are oriented in the conventional manner while under-represented bases are rotated
180°. In the spectra analysis, the largest base in the grid is the dominant mutation product difference
between the groups.

Availability of data and materials

MutationMotif is a Python 3.5 compatible library for performing the statistical analyses outlined
in this work that is freely available under an open source license. The project homepage is at https |
//bitbucket.org/pycogent3/mutationmotif and the version employed for the reported
work is available in Zenodo (DOI 10.5281/zenodo.166388). It draws on R (Ihaka and Gentleman) |1996))
for log-linear modelling, via the glm function, using the rpy2 Python binding to R. Sequence logo’s are
drawn using custom Python code included in Mut at ionMot i f. Other dependencies include PyCogent
(Knight et al.,[2007), pandas, numpy, matplotlib and scitrack.

The scripts performing the data sampling and applying the analyses reported in this work are freely
available under the GPL athttps://bitbucket.org/gavin.huttley/analysemutations
and the version employed for the reported work is available in Zenodo (DOI 10.5281/zenodo.166387).
AnalyseMutations includes the counts data required by Mutat ionMot if and the complete set of
results contained in this work. These counts data were produced from data sampled from the Ensembl
and COSMIC databases, as described in Data sampling. Because the data files from which the counts
files were produced are so large, they are available separately in Zenodo (DOIs 10.5281/zenodo.53158
https://zenodo.org/record/53158/and 10.5281/zenodo.53164 https://zenodo.org/
record/53164) under the Creative Commons Attribution-Share Alike license. Data files are typically
gzip compressed standard formats; tab delimited text files, fasta formatted sequence files, serialised data
is stored as json or pickle (Python’s native serialised format).

File S1 contains tables and figures from additional analyses.

RESULTS

Overview of notation and neighbour effect log-linear models
The notation X—Y refers to a point mutation from starting base X to ending base Y, X—Y* refers to a
point mutation and its strand symmetric counterpart, e.g. C—T* is C—T or G—A. The sampled region
around a mutated base is called a neighbourhood with neighbours being the individual positions within
the neighbourhood. A mutation motif is a specific neighbourhood that is enriched in mutated sequences
compared to the reference distribution.

The log-linear model of neighbour influence evaluates the null hypothesis that a neighbouring base(s)
flanking a specific point mutation is the same as that flanking a random occurrence of the starting base.
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For instance, does the distribution of bases at sites flanking C—T mutations differ from that flanking all
C’s? As the frequency of bases varies between genomic locations (Bernardi, 2000; |Karlin, (1998} |Chor]
et al., [2009), matching of the mutated and reference locations reduces possible confounding. We achieve
this matching by deriving a reference location proximal to each mutated location. The sampling process
is shown in Figure [T} We sampled 300bp of flanking genomic sequence each side of a variant and within
this segment chose, at random, another occurrence of the starting base affected by the mutation event.
Unless stated otherwise, we limited our analysis of neighbouring influence to £2bp either side of the
mutated position, resulting in 256 possible neighbourhoods. For any given mutation direction, counts
of these different neighbourhoods are obtained from both the sample centred on the mutated base and
the sample centred on a random occurrence of the starting base. These counts are used to construct the
contingency tables for the log-linear analysis. This approach achieves the objectives of controlling for
compositional variation across the genome and controlling for the non-random occurrence of bases. See
Determining base counts for more detail on this procedure.

The log-linear models used to examine the effect of neighbours on point mutation include parameters
that represent an interaction between neighbouring base(s) and mutation status (see Log-linear modelling
of neighbour effects). The contribution of this parameter to model fit is measured as a Deviance which,
along with the residual degrees-of-freedom, is used to calculate the corresponding p-value for the null
hypothesis. We convert the Deviance to relative entropy (hereafter, RE) as this measures the information
content of the data under the model in a manner that is robust to sample size, allowing comparisons among
analyses.

