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ABSTRACT

Mutation processes differ between types of point mutation, genomic locations, cells, and biological species.
For some point mutations, specific neighbouring bases are known to be mechanistically influential. Beyond
these cases, numerous questions remain unresolved including: what are the sequence motifs that affect
point mutations? how large are the motifs? and, do they vary between samples? We present new
log-linear models that allow explicit examination of these questions along with sequence logo style
visualisation to enable identifying specific motifs. We demonstrate the utility of these methods by
analysing human germline and malignant melanoma mutations. We recapitulate the known CpG effect
and identify numerous novel motifs, including a highly significant motif associated with A→G mutations.
We show that major effects of neighbourhood on germline mutation lie within ±2 of the mutating base.
Models are also presented for contrasting the entire mutation spectra (the distribution of the different
point mutations) and applied to the data. We show the spectra vary significantly between autosomes
and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma
confirmed reported characteristic features of this cancer including strand asymmetry and markedly
different neighbouring influences. The methods reported are made freely available as a Python library
https://bitbucket.org/gavin.huttley/mutationmotif.
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INTRODUCTION
Understanding the contributions of mutation processes to genetic diversity has broad relevance to topics
ranging from estimating species divergence (Schluter, 2009) to the aetiology of disease (Peltomaki and
Vasen, 1997; Nik-Zainal et al., 2012; Alexandrov et al., 2013a). While mutations occur on many scales,
from single nucleotide point mutations to substantial genomic rearrangements, we restrict our attention
here to point mutation processes. A multitude of mechanisms have been characterised that cause DNA
lesions (Cooke et al., 2003; Helleday et al., 2014). Similarly, an array of processes repairing DNA lesions
have also been described (Helleday et al., 2014). From examination of sequence composition alone it
is apparent that mechanisms of mutagenesis (lesion formation and subsequent failure of DNA repair)
differ between genomic locations (Francioli et al., 2015), between cell types (Nishino et al., 1996) and
between species (Karlin et al., 1998). In evaluating natural systems, where only the starting and ending
sequence states may be known, establishing the mechanistic origins remains a challenge. In mammals,
an informative exception is the case of C→T point mutations. In this instance, a 3’ G strongly implies
a mechanism of 5-methyl-cytosine (5mC) deamination. This is due to the binding affinity of DNA
methylases for the CpG sequence motif (Vinson and Chatterjee, 2012) and the greatly elevated mutation
rate of 5mC (Coulondre et al., 1978). As the CpG example illustrates, predicting the contribution of
a specific mechanism requires knowledge of a characteristic mutation sequence signature. Motivated
by this, we focus here on development of a statistical method and associated visualisation approach for
revealing signature sequence motifs associated with point mutations. We refer to these as mutation motifs.

Considerable evidence indicates that the influence of neighbouring bases on point mutations is a
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general phenomenon. Early studies on inherited, and thus germline, mutations in humans supported
the hypermutability of the CpG dinucleotide as the dominant origin of C→T mutations (Cooper, 1995).
Subsequent work further suggested that the remaining 11 point mutations are also affected by neighbouring
bases (Krawczak et al., 1998). From analyses of mutations in human disease genes, (Krawczak et al.,
1998) inferred the influence of neighbours are confined to the positions immediately flanking the mutated
location. The work on human polymorphisms demonstrated these results applied more generally across
the genome (Zhao and Boerwinkle, 2002). Recently, using trinucleotides where the mutated base is central,
distinctive mutation signatures that discriminate human cancer types have been identified (Alexandrov
et al., 2013a). These results demonstrate the influence of neighbouring bases generalises to somatic
mutations. Early influential work on plant cpDNA completes the demonstration of the generality of
neighbouring influences across the tree-of-life (Morton et al., 1997). While Krawczak et al. (1998) and
Zhao and Boerwinkle (2002) identified the influence of neighbours is proportional to distance, the work
of Alexandrov et al. (2013a) was focused on the immediate flanking bases.

The influence of neighbouring bases on mutagenesis can have multiple causes. The chemical properties
of DNA alone can confer a neighbourhood influence on mutation susceptibility. Adjacent pyrimidines
are vulnerable to a dimerisation in the presence of UV light (Brown, 2002, p 426) with TpT being most
susceptible. As the influence of DNA methylase preference for CpG dinucleotides demonstrates, DNA
binding properties of macromolecules are a further likely source of neighbouring base influences. With
numerous DNA-protein binding interactions central to DNA repair processes, any affinity to specific
sequence motifs of these molecules may result in those motifs being under-represented in mutated
sequences.

Analysis techniques for estimation of neighbouring base influences on mutation draw on different
approaches. Krawczak et al. (1998) quantified neighbouring base influence by contrasting observed
base frequencies against an equiprobable frequency distribution via a Euclidean distance. Zhao and
Boerwinkle (2002) used just the base frequencies per position except beyond ±10bp where averages
across position ranges were used. In both these approaches, the background sequence distribution is
assumed to be random occurrence of bases. These approaches therefore potentially obscure the real
signal by confounding it with the non-random occurrence of bases characteristic of DNA sequences.
The method of Alexandrov et al. (2013b) tackles the different problem of resolving the signatures of
different mutational processes. As these signatures consist of all point mutations, they are a composite of
distinct underlying mutational processes operating across all point mutations. Mutation signatures were
defined as a vector consisting of probabilities of mutations from one k-mer to another with the mutated
position central to the tuple (k was predominantly taken as 3). This approach, while accommodating
non-random base occurrence, assumes all mutation events are driven by the same process. The different
mutation signatures may, therefore, contain component(s) that are identical. The above techniques lack
natural support for hierarchical hypothesis testing. Additionally, they do not discriminate between the
independent contributions of neighbouring bases against the joint influence of multiple neighbours. If
the positions immediately flanking a base (i.e. the immediate 5’ and 3’ bases) independently influence
mutation tendency then their contributions will be additive. If, however, a specific combination of bases at
the two positions are critical then the positions exert their influence jointly and the effect is non-additive.

Detection of functional sequence motifs is a related problem to which information theoretic techniques
have been extensively applied. Mutual information (MI) per position in a sequence alignment is computed
by subtracting the positions Shannon’s entropy from entropy of the uniform distribution (Shannon, 2001).
Coupling of this metric with the sequence logo visualisation approach has led to its widespread application
for discovery of functional motifs (Schneider and Stephens, 1990). The display used the MI statistic to
define a stack of colour coded letters, representing the sequence states, with each letters height scaled
proportional to its contribution to the total MI (Schneider and Stephens, 1990). While MI has many
appealing properties for measuring information, it shares the restriction of comparison to the independent
equifrequent distribution. As removing the constraint of equal frequencies can lead to cases of taking the
logarithm of a negative number, which is not defined, MI is not appropriate for examination of most DNA
sequences as the equifrequent property typically does not hold.

Many of the developed techniques are confounded by common signatures of genome DNA sequences
– nucleotides do not occur with equal frequency or randomly. For the genomes of many organisms, such
as vertebrates, there is also considerable within genome variation in nucleotide frequencies. These factors
will contribute substantial noise to any statistic that does not account for them. Most available methods do
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not distinguish contributions from independent positions compared with joint contributions from multiple
positions. For instance, are mutations affected by the sequence of bases present at two positions (Zhang
and Mathews, 1995)? General statistical techniques have been developed to characterise genome sequence
signatures that incorporate such between position interactions (Karlin et al., 1998). While this statistic has
been modified for inferring neighbouring influences from sequence substitutions (Nevarez et al., 2010),
the approach has limitations compared with more general alternatives. Log-linear models allow flexible
parameterisations for hierarchical hypothesis testing of categorical data and have been previously applied
to examination of neighbouring influences (Huttley et al., 2000). Their generality allows for controlling
of potential confounding differences, such as differences in sample size and nucleotide composition.

In this study, we develop log-linear approaches for examination of mutation processes. We present
hierarchical hypothesis tests for evaluating whether: (i) neighbouring bases influence mutations, (ii)
neighbouring base influences are equal between samples, and (iii) the spectrum of mutations (the relative
abundance of the 12 point mutations) are equal between samples. A sequence logo inspired visualisation
approach is also presented. We demonstrate application of the models by applying them to data previously
reported to exhibit distinctive mutation processes; namely, germline mutations in different sequence
classes (e.g. transcribed, untranscribed) and chromosome classes (e.g. autosome and sex-chromosome),
and somatic mutations in cancer. Data were human SNPs obtained from Ensembl for both germline
and somatic mutations. In addition to replicating the well known CpG effect, our results demonstrated
the neighbourhood size can be quite large and, as we demonstrate for the A→G transition mutation,
the influence of neighbours does not decay monotonically with distance. We further show, that both
independent and dependent position influences contribute to mutational process. Through formal testing
of equivalence between samples, we demonstrate significant differences between sequence classes,
chromosome classes and between melanoma and germline mutations. Software implementing all these
methods, released under the GPL open source license, is made available https://bitbucket.org/
gavin.huttley/mutationmotif.

MATERIALS AND METHODS

Data sampling
We sampled SNP data and flanking sequences from Ensembl (Flicek et al., 2013) release 79 using
PyCogent’s Ensembl querying capabilities (Knight et al., 2007). The Ensembl variation database records
whether a variant is classified as somatic. We sampled germline SNPs using that flag and required the
Ensembl record indicated the SNP was validated, had an inferred ancestral allele and that its flanking
sequence matched the reference genome. For each such filtered SNP, we recorded the alleles, strand,
sequence class (exonic, intronic or intergenic), genomic coordinates and 300bp of flanking sequence
either side of the SNP location.

Sampling somatic SNPs involved both the COSMIC (Forbes et al., 2015) and Ensembl databases.
Complete mutant export data was obtained from COSMIC, which included SNP identifiers and the
primary pathology from which a SNP had been reported. Flanking sequence was derived by obtaining the
Ensembl records for the SNP identifiers, ensuring the record was flagged as somatic and then following
the same procedure as for the germline variants. We restricted our attention to SNPs obtained from
malignant melanoma.

Determining base counts
For each mutation direction (e.g. C→T) we obtained base counts from paired mutated and reference base
locations from the same genomic fragments. Neighbour positions were indexed relative to the position of
the chosen location. For a mutated base, the chosen location was the annotated site of the SNP (Fig 1).
For the reference base, the chosen location was derived from the same genomic fragment by randomly
selecting from among the positions that had the same starting base as that affected by the mutation (e.g. a
random choice of a position with a C in the case of a C→T mutation), but excluded the SNP location.
For each mutation direction, for each sampled genomic segment, a 5bp long sequences with the chosen
location at centre was extracted and the bases observed per position relative to the chosen location were
recorded. As the total number of possible neighbourhoods was 256, a single file was written with counts
for each of the possible neighbourhoods for both the mutated and reference locations.
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 T  G  A  G  C  C  G  G  G  C  A
-5 -4 -3 -2 -1  0  1  2  3  4  5C→T

 C  T  G  G  G  C  A  T  G  A  G
-1  0  1  2  3  4  5 -5 -4 -3 -2Random C

Figure 1. Specifying neighbourhoods. The neighbourhood of a position at which a C→T mutation
occurred is compared with the neighbourhood of a randomly selected occurrence of C from the same
sequence. The location of the C→T SNP is the central position for the mutated base and is assigned the
index 0. The C at position 4 was randomly chosen as the reference location and the sequence is shifted so
it is centred on this position (see ‘Determining base counts’ for fuller explanation).