As we are concerned with whether flanking positions individually or jointly affect mutation process
we describe the influence of neighbouring bases as independent or dependent/joint effects respectively.
The influence of a base at a single neighbouring position on a point mutation will be referred to as an
“independent” effect. The case when bases at two or more neighbouring positions influence a point
mutation will be referred to as a “dependent” interactive effect or the joint influence of multiple bases.
The number of positions involved in a dependent effect is referenced as the “order” of the interaction. An
independent effect, the influence of a single position on mutation, is a first order effect while the joint
influence of two positions on mutation is a second order effect. Flanking locations are indexed relative
to the mutated position. The immediate flanking 5’ base is at position —1 while the immediate flanking
3’ base is at position +1 (see Figure[I)). A series of positions are indicated by the relative indices in
parentheses e.g. (—2,—1) are two positions 5’ to the mutated base. We note here that in the case of a
dependent effect the actual positions are not necessarily physically adjacent, e.g. (—2,2).

Log-linear models recapitulate the CpG effect and reveal higher order effects

In the analyses we report below, we focus principally on analyses of intergenic autosomal data. We also
sampled variants from introns and exons. We relegate all results from analysis of other genomic regions
to supplementary material as the results are substantively the same as those from the intergenic sequence
class.

We benchmarked our method by examining the influence of neighbouring bases on C—T point
mutations in the autosomal intergenic sample. (As none of the strand symmetry tests were significant
for the intergenic autosomal mutations, we limit our discussion to the “plus” strand directions only.) We
expected the influence of methylation induced deamination at CpG to reveal a strong G effect at the +1
position (Cooper and Youssoufian, |1988). This prediction was confirmed in the results of the hypothesis
test (Table[ST) and visually in the mutation motif logo (Figure 2B). The analysis established that while all
positions made highly significant independent contributions to mutation ( all p-values were estimated as
~ 0, Table[ST)) the magnitude of their influence was small compared to that at the +1 position and only
one of these was evident in the mutation logo, that of A at the —1 position (Figure 2B). (Results from the
equivalent analysis of autosomal exon data are shown in Figure [ST])

Specific combinations of bases at multiple positions also significantly affected C—T mutations. All
higher order interactions were statistically significant (all p-values < 10722, Table[S1). A feature of the
second and third order joint effects was that bases physically adjacent to each other or to the mutated
position had the strongest association: (—2,—1), (—1,+1), (+1,+2) second order interactions (Table
and Figure 2[C), and the (—2,—1,+1) third order interaction (Figure 2D).

Despite the highly significant associations between combinations of positions and interactions, the
independent position contributions dominated. All effect orders were significantly associated with
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Figure 2. Neighbours influence C—T mutations. A First order effects are the dominant neighbour
influence, RE,,,, (y-axis) is the maximum RE from the possible evaluations for a motif length (x-axis), B
Single position effects, C Two-way effects, and D Three-way effects. For b-d, the y-axis is RE and the
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Visualisation
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mutation status even when using the sequential Holm-Sidék correction for 15 tests (Holm, |[1979). These
results reflect the enormous statistical power resulting from the large sample sizes, e.g. over 1 million
C—T intergenic variants. Contrasting the magnitudes of these different effects by displaying the maximum
RE value from each effect order (RE,,,, Figure E]A) provide a useful indicator of their relative influence;
RE,4x(1) is the maximum RE score for first position effects across all positions (e.g. +1 in this case),
RE4x(2) the maximum RE score from combinations of two positions, and so on for the higher orders.
This display established that the 3’-G influence dominates all other neighbouring base effects on C—T
mutation. Furthermore, contrasting these values between the point mutations (Table (1)) affirms that
neighbours have the strongest effect on C—T mutations (Figure [S2).