Log-linear modelling of neighbour effects
We first demonstrate the general approach of applying log-linear models for understanding neighbour
influences on mutation by focusing on the influence of a single neighbouring position. We then consider the
extension of comparing neighbour contributions between samples. Both of these analyses are concerned
with the independent contribution of bases at a position to mutation status.

For a single position, we evaluate whether base and mutation status occur independently using a
straightforward log-linear model. Under the most saturated log-linear model, the log of the expected
frequency fi j for base i and mutation status j can be expressed as

ln fi j = λ +λ
base
i +λ

status
j +λ

base:status
i j (1)

where λ represents the intercept (i.e., common to all counts), λ base
i , the contribution to the frequency

of being base i, λ status
j the contribution to the frequency of being mutation status j, and the interaction

between base and status λ base:status
i j . The latter expresses the degree of non-independence between base

and mutation status. The number of levels for each factor are: base, 4 levels (A, C, G, T); and mutation
status, 2 levels (M and R). The fit of a log-linear model is measured as the deviance (D). We specify the
null hypothesis that bases occur independent of mutation status by setting λ base:status = 0. The alternate is
the fully saturated model. The difference in D between the null and alternate, nested models, is taken as
χ2 with degrees of freedom equal to the difference in the number of free parameters. In this instance, the
degrees of freedom is 3.

When comparing groups, e.g. autosome versus X-chromosome, we add another factor (λ group) to the
log-linear model (2). The fully parameterised version of this log-linear model requires addition of further
3 interaction parameters: 2 two-way interactions and the three-way interaction parameter λ base:status:group.
This parameter represents the influence of group on the base : status interaction. We therefore evaluate
the null hypothesis of no difference between samples by setting all λ base:status:group = 0 and compare this
against the fully saturated model. If the group factor has only 2 levels, then the degrees of freedom for the
resulting D is 3.

ln fi j = λ +λ
base
i +λ

status
j +λ

group
j

+λ
base:status
i j +λ

base:group
i j +λ

group:status
i j

+λ
base:status:group
i j

(2)

We now extend this approach to consider the simultaneous influence on mutation status of bases at
multiple positions. To illustrate, consider the two neighbours following the base C in Fig 1. There are
sixteen possible dinucleotides at the 1,2 positions. The goal of this model is to establish whether the
dinucleotides at these two positions affect mutation status of C after taking account of the independent
contributions of these positions. In order to achieve this, our two-position interaction model extends the
independent contribution model (1), adding factors for the additional position and then interaction terms
between the parameters. The fully saturated two-position interaction model is

ln fi jk = λ +λ
base1
i +λ

base2
j +λ

status
k +λ

base1:status
ik

+λ
base2:status
jk +λ

base1:base2
i j +λ

base1:base2:status
i jk

(3)
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where λ base1 and λ base2 represent the base contributions at positions one and two. In addition to
including factors for the independent contributions of the two positions on mutation status, the λ base1:base2

accounts for non-independent occurrence of bases at the positions, a key property of DNA sequences.
The null hypothesis of no interaction between dinucleotides and mutation status is specified by setting all
λ base1:base2:status = 0 and comparing this against the fully saturated model. The resulting D has 9 degrees
of freedom. For a given mutation direction, we perform this analysis for all possible combinations of pairs
of sites.

These approaches are further extended to consider interactions amongst three positions, amongst four
positions and for comparison of these effects amongst groups.

Log-linear model of mutation spectra
For analysis of mutation spectra, we evaluate the null hypothesis that the distribution of mutations is the
same between groups. The opportunity for a specific mutation direction is affected by the total occurrence
of the starting base. This quantity can be difficult to ascertain, such as in cancers where there may be
major genomic rearrangements (e.g. deletions) relative to a reference group. To avoid this uncertainty, we
restrict the analysis to point mutations from a specific base, comparing the relative counts of each of the 3
possible mutations between groups. This is a test of independence between ending base and group.

For a specific base, the log of the expected frequency is defined as

ln fi j = λ +λ
direction
i +λ

group
j +λ

direction:group
i j (4)

where the factor λ direction represents the counts of the 3 different point mutation directions, λ group

the counts in the different groups, and λ direction:group the interaction between these factors. We specify
the null hypothesis of equivalent proportions between the groups by setting λ direction:group = 0. For two
groups, comparing against the fully saturated model, the D has 2 degrees of freedom.

Visualisation
Sequence logo’s display motifs using the mutual information as the letter stack height, and the fraction
contributed to the mutual information (MI) by individual bases is derived from their individual terms in
the MI calculation. We adopt a similar approach here. Instead of using MI, we use relative entropy (RE).
The log likelihood ratio D is converted to RE by dividing by twice the sample size. RE from a log-linear
analysis specifies the letter stack height. We use the terms in the RE equation to determine the proportion
of the stack height attributable to a specific base. We differ from the conventional sequence logo approach
by distinguishing between bases that are under or over represented in the mutated class, relative to the
unmutated class. Under-represented bases are indicated by a 180◦ rotation.

Interpretation of the logo is straightforward. A higher RE value value indicates that a position(s) has
a greater influence on mutation. Support for concluding a stack height reflects a meaningful influence
on mutation derives from the p-value, from the log-linear model, that the null hypothesis is correct.
The magnitudes and orientations of letters further conveys meaning in that ordinary letter orientation
is indicative of over representation in the mutated group while inverted orientation indicates under
representation. We note here that we make a choice to use residuals from the mutated class for display.
Using residuals from the unmutated class would generate an image with the opposite letter orientations.

For multi-position models (e.g. 3), the stack height is equal between the indicated positions. For the
two-position model, the characters for the nucleotide pair at the two positions share the same proportion
and orientation. For the more complicated analyses involving contrasting neighbour effects between
groups, the reference category is the one provided first to the software.