Direction RE,, (1) Pos.(1) RE,;(2) Pos.(2) RE,.;(3) Pos.(3)
A—C 0.0039 -1 0.0016  (+1,+2) 0.0012  (-2,-1,+1)
A—G 0.0188 +1 0.0030  (-2,-1) 0.0007  (-2,-1,+1)
A—T 0.0095 +1 0.0051  (-1,+1) 0.0023 (-1, +1, +2)
C—A 0.0091 +1 0.0044 (-1, +1) 0.0015 (-1,+1,+2)
C—G 0.0054 -2 0.0025 (+1,+2) 0.0010 (-1, +1,+2)
C—T 0.0860 +1 0.0006 (-1, +1) 0.0002  (-2,-1,+1)

Table 1. Summary of neighbour associations with plus strand mutations with an autosomal intergenic
location. RE,,,, (#) is the maximum RE for order # and Pos.(#) the corresponding position(s). All point
mutations had at least one significant test after correcting for 15 tests (see Table [ST) using the
Holm-Sidik procedure.

A—G mutations are also strongly affected by neighbours

The A—G transition mutation exhibited the next strongest influence of neighbouring bases (Table[T). As
for C—T, all effect orders were highly significant after correcting for 15 tests (all p-values < 10~#7, Table
[S2). All positions showed significant first order influences, but the —2, —1,+1 positions were particularly
strong (Figure ). Two of these, (—2,—1), also exhibited a prominent second order interaction (Figure
) while all three contributed the strongest third order interaction (Figure ). For A—G mutations, our
analysis indicated that while first order effects dominated, higher order effects were important factors
affecting this mutation direction (Figure[3]A). Again, combinations of bases that were physically adjacent
were most influential. (Results from the equivalent analysis of autosomal exon data are shown in Figure

Skl

Transversion mutations are affected by neighbours

All transversion mutations had significant neighbour influences but to a lesser extent than that evident for
transition mutations (Table |1| Figure . The transversion mutations showed RE,,,,(1) that were 20-fold
less than for the C—T mutations. However, higher order effects were typically more pronounced for
transversions than transitions. The A—T and C— A transversion mutations showed the greatest influence
of neighbours at all levels. The dominant influences were immediately adjacent to the mutating base
except for C—@G, where position —2 had the strongest effect.

The size of the neighbourhood

Our analyses above indicated first order effects exerted the strongest influence on mutations. Accordingly,
we limited our examination of neighbourhood size to first order effects and sampled intergenic autosomal
variants with a flank size of £10bp for an analysis. After correcting for multiple tests, all 20 flanking
positions were significant for all point mutations (Table [S3). This suggests a neighbourhood size >10.
The tendency for even very distant positions to be highly significant in this analysis likely reflects the
enormous sample sizes employed for this analysis and does not necessarily reflect the magnitude of a
positions influence. Therefore, for each mutation we estimated the most distant position with a RE that
was >10% of RE,,¢(1). For the transition mutations, the neighbourhood size was restricted to positions
within +2bp (Figure [S4) whilst for transversion mutations, the neighbourhood size was within +4bp

(Table[S3).
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Some germline point mutations exhibited different neighbouring effects between se-
quence classes

The operation of transcription coupled DNA repair processes suggested a possible difference in neighbour
effect may exist between transcribed and untranscribed sequences. This predicts a difference in mutation
profile between intergenic and intronic sequences. Our analysis of neighbour contributions to mutation
established that for first order effects, every point mutation was significantly different between the
sequence classes (Table[S4). For second order effects, only the transition mutations showed significant
differences. The biggest difference between the regions was for A—T*. While these effects were highly
significant, their RE,,(1) were /=100 fold lower than the overall influence of neighbours on intergenic
A—-T.

Neighbouring effects differ between chromosome classes

Differences in germline biology between males and females predict distinct mutation profiles between
sequences located on the autosomes and X-chromosome (Huttley et al.,[2000). Our test of the hypothesis
of no difference in flanking base effect between autosome and X-chromosome mutations in intergenic
sequences was rejected for first order influences on several of the point mutations, after correcting for 15
tests using the Holm-Sidak procedure (Holm), |1979)) (Table . Interestingly, A—G* and C—T"* showed
comparable differences in flanking base effect between the chromosome classes (Deviances 226.0 and
~225.4 respectively). In all cases, the effect exists at the same position as that identified as RE,,4c(1) in
the intergenic analysis (Table[I)). While the transition mutations were the most statistically significant,
their RE lay within the range of the other point mutations (Table indicating their significance reflects
greater abundance and thus a greater rate.