Differences in mutation spectra are visualised using a grid with rows corresponding to the starting
base and columns the base resulting from the mutation. Each row corresponds to a single log-linear test
for equivalent distribution of the possible point mutations from the base indicated by the row label (see ).
The RE for each row is computed from the deviance of the corresponding spectra test. Letter heights for
each base are scaled proportional to the corresponding term in the RE equation. The sum of letter heights
in a row is the total RE for that test. Bases over-represented in the reference group are oriented in the
conventional manner while under-represented bases are rotated 180◦. In the spectra analysis, the largest
base in the grid is the dominant mutation product difference between the groups.
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Availability of data and materials
MutationMotif is a Python 2.7 compatible library for performing the statistical analyses outlined
in this work that will be made freely available under the GPL. The project homepage is at https://
bitbucket.org/gavin.huttley/mutationmotif and the version employed for the reported
work is available in Zenodo (DOI 10.5281/zenodo.53215). It draws on R (Ihaka and Gentleman, 1996)
for log-linear modelling, via the glm function, using the rpy2 Python binding to R. Sequence logo’s are
drawn using custom Python code included in MutationMotif. Other dependencies include PyCogent
(Knight et al., 2007), pandas, numpy, matplotlib and scitrack.

The scripts performing the data sampling and applying the analyses reported in this work will be made
freely available under the GPL at https://bitbucket.org/gavin.huttley/analysemutations
and the version employed for the reported work is available in Zenodo (DOI 10.5281/zenodo.53220).
AnalyseMutations includes the counts data required by MutationMotif and the complete set
of results contained in this work. These counts data were produced from data sampled from the En-
sembl and COSMIC databases, as described in . Because the data files from which the compact counts
files were produced are so large, they are available separately in Zenodo (DOIs 10.5281/zenodo.53158
https://zenodo.org/record/53158 and 10.5281/zenodo.53164 https://zenodo.org/
record/53164) under the Creative Commons Attribution-Share Alike license. Data files are typically
gzip compressed standard formats; tab delimited text files, fasta formatted sequence files, serialised data
is stored as json or pickle (Python’s native serialised format).

RESULTS
Overview of notation and neighbour effect log-linear models
The notation X→Y refers to a point mutation from X to Y, X→Y∗ refers to a point mutation and its strand
symmetric counterpart, e.g. C→T∗ is C→T or G→A.

The log-linear model of neighbour influence evaluates the null hypothesis that a neighbouring base(s)
flanking a specific point mutation is the same as that flanking a random occurrence of the starting base.
For instance, does the distribution of bases at sites flanking C→T mutations differ from that flanking
all C’s? As the frequency of bases varies between genomic locations (Bernardi, 2000), the mutated
and reference locations need to be matched to avoid possible confounding. We achieve this matching
by deriving a reference location proximal to each mutated location. The sampling process is shown in
Fig 1. We sampled 300bp of flanking genomic sequence each side of a SNP and within this segment
chose, at random, another occurrence of the starting base affected by the mutation event. Unless stated
otherwise, we limited our analysis of neighbouring influence to ±2bp either side of the mutated position,
resulting in 256 possible neighbourhoods. For any given mutation direction, counts of these different
neighbourhoods are obtained from both the sample centred on the mutated base and the sample centred
on a random occurrence of the starting base. These counts are used to construct the contingency tables for
the log-linear analysis. This approach achieves the objectives of controlling for compositional variation
across the genome and controlling for the non-random occurrence of bases. See ‘Determining base counts’
for more detail on this procedure.

The log-linear models used to examine the effect of neighbours on point mutation include parameters
that represent an interaction between neighbouring base(s) and mutation status (see ). The contribution of
this parameter to model fit is measured as a Deviance which, along with the residual degrees-of-freedom,
is to calculate the corresponding p-value for the null hypothesis. We convert the Deviance to relative
entropy (hereafter, RE) as this measures the information content of the data under the model in a manner
that is robust to sample size, allowing comparisons among analyses.

As we are concerned with whether flanking positions individually or jointly affect mutation process
we describe the influence of neighbouring bases as independent or dependent/joint effects respectively.
The influence of a base at a single neighbouring position on a point mutation will be referred to as an
“independent” effect. The case when bases at two or more neighbouring positions influence a point
mutation will be referred to as a “dependent” interactive effect or the joint influence of multiple bases.
We note here that in the case of a dependent effect the actual positions are not necessarily contiguous.
The number of positions involved in a dependent effect is referenced as the “order” of the interaction. An
independent effect, the influence of a single position on mutation, is a first order effect while the joint
influence of two positions on mutation is a second order effect. Flanking locations are indexed relevant to
the mutated position. The immediate flanking 5’ base is at position −1 while the immediate flanking 3’
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base is at position +1 (see Fig 1). A series of positions are indicated by the relative indices in parentheses
e.g. (−2,−1) are two positions 5’ to the mutated base.

Log-linear models recapitulate the CpG effect and reveal higher order effects
In the analyses we report below, we focus principally on analyses of intergenic autosomal data. We also
sampled SNPs from introns and exons. We relegate all results from analysis of other genomic regions to
supplementary material as the results are substantively the same as those from the intergenic sequence
class.

We benchmarked our method by examining the influence of neighbouring bases on C→T point
mutations in the autosomal intergenic sample. (As none of the strand symmetry tests were significant
for the intergenic autosomal mutations, we limit our discussion to the “plus” strand directions only.) We
expected the influence of methylation induced deamination at CpG to reveal a strong G effect at the +1
position (Cooper and Youssoufian, 1988). This prediction was confirmed in the results of the hypothesis
test (Table 1) and visually in the mutation motif logo (Fig 2 b). The analysis established that while all
positions made highly significant independent contributions to mutation (Table 1) the magnitude of their
influence was small compared to that at the +1 position and only one of these was evident in the mutation
logo, that of A at the −1 position (Fig 2 b). (Results from the equivalent analysis of autosomal exon data
are shown in Fig S1.)