Analysis of germline mutation spectra

Our log-linear model for analysis of mutation spectra compares counts of point mutations from the
same starting base between groups. By considering only mutations from a single base between different
locations, differences in the abundance of the starting base between groups are controlled for. This
approach can be applied to groups representing different strands, different genomic regions or different
biological materials (e.g. germline and somatic).

Our analysis of germline mutation spectra indicated point mutations were uniformly strand symmetric
but different between sequence categories. No sequence category exhibited strand asymmetry in mutation
spectra for autosomal data. Significant differences in autosomal mutation spectra were evident between
intergenic and intronic regions. The major differences were for transversion mutations, specifically C—A
and its strand complement (Table [S6).

Significant differences between chromosome classes were evident (Figure 4] and Table[S7). For the
intergenic sequence class, A—G* transition mutations were in strong excess on autosomes compared with
X-chromosome (Figure ). Comparable results were evident for intronic sequences (Table [S8).

Melanoma mutations exhibit strikingly different neighbour effects and spectra

Mutation processes in malignant melanoma are known to be distinctive and to include strand asymmetric
mutation processes within genes (Pleasance et al.,2010). Our analysis confirm that the profile of point
mutations in the malignant melanoma sample was strikingly different to the germline mutations (Tables
[ST2][ST3). The grid of all point mutations (Figure[5) demonstrates that neighbouring influences were most
pronounced for C—T point mutations and much stronger influence of neighbouring bases on transversion
mutations. The neighbour effects were also significantly strand asymmetric (Table [S9), a distinctive
characteristic for melanoma. Only substitutions affecting C were significantly different in spectra between
strands with the C—T direction being over abundant on the + strand (Figure[6] Table[S10).

DISCUSSION

While it has long been appreciated that sequence neighbourhoods affect point mutations, statistical meth-
ods for disentangling how neighbours contribute have been limited. Here we addressed this using a novel
determination of the reference distribution and log-linear models. This methodological combination is
robust to complexity in the genomic background of nucleotide composition. It further enables hierarchical
hypothesis testing for establishing the significance and relative importance of neighbour effects. We
illustrated utility of the models by applying them to analyses of mutations from samples reported to exhibit
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distinctive properties. Our analyses recapitulated well-known effects in terms of neighbour dependence
and in terms of differences between genomic regions and somatic and germline, supporting the accuracy of
the methods. The results revealed previously unreported neighbour effects that extends beyond immediate
flanking positions. Analyses of mutation spectra complemented the neighbour analyses, confirming
known features of point mutations in malignant melanoma and identifying novel differences in germline
point mutation abundance between sex-chromosomes and autosomes.

The hypermutability of C—T in CpG dinucleotides is the exemplar of context dependent mutation and
a gold standard that a method of analysis should correctly recover. We established that the conventional
sequence logo analysis approach did not recapitulate the dominant influence of a 3’-G (Figure[7). As
this method shares the assumption of equifrequent bases with that of (Krawczak et al.|,|1998)), the failure
suggests the Euclidean distance approach will also be flawed. In contrast, as shown in Table[ST]and Figure
our analysis successfully recapitulated this known effect. The RE,,, values (Figure ) further affirm
C—T as most strongly affected by neighbouring bases.

41e—3
§2
Position

Figure 7. The CpG effect on C—T is not revealed by applying the conventional sequence logo method
to autosomal intergenic mutations. MI is mutual information.

In order to sensibly interpret the results of our analyses we de-emphasise the importance of statistical
significance and focus instead on effect magnitude. Due to the very large number of inferred mutations,
our analyses possess very high power to detect small effects. This is illustrated by the very small p-values
associated with, for example, third order effects for the C—T mutation (Table . Yet, the magnitude of
these effects is relatively small in comparison with the first order effects (Figure[2JA). Consequently, and
in addition to considering whether effects are statistically significant according to standard criteria, we
contrast RE statistics to establish relative importance.

Our analysis identified numerous novel properties of neighbouring sequence influence on point
mutation in the germline. First, all mutations were significantly affected by neighbouring bases with
transition mutations showing a larger influence of neighbours than transversions. Interestingly, as
illustrated by the A—G* mutations, these influences did not decay monotonically with distance from
the mutation (Figure [3B). This point mutation further illustrated that multiple neighbouring positions
can influence mutation outcome. Comparing RE values to that for C—T indicates that the first order
neighbour effects of other point mutations were ~5—20 fold less, with those values corresponding to
A—G and A—C mutations respectively (Table[I)). Second, all mutations were significantly affected by
higher order effects (interactions between adjacent bases). These were evident in a manner such that
bases contiguous with each other and the mutated location showed the largest RE. This may reflect the
importance of interactions amongst adjacent bases (base-stacking) in affecting DNA stability (Karlin and
Burge, |1995; [Yakovchuk et al., [2006). For all point mutations, the RE terms from first order effects were
markedly stronger than those for higher order effects. These results were replicated in our analysis of
intronic variants (Table [STT).

The evidence for neighbouring influence on mutation raised the important question of how far these
effects of flanking sequence extend? While there was strong statistical significance of positions as far
as 10bp from the mutating base (Table[S3), considering the relative magnitude of RE values indicated a
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very rapid decay away from the mutated position. In particular, that the magnitude of the effect decayed
below an order of magnitude within 2 bases for transition mutations. This trend is illustrated by the
mutation motif logo displays (Figure[S4). While transversion mutations exhibited a slower decay in effect
magnitude, and hence a larger neighbourhood, these reflect the smaller RE, 4, (1) of transversions which
constitute a less stringent cut-off.

Our results regarding the importance of higher order interactions indicate that considering 5-mers
accounts for the majority of model fit. The deviances from the first order effects of A—G* and C—T*
transition mutations accounted for 81% and 98% of the total deviance respectively in the autosomal
intergenic sample. Inclusion of second order effects increased both these to > 96% (Tables[ST}[S2). Across
all point mutations in the autosomal intergenic sample, combining first and second order effects accounted
for a median 91% of the total deviance of the 5-mer model. These differences are further illustrated by
the motif [C/T]CAAT[C/G/T]N, reported as exhibiting an odds ratio of ~ 6000 for enrichment in mutated
sequences (Aggarwala and Voight, 2016). Our results (Table[S2)and Figure [3D) identified the CAAT core
of this motif as highly significant. However, this is a third-order interaction and the RE for this specific
combination of sites is 28 fold less than the strongest first order effect and accounts for only 1.5% the total
deviance. We estimated odds ratio for the CAAT mutation motif as ~ 4.0 which is less than the ~ 5.7
odds ratio we estimated for the 7-mer of |Aggarwala and Voight (2016). (We note here that our odds ratios
are closer to what|Aggarwala and Voight (2016)) term “fold change”.)

The profile of somatic mutations is expected to exhibit differences to germline mutations due to requi-
site defects in DNA repair systems. As reported (Nik-Zainal et al.|[2012), such defects are characteristic
of cancers. Of the characterised cancers, malignant melanoma exhibit the most distinctive mutation signa-
tures. Included in the distinctiveness of malignant melanoma is a striking strand asymmetry (Pleasance
et al.,2010). This putatively derives from UV light induced formation of pyrimidine dimers. In transcribed
regions, nucleotide excision repair processes coupled to transcription-coupled repair mechanism, results
in efficient repair of transcribed strand lesions. As a consequence, mutations are expected to accumulate
on the non-transcribed strand. Evidence supporting this, with more C—T mutations on non-transcribed
strand than on the transcribed strand, has been reported (Pleasance et al.,[2010).