Position(s) Deviance df p-value
-2 1574.2 3 0.0
-1 18674.9 3 0.0
+1 346848.0 3 0.0
+2 2174.5 3 0.0

(-2, -1) 1603.1 9 0.0
(-2, +1) 555.5 9 0.0
(-2, +2) 352.7 9 1.7×10−70

(-1, +1) 2341.3 9 0.0
(-1, +2) 315.1 9 1.6×10−62

(+1, +2) 1965.0 9 0.0
(-2, -1, +1) 939.7 27 0.0
(-2, -1, +2) 523.0 27 2.7×10−93

(-2, +1, +2) 264.6 27 7.3×10−41

(-1, +1, +2) 467.8 27 6.5×10−82

(-2, -1, +1, +2) 273.9 81 9.1×10−23

Table 1. Log-linear analysis of C→T autosomal intergenic mutations. Position(s) are relative to the
index position (see Figure 1). Deviance is from the log-linear model, with df degrees-of-freedom and
corresponding p-value obtained from the χ2 distribution. p-values listed as 0.0 are below the limit of
detection.

Specific combinations of bases at multiple positions also significantly affected C→T mutations. All
higher order interactions were statistically significant. A feature of the second and third order joint effects
was that bases immediately proximal to each other or to the mutated position had the strongest association:
(−2,−1), (−1,+1), (+1,+2) second order interactions (Table 1 and Fig 2 c), and the (−2,−1,+1) third
order interaction (Fig 2 d).

Despite the highly significant associations between combinations of positions and interactions, the
independent position contributions dominated. All effect orders were significantly associated with
mutation status even when using the sequential Holm-Šidák correction for 15 tests (Holm, 1979). These
results reflect the enormous statistical power resulting from the large sample sizes, e.g. over 1 million
C→T intergenic SNPs. Contrasting the magnitudes of these different effects by displaying the maximum
RE value from each effect order (REmax, Fig 2 a) provide a useful indicator of their relative influence;
REmax(1) is the maximum RE score for first position effects across all positions (e.g. +1 in this case),
REmax(2) the maximum RE score from combinations of two positions, and so on for the higher orders.
This display established that the 3’-G influence dominates all other neighbouring base effects on C→T
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mutation. Furthermore, contrasting these values between the point mutations (Table 2) affirms that
neighbourhood has the strongest effect on C→T mutations (Fig S2).
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Figure 2. Flanking influences on C→T mutations. (a) First order effects are the dominant
neighbourhood influence, REmax (y-axis) is the maximum RE from the possible evaluations for a motif
length (x-axis), (b) Single position effects, (c) Two-way effects, and (d) Three-way effects. For b-d, the
y-axis is RE and the x-axis is the position index relative to the mutated base.
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A→G mutations are also strongly affected by neighbours
The A→G transition mutation exhibited the next strongest influence of neighbouring bases (Table 2). As
for C→T, all effect orders were highly significant after correcting for 15 tests (Table 3). All positions
showed significant first order influences, but the −2,−1,+1 positions were particularly strong (Fig 3
b). Two of these, (−2,−1), also exhibited a prominent second order interaction (Fig 3 c) while all three
contributed the strongest third order interaction (Fig 3 d). For A→G mutations, our analysis indicated
that while first order effects dominated, higher order effects were important factors affecting this mutation
direction (Fig 3 a). (Results from the equivalent analysis of autosomal exon data are shown in Fig S3.)

Direction REmax(1) Pos.(1) REmax(2) Pos.(2) REmax(3) Pos.(3)
A→C 0.0039 -1 0.0016 (+1, +2) 0.0012 (-2, -1, +1)
A→G 0.0188 +1 0.0030 (-2, -1) 0.0007 (-2, -1, +1)
A→T 0.0095 +1 0.0051 (-1, +1) 0.0023 (-1, +1, +2)
C→A 0.0091 +1 0.0044 (-1, +1) 0.0015 (-1, +1, +2)
C→G 0.0054 -2 0.0025 (+1, +2) 0.0010 (-1, +1, +2)
C→T 0.0860 +1 0.0006 (-1, +1) 0.0002 (-2, -1, +1)

Table 2. Summary of neighbourhood contributions to plus strand mutations with an autosomal
intergenic location. REmax(#) is the maximum RE for order # and Pos.(#) the corresponding position(s).
All point mutations had at least one significant test after correcting for 15 tests (see Table 1) using the
Holm-Šidäk procedure.

Position(s) Deviance df p-value
-2 26528.3 3 0.0
-1 20038.7 3 0.0
+1 57037.8 3 0.0
+2 1802.0 3 0.0

(-2, -1) 9058.8 9 0.0
(-2, +1) 3615.8 9 0.0
(-2, +2) 701.1 9 0.0
(-1, +1) 3233.2 9 0.0
(-1, +2) 1516.8 9 0.0
(+1, +2) 2329.1 9 0.0

(-2, -1, +1) 2018.3 27 0.0
(-2, -1, +2) 561.1 27 0.0
(-2, +1, +2) 362.2 27 2.4×10−60

(-1, +1, +2) 1191.2 27 0.0
(-2, -1, +1, +2) 426.5 81 2.3×10−48

Table 3. Log-linear analysis of A→G autosomal intergenic mutations. Position(s) are relative to the
index position (see Figure 1). Deviance is from the log-linear model, with df degrees-of-freedom and
corresponding p-value obtained from the χ2 distribution. p-values listed as 0.0 are below the limit of
detection.