Our analysis demonstrated that point mutations in melanoma were dependent on neighbours in a
manner strikingly different from that of germline processes discussed thus far (Figure [5and Table [2)).
While C—T mutations were again the point mutation most affected by neighbouring bases, the motif was
markedly different to that from the germline process with a 5’-T showing the greatest influence. This
difference indicates that SmC deamination plays a less prominent role in C—T. Since melanoma arises in
part due to defect(s) in DNA repair the distinctive mutation motifs in melanoma indicate either a very
effective masking of neighbour effects on lesion formation, or that the DNA repair mechanisms inactivated
in melanoma are strongly affected by neighbours. Our melanoma analysis also strongly supported strand
asymmetry of mutations, with the effect most pronounced for C—T.

Direction RE, (1) Pos.(1) RE,.(2) Pos.(2) RE,.(3) Pos.(3)
A—C 0.0167 -1 0.0101  (-1,+1) 0.0078 (-2, +1,+2)
A—=G 0.0135 -1 0.0118  (-1,+1) 0.0051 (-1, +1,+2)
AT 0.0110 00039 (2,41 00033 (-2,-1,+1)
C—A 0.0319 -1 0.0102 (-1, +1) - -
C—-G 0.0264 +1 0.0035 (-1, +1) 0.0041  (-2,-1,+1)
C—T 0.0788 -1 0.0130 (-1, +1) 0.0006  (-2,-1,+1)
G—A 0.0918 +1 0.0090 (-1, +1) 0.0009 (-1, +1, +2)
G—C 0.0254 -1 0.0028 (-2, +1) 0.0043 (-1, +1,+2)
G—-T 0.0242 +1 0.0078 (+1, +2) 0.0052  (-1,+1,+2)
T—A 0.0123 +1 0.0042 (+1,+2) 0.0044 (-1, +1,+2)
T—C 0.0135 +1 0.0244 (-1, +1) 0.0057 (-1, +1,+2)
T—G 0.0137 +1 0.0118  (-1,+1) 0.0074 (-2, +1,+2)

Table 2. Summary of neighbour associations with mutations in malignant melanoma. RE,,,.(#) is the
maximum RE for order # and Pos.(#) the corresponding position(s). All point mutations had at least one
significant test after correcting for 15 tests (see Table using the Holm-Sidik procedure.
Non-significant results are indicated by ‘- .
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A major asset to the log-linear modelling framework is the ease of extension to enable comparisons
between samples. The utility of this is illustrated above in comparing somatic to germline processes. The
appeal of this capability, however, is much broader as it further allows evaluation of the processes that
contribute to within genome heterogeneity in sequence composition. We have illustrated this application
here by considering genomic regions for which the incidence of mutation processes are known to differ
(X-chromosome versus autosomes) or where DNA repair processes are known to differ (transcribed versus
untranscribed regions).

The notion that there is a systematic tendency for mutations to originate in males has been known
since Haldane (Haldane, 1935} {1946, 1948)). The most popular hypothesis to account for male biased
evolution is the mutation-through-DNA-replication hypothesis (L1 et al., 2002; [Webster et al., 2005).
Other, non-replication based, differences in mutation between the sexes have also been proposed (Huttley|
et al.| 2000). Included in these is evidence for elevated methylation of DNA in the male germline. This
suggests the relative contribution of 5SmC derived lesions will be greater on the autosomes compared
to X-chromosome as the latter spends less time (on average) in males. Our analyses for differences in
neighbour influences did lend support to existence of distinct SmC affecting mutation processes operating
between the X-chromosome and autosomes (Table[S3)), including a reduced magnitude of the +1 influence
on the X-chromosome. However, this was not the strongest difference in neighbour effect between the
chromosomal classes; A—G showed the strongest statistical significance while C—G showed the greatest
RE. The spectra analyses further emphasised the importance of differences in A—G* point mutations
(Figure ). These results therefore indicate more extensive point mutation differences between these
chromosome classes than previously appreciated and suggest a corresponding diversity in mutational
processes between male and female germlines.