Transversion mutations are affected by neighbours
All transversion mutations had significant neighbourhood influences but to a lesser extent than that
evident for transition mutations (Table 2). The transversion mutations showed REmax(1) that were 20-fold
less than for the C→T mutations. However, higher order effects were typically more pronounced for
transversions than transitions. The A→T and C→A transversion mutations showed the greatest influence
of neighbours at all levels. The dominant influences were immediately adjacent to the mutating base
except for C→G, where position −2 had the strongest effect.
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Figure 3. Flanking influences on A→G mutation in autosomal intergenic sequences. (a) First order
effects are the dominant neighbourhood influence, (b) Single position effects, (c) Two-way effects, and
(d) Three-way effects. For b-d, the y-axis is RE and the x-axis is the position index relative to the mutated
base.
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The size of the neighbourhood
Our analyses above indicated first order effects exerted the strongest influence on mutations. Accordingly,
we limited our examination of neighbourhood size to first order effects and sampled intergenic autosomal
SNPs with a flank size of ±10bp for an analysis. After correcting for multiple tests, all 20 flanking
positions were significant for all point mutations (Table S1). This suggests a neighbourhood size ≥10.
The tendency for even very distant positions to be highly significant in this analysis likely reflects the
enormous sample sizes employed for this analysis and does not necessarily reflect the magnitude of a
positions influence. Therefore, for each mutation we estimated the most distant position with a RE that
was ≥10% of REmax(1). For the transition mutations, the neighbourhood size was restricted to positions
within ±2bp (Fig S4) whilst for transversion mutations, the neighbourhood size was within ±4bp (Table
S1).

Some germline point mutations exhibited different neighbouring effects between se-
quence classes
The operation of transcription coupled DNA repair processes suggested a possible difference in neighbour
effect may exist between transcribed and untranscribed sequences. This predicts a difference in mutation
profile between intergenic and intronic sequences. Our analysis of neighbourhood contributions to
mutation established that for first order effects, every point mutation was significantly different between
the sequence classes (Table S2). For second order effects, only the transition mutations showed significant
differences. The biggest difference between the regions was for A→T∗. While these effects were
highly significant, their REmax(1) were ≈100 fold lower than the overall influence of neighbourhood on
intergenic A→T.

Neighbouring effects differ between chromosome classes
Differences in germline biology between males and females predict distinct mutation profiles between
sequences located on the autosomes and X-chromosome (Huttley et al., 2000). Our test of the hypothesis
of no difference in flanking base effect between autosome and X-chromosome mutations in intergenic
sequences was rejected for first order influences on several of the point mutations, after correcting for 15
tests using the Holm-Šidák procedure (Holm, 1979) (Table S3). Interestingly, A→G∗ and C→T∗ showed
comparable differences in flanking base effect between the chromosome classes (Deviances ≈26.0 and
≈25.4 respectively). In all cases, the effect exists at the same position as that identified as REmax(1) in
the intergenic analysis (Table 2). While the transition mutations were the most statistically significant,
their RE lay within the range of the other point mutations (Table S3) indicating their significance reflects
greater abundance and thus a greater rate.

Analysis of germline mutation spectra
Our log-linear model for analysis of mutation spectra compares counts of point mutations from the
same starting base between groups. By considering only mutations from a single base between different
locations, differences in the abundance of the starting base between groups are controlled for. This
approach can be applied to groups representing different strands, different genomic regions or different
biological materials (e.g. germline and somatic).

Our analysis of germline mutation spectra indicated point mutations were uniformly strand symmetric
but different between sequence categories. No sequence category exhibited strand asymmetry in mutation
spectra for autosomal data. Significant differences in autosomal mutation spectra were evident between
intergenic and intronic regions. The major differences were for transversion mutations, specifically C→A
and its strand complement (Table S4).

Significant differences between chromosome classes were evident (Fig 4 and Table S5). For the
intergenic sequence class, T→C∗ transition mutations were in strong excess on autosomes compared with
X-chromosome (Fig 4). Comparable results were evident for intronic sequences (Table S6).

Melanoma mutations exhibit strikingly different neighbour effects and spectra
Mutation processes in malignant melanoma are known to be distinctive and to include strand asymmetric
mutation processes within genes (Pleasance et al., 2010). Our analysis confirm that the profile of point
mutations in the malignant melanoma sample was strikingly different to the germline mutations (Tables
S10, S11). The grid of all point mutations (Fig 6) demonstrates that neighbouring influences were most
pronounced for C→T point mutations and much stronger influence of neighbouring bases on transversion

11/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2236v1 | CC BY 4.0 Open Access | rec: 4 Jul 2016, publ: 4 Jul 2016



0.00

7.8e-06

1.6e-05

A

A C G T

0.00

7.8e-06

1.6e-05

C

0.00

7.8e-06

1.6e-05

G

0.00

7.8e-06

1.6e-05

T

Ending Base

S
ta

rt
in

g
 B

a
s
e

Figure 4. Significant differences in mutation spectra between autosomal and X-chromosomal intergenic
sequence regions. Starting base, Ending Base correspond to X, Y respectively in X→Y. The y-axis is RE
from the spectra hypothesis test and letter heights are as for the mutation motif logo. Letters in the normal
orientation indicate an excess of that mutation direction in autosomal relative to the X-chromosomal
mutations. Inverted letters indicate a deficit in autosomal relative to the X-chromosomal mutations.

mutations. The neighbour effects were also significantly strand asymmetric (Table S7). Of particular note
wristically distinctive for melanoma. Only substitutions affecting C were significantly different in spectra
between strands with the C→T direction being over abundant on the + strand (Fig 5, Table S8).

DISCUSSION
While it has long been appreciated that sequence neighbourhoods affect point mutations, statistical
methods for disentangling how neighbourhood contributes have been limited. Here we addressed this
using a novel determination of the reference distribution and log-linear models. This methodological
combination captures complexity in the genomic background of nucleotide composition. It further enables
hierarchical hypothesis testing for establishing the significance and relative importance of neighbourhood
effects. We illustrated utility of the models by applying them to analyses of mutations from samples
reported to exhibit distinctive properties. Our analyses recapitulated well-known effects in terms of
neighbour dependence and in terms of differences between genomic regions and somatic and germline,
supporting the accuracy of the methods. The results revealed previously unreported neighbourhood
effects that extends beyond immediate flanking positions. Analyses of mutation spectra complemented
the neighbourhood analyses, confirming known features of point mutations in malignant melanoma
and identifying novel differences in germline point mutation abundance between sex-chromosomes and
autosomes.