That differences in operation of DNA repair processes may affect mutation is predicted by the localised
influence of transcription coupled DNA repair. This process is known to operate in a manner that is strand
asymmetric. Differences in base parity — the frequency of A should equal that of T, G should equal C
— support an effect of transcription on point mutation (Touchon et al.|[2003). Significant differences in
neighbour effects for all point mutations were evident between intergenic and intron regions. However,
our analysis of strand symmetry for neighbour effects was not significant for intron sequences for any
point mutation. This suggests a distinctive mutation profile arising from transcription, rather than the
influence of transcription coupled DNA repair.

We have argued that the matched sampling of the reference distribution in our neighbour analysis
is important. Briefly recapitulating that approach, the reference distribution is obtained by randomly
selecting a paired reference base within +300bp of each observed mutation (Figure[I). An alternate to this
strategy is to obtain the reference base by randomly selecting from the full genome sequence. For a given
point mutation direction, only the reference counts can differ between the £300bp and genome reference
approaches, i.e. the observed counts are identical. Consequently, the statistical inferences will likely
differ when the k-mer distribution for a sequence class differs from that of the entire genome. An obvious
case where this condition arises are protein coding exons. A neighbour analysis of exon sequences where
the reference distribution was obtained from the full genome sequence showed significant differences to
the +300bp one. The relative importance of each flanking position and/or the identity of bases at those
positions differed for all of the point mutation directions (for a subset see Figure[S5). These results, and
its considerable computational advantages, support using the +300bp reference distribution.

As formulated, the neighbour analysis do not evaluate the relative abundance of mutations between
samples. For this purpose, we introduce what we termed the mutation spectrum analysis. As the
opportunity for mutation is affected by the frequency of the starting base, and base frequency differs
between genomic locations, we perform spectrum analysis for each nucleotide separately. The null
hypothesis is a very simple one, that the 3 possible point mutations from a starting base occur in equal
frequency between samples. As such, this spectrum approach does not consider neighbouring base
contributions at all and is therefore complementary to it.

For each of the above analyses comparing groups we also undertook mutation spectrum analyses.
There were no significant strand differences for autosomal data. Comparisons between the X-chromosome
and autosomes revealed highly significant differences in composition for all bases (Figure {). The most
pronounced difference was an excess of A—G™ transition mutations on autosomes. Similarly, all point
mutations showed significantly different mutation spectra between intergenic and intronic regions (Table
. In this case, however, the dominant differences were an excess of transversions creating A/T base
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pairs in intergenic regions while introns were characterised by an excess of C/G base pair creating
mutations.

CONCLUSION

The methods we present enable characterising mutational processes affecting samples. For the neighbour
analyses, the critical properties of the methods we present derive from the specification of the reference
distribution and utilisation of the well established log-linear modelling framework. This combination
has considerable potential for detailed interrogations of mutation properties and should improve our
understanding the mechanism of mutations, both germline and somatic. Our application of the method
generated mutation motifs consistent with well known effects. We further revealed a pronounced influence
of flanking bases on all point mutation processes. From germline mutations we have identified a striking
dependence of the A—G transition on multiple positions. The mechanistic basis of this mutation motif is
unknown.

The neighbour and spectral analyses examine complementary aspects of mutational process. The
former examines the contribution of neighbouring bases to the mutation outcome from a starting base
and the latter considers the breakdown of mutations from a single base. While the p-values from the
hypothesis tests are sensitive to sample size, a property that may be proportional to mutation rate, neither
approach explicitly considers the rate of mutation.

As with all methods that seek to characterise data arising from unobserved processes, there are
challenges of interpretation. In both the neighbour and spectral analysis approaches, the data are a
composite of mutation events with potentially diverse etiological histories. As a consequence, differences
between samples will potentially reflect multiple mechanistic differences. Regardless of these issues,
analyses that use measures of genetic distance, such as phylogenetics, cannot rationally rely on models of
sequence divergence that assume mutations affect nucleotides independent of their neighbours. Instead,
models that accommodate neighbour effects (e.g.[Hwang and Green, |2004)) to at least +2 positions will
need to be developed in order to reasonably capture the neighbour influences described here.
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