The hypermutability of C→T in CpG dinucleotides is the exemplar of context dependent mutation and
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Figure 5. Strand asymmetry in malignant melanoma. Only mutations from C were statistically
significant. Starting base, Ending Base correspond to X, Y respectively in X→Y. The y-axis is RE from
the spectra hypothesis test and letter heights are as for the mutation motif logo. Letters in the normal
orientation indicate an excess of that mutation direction on the + strand. Inverted letters indicate a deficit
on the + strand.

Direction REmax(1) Pos.(1) REmax(2) Pos.(2) REmax(3) Pos.(3)
A→C 0.0167 -1 0.0101 (-1, +1) 0.0078 (-2, +1, +2)
A→G 0.0135 -1 0.0118 (-1, +1) 0.0051 (-1, +1, +2)
A→T 0.0110 -1 0.0039 (-2, +1) 0.0033 (-2, -1, +1)
C→A 0.0319 -1 0.0102 (-1, +1) - -
C→G 0.0264 +1 0.0035 (-1, +1) 0.0041 (-2, -1, +1)
C→T 0.0788 -1 0.0130 (-1, +1) 0.0006 (-2, -1, +1)
G→A 0.0918 +1 0.0090 (-1, +1) 0.0009 (-1, +1, +2)
G→C 0.0254 -1 0.0028 (-2, +1) 0.0043 (-1, +1, +2)
G→T 0.0242 +1 0.0078 (+1, +2) 0.0052 (-1, +1, +2)
T→A 0.0123 +1 0.0042 (+1, +2) 0.0044 (-1, +1, +2)
T→C 0.0135 +1 0.0244 (-1, +1) 0.0057 (-1, +1, +2)
T→G 0.0137 +1 0.0118 (-1, +1) 0.0074 (-2, +1, +2)

Table 4. Summary of neighbourhood contributions to mutations in malignant melanoma. REmax(#) is
the maximum RE for order # and Pos.(#) the corresponding position(s). All point mutations had at least
one significant test after correcting for 15 tests (see Table 1) using the Holm-Šidäk procedure.
Non-significant results are indicated by ‘-’.

a gold standard that a method of analysis should correctly recover. We established that the conventional
sequence logo analysis approach did not recapitulate the dominant influence of a 3’-G (Fig 7). As this
method shares the assumption of equifrequent bases with that of Krawczak et al. (1998), the failure
suggests the Euclidean distance approach will also be flawed. In contrast, as shown in Table 1 and Fig 2,
our analysis successfully recapitulated this known effect. The REmax values (Table 2 b) further affirm
C→T as most strongly affected by neighbouring bases.

In order to sensibly interpret the results of our analyses we de-emphasise the importance of statistical
significance and focus instead on effect magnitude. Due to the very large number of inferred mutations,
our analyses possess very high power to detect small effects. This is illustrated by the very small p-values
associated with, for example, third order effects for the C→T mutation (Table 1). Yet, the magnitude of
these effects is relatively small in comparison with the first order effects (Fig 2 a). Consequently, and
in addition to considering whether effects are statistically significant according to standard criteria, we
contrast RE statistics to establish relative importance.

Our analysis identified numerous novel properties of neighbouring sequence influence on point
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Figure 7. The CpG effect on C→T is not revealed by applying the conventional sequence logo method
to autosomal intergenic mutations. MI is mutual information.

mutation in the germline. First, all mutations were significantly affected by neighbouring bases with
transition mutations showing a larger influence of neighbours than transversions. Interestingly, as
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illustrated by the A→G∗ mutations, these influences did not decay monotonically with distance from
the mutation (Fig 3 b). This point mutation further illustrated that multiple neighbouring positions
can influence mutation outcome. Comparing RE values to that for C→T indicates that the first order
neighbourhood effects of other point mutations were ∼5−20 fold less, with those values corresponding
to A→G and A→C mutations respectively (Table 2). Second, all mutations were significantly affected
by higher order effects (interactions between adjacent bases). These were evident in a manner such that
bases contiguous with each other and the mutated location showed the largest RE. This may reflect the
importance of interactions amongst adjacent bases (base-stacking) in affecting DNA stability (Karlin and
Burge, 1995; Yakovchuk et al., 2006). For all point mutations, the RE terms from first order effects were
markedly stronger than those for higher order effects. These results were replicated in our analysis of
intronic SNPs (Table S9).

The evidence for neighbouring influence on mutation raised the important question of how far these
effects of flanking sequence extend? While there was strong statistical significance of positions as far as
10bp from the mutating base (Table S1), considering the relative magnitude of RE values indicated a very
rapid decay away from the mutated position. In particular, that the magnitude of the effect decayed below
an order of magnitude within 2 bases for transition mutations. This trend is illustrated by the mutation
motif logo displays (Fig S4). While transversion mutations exhibited a slower decay in effect magnitude,
and hence a larger neighbourhood, these reflect the smaller REmax(1) of transversions which constitute a
less stringent cut-off.

The profile of somatic mutations is expected to exhibit differences to germline mutations due to
requisite defects in DNA repair systems. As illustrated by Nik-Zainal et al. (2012), such defects are
characteristic of cancers. Of the characterised cancers, malignant melanoma exhibit the most distinctive
mutation signatures. Included in the distinctiveness of malignant melanoma is a striking strand asymmetry
(Pleasance et al., 2010). This putatively derives from UV light induced formation of pyrimidine dimers.
In transcribed regions, nucleotide excision repair processes coupled to transcription-coupled repair
mechanism, results in efficient repair of transcribed strand lesions. As a consequence, mutations are
expected to accumulate on the non-transcribed strand. Evidence supporting this, with more C→T
mutations on non-transcribed strand than on the transcribed strand, has been reported (Pleasance et al.,
2010).

Our analysis demonstrated that point mutations in melanoma were dependent on neighbours in a
manner strikingly different from that of germline processes discussed thus far (Fig 6 and Table 4). While
C→T mutations were again the point mutation most affected by neighbouring bases, the motif was
markedly different to that from the germline process with a 5’-T showing the greatest influence. This
difference indicates that 5mC deamination plays a less prominent role in C→T. Since melanoma arises
in part due to defect(s) in DNA repair the distinctive mutation motifs in melanoma indicate either a
very effective masking of sequence neighbourhood effects on lesion formation, or that the DNA repair
mechanisms inactivated in melanoma are strongly affected by sequence neighbourhood. Our melanoma
analysis also strongly supported strand asymmetry of mutations, with the effect most pronounced for
C→T.

A major asset to the log-linear modelling framework is the ease of extension to enable comparisons
between samples. The utility of this is illustrated above in comparing somatic to germline processes. The
appeal of this capability, however, is much broader as it further allows evaluation of the processes that
contribute to within genome heterogeneity in sequence composition. We have illustrated this application
here by considering genomic regions for which the incidence of mutation processes are known to differ
(X-chromosome versus autosomes) or where DNA repair processes are known to differ (transcribed versus
untranscribed regions).

The notion that there is a systematic tendency for mutations to originate in males has been known
since Haldane (Haldane, 1935, 1946, 1948). The most popular hypothesis to account for male biased
evolution is the mutation-through-DNA-replication hypothesis (Li et al., 2002; Webster et al., 2005).
Other, non-replication based, differences in mutation between the sexes have also been proposed (Huttley
et al., 2000). Included in these is evidence for elevated methylation of DNA in the male germline. This
suggests the relative contribution of 5mC derived lesions will be greater on the autosomes compared
to X-chromosome as the latter spends less time (on average) in males. Our analyses for differences in
neighbour influences did lend support to existence of distinct 5mC affecting mutation processes operating
between the X-chromosome and autosomes (Table S3), including a reduced magnitude of the +1 influence
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on the X-chromosome. However, this was not the strongest difference in neighbourhood effect between
the chromosomal classes; A→G showed the strongest statistical significance while C→G showed the
greatest RE. The spectra analyses further emphasised the importance of differences in A→G∗ point
mutations (Fig 4). These results therefore indicate more extensive point mutation differences between
these chromosome classes than previously appreciated and suggest a corresponding diversity in mutational
processes between male and female germlines.

That differences in operation of DNA repair processes may affect mutation is predicted by the localised
influence of transcription coupled DNA repair. This process is known to operate in a manner that is
strand asymmetric. Differences in base parity – the frequency of A should equal that of T, G should equal
C – support an effect of transcription on point mutation mutation (Touchon et al., 2003). Significant
differences in neighbour effects for all point mutations were evident between intergenic and intron regions.
However, our analysis of strand symmetry for neighbour effects was not significant for intron sequences
for any point mutation. This suggests a distinctive mutation profile arising from transcription, rather than
the influence of transcription coupled DNA repair.

As formulated, the neighbour analysis do not evaluate the relative abundance of mutations between
samples. For this purpose, we introduce what we termed the mutation spectrum analysis. As the
opportunity for mutation is affected by the frequency of the starting base, and base frequency differs
between genomic locations, we perform spectrum analysis for each nucleotide separately. The null
hypothesis is a very simple one, that the 3 possible point mutations from a starting base occur in equal
frequency between samples. As such, this spectrum approach does not consider neighbouring base
contributions at all and is therefore complementary to it.

For each of the above analyses comparing groups we also undertook mutation spectrum analyses.
There were no significant strand differences for autosomal data. Comparisons between the X-chromosome
and autosomes revealed highly significant differences in composition for all bases (Fig 4). The most
pronounced difference was an excess of A→G∗ transition mutations on autosomes. Similarly, all point
mutations showed significantly different mutation spectra between intergenic and intronic regions (Table
S4). In this case, however, the dominant differences were an excess of transversions creating A/T base
pairs in intergenic regions while introns were characterised by an excess of C/G base pair creating
mutations.

CONCLUSION
The methods we present enable characterising mutational processes affecting samples. For the neighbour
analyses, the critical properties of the methods we present derive from the specification of the reference
distribution and utilisation of the well established log-linear modelling framework. This combination
has considerable potential for detailed interrogations of mutation properties and should improve our
understanding the mechanism of mutations, both germline and somatic. Our application of the method
generated mutation motifs consistent with well known effects. We further revealed a pronounced influence
of flanking bases on all point mutation processes. From germline mutations we have identified a striking
dependence of the A→G transition on multiple positions. The mechanistic basis of this mutation motif is
unknown.

The neighbourhood and spectral analyses examine complementary aspects of mutational process. The
former examines the contribution of neighbouring bases to the mutation outcome from a starting base
and the latter considers the breakdown of mutations from a single base. While the p-values from the
hypothesis tests are sensitive to sample size, a property that may be proportional to mutation rate, neither
approach explicitly considers the rate of mutation.

As with all methods that seek to characterise data arising from unobserved processes, there are
challenges of interpretation. In both the neighbour and spectral analysis approaches, the data are a
composite of mutation events with potentially diverse etiological histories. As a consequence, differences
between samples will potentially reflect multiple mechanistic differences. Regardless of these issues,
analyses that use measures of genetic distance, such as phylogenetics, cannot rationally rely on models of
sequence divergence that assume mutations affect nucleotides independent of their neighbours. Instead,
models that accommodate neighbour effects to at least ±2 positions will need to be developed in order to
reasonably capture the neighbourhood influences described here.
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