

- 1 Exploiting Observations & Measurement data standard for distributed LTER-
- 2 Italy freshwater sites. Water quality issues.
- 3 Lanucara Simone (1), Carrara Paola (1), Oggioni Alessandro (1), Rogora Michela (2),
- 4 Kamburska Lyudmila (2), and Rossetti Giampaolo (3)
- 5 (1) Istituto per lo Studio Elettromagnetico dell'Ambiente, Consiglio Nazionale delle Ricerche (CNR-IREA). Via Bassini, 15 20133 Milano (MI)
- 7 (2) Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche 8 (CNR-ISE). Largo Tonolli 50 -28922 - Verbania Pallanza (VB)
- 9 (3) Università di Parma. Parco Area delle Scienze, 11/a 43124 Parma (PR)
- 10 Corresponding author: Simone Lanucara lanucara.s@irea.cnr.it
- 11 Keywords: Free and Open Source Software for Geospatial; Spatial Data
- 12 Infrastructure; Sensor Web Enablement; Ecological research;

13 ABSTRACT

- Water quality is a multi-source, multi-purpose problem that needs exploiting
- observations, often taken by a number of heterogeneous bodies. This problem has
- been tackled within the Italian Long Term Ecological research network (LTER-Italy)
- in an experiment aimed at testing how ecological observations of mountain lakes
- water can be shared by OGC (Open Geospatial Consortium) standard services of the
- 19 Sensor Web Enablement (SWE) initiative. A friendly and easy implementation of
- 20 these services is fostered by the usage of the open source software *Geoinformation*
- 21 Enabling Toolkit StarterKit ® (GET-IT¹). It has been used in the experiment to create
- 22 SOS services, upload observations and create SensorML metadata of the involved
- sensors. This contribution describes the experiment and presents its results.

24 INTRODUCTION

- 25 Water monitoring needs frequent in situ measurements of different parameters that
- 26 can vary depending on many factors, including its purpose. In situ measurement
- 27 activities are generally performed by many institutions; measures are stored and
- deployed following heterogeneous practices. This usually prevents sharing that calls
- 29 for homogeneous practices. Since the emergence of Spatial Data Infrastructures
- 30 (SDI), distribution and heterogeneity of geodata sources is no more an issue, provided
- 31 actors agree in adopting recommendations and techniques enabling interoperability.
- 32 OGC dictates regulations fundamental in this respect and SWE is its proposal for
- interoperability of observations from fixed and mobile sensors. Creating SWE basic
- 34 components, i.e. metadata of sensors and data, plus services for deploying, is not at
- all, in this moment, an easy task for limnologists, expert in lake research. This
- 36 contribution presents the methodology adopted to this purpose in the LTER-Italy
- 37 community for researches on mountain lakes. The methodology is based on open and

.

¹ http://get-it.it

41

- 38 free software and proved successful in creating SWE components and enabling
- interoperability, without requiring skilled IT profiles. The next section describes the
- 40 approach and its tools; then results are shortly presented and discussed.

METHOD

- 42 In the context of the NextData "Data-LTER-Mountain" project² we tested a
- 43 methodology and workflow to share sensors, observations, datasets and metadata of
- 44 Italian LTER sites, developing a distributed SDI. The architecture of SDI includes
- 45 two interoperable and independent nodes enabled to OGC standard web services. The
- 46 first node, installed at CNR ISE in Verbania Pallanza³, is related to repository and
- web services on the mountain lake LTER sites Lakes Paione Inferiore and Superiore,
- located in the Alps (Marchetto et al., 2004) and Lake Scuro and Santo Parmense, in
- 49 the Appennines. A second node is installed at CNR IREA Milan⁴, for repository and
- 50 web services on terrestrial mountain LTER sites.
- The nodes of the distributed SDI are implemented exploiting the free and open source
- software suite GET-IT, developed by a joint research group of CNR IREA CNR
- 53 ISMAR, under the flagship project RITMARE⁵; it facilitates the creation of nodes of a
- 54 federated SDI for an observational network. The suite allows users to straightforward
- share on the web (by OGC standards) their observations and metadata on them and on
- sensors used. It consists of a virtual machine, based on the Ubuntu operating system;
- 57 the basic software used is GeoNode⁶, a widely known geographic content
- 58 management system (Benthall et al., 2010; Winslow, 2010). GeoNode has been edited
- and have been added new facilities, both client and server side, for the creation,
- semantically enabled, and the management of observations and metadata of sensors
- 61 (Fugazza et al., 2014).
- The distribution on the web of sensor metadata and observations collected by sensors
- 63 is performed in GET-IT by means of standard OGC Sensor Observation Services
- 64 (SOS), i.e. a component of Sensor Web Enablement (SWE). This initiative, thanks to
- 65 its high level of abstraction and associated use of schemes such as SensorML (Sensor
- Metadata Language; Boots et al., 2007) and O&M (Observations & Measurements;
- 67 Cox, 2013) allows to create, store and share sensor metadata and observations
- gathered by the sensors.
- 69 Information on the sensors, registering mountain lakes ecological observations (i.e.
- 70 DX-500 Ion Chromatograph, ICS-3000 Ion Chromatograph, ION450 Ion Analyser,
- 71 Titrator TIM 900, double-beam UV-Visible spectrophotometer, etc.), originally on
- 72 spreadsheets or printed on paper, have been modeled according to the scheme
- 73 SensorML and in eXtensible Markup Language (XML). This modeling phase was
- carried out by the definition, for each instrument, of: identification code, sensor type,
- 75 manufacturer, operator, classification, inputs, outputs, parameters, and characteristics.

⁴ http//nextdata.get-it.it

² http://www.nextdataproject.it/sites/default/files/docs/PP1-LTER-Mountain.pdf

³ http//sk.ise.cnr.it

⁵ http://www.ritmare.it

⁶ http://geonode.org

- Metadata creation has been performed by GET-IT metadata editor, called EDI⁷, which
- allows ease and friendly instrument registration (SensorML editing) through graphical
- vser interfaces (GUI) and auto completion facilities linked to vocabularies. In
- 79 particular, parameters definition have been borrowed from the terms present in the
- 80 EnvThes⁸ environmental vocabulary, in order to harmonize and semantically enrich
- 81 the metadata with respect to the LTER community.
- 82 SOS service interfaces provided by GET-IT enable the interoperable sharing of sensor
- 83 metadata; SOS operation InsertSensor registers the instruments in the repository, and
- simultaneously shares sensor information in the form of interoperable SOS services,
- 85 so that it is possible to retrieve it in XML format through the SOS operation
- 86 DescribeSensor.
- 87 The following figure (1) shows an example of SOS request in hypertext transfer
- protocol (HTTP), i.e. SOS DescribeSensor request for metadata of a DX-500 Ion
- 89 Chromatograph, and the relative response in XML.

```
**Swiss.com.it/observations/sos/kvp?service=SOS&version=2.0.0&request=DescribeSensor&procedure=http://sp7.irea.cnr.it/sensors/skise.cnr.it/procedure/DionexCorpcQ_$\frac{\pi}{2}$ $$

*\(\sigma\) \text{swiss.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.pms.org.
```

91 **Figure 1**: SOS DescribeSensor request in HTTP for metadata of a DX-500 Ion Chromatograph and relative response in XML.

93 But GET-IT lets users search and view information on the instrument also in the form 94 of a human readable html page. The following figure (2) shows the same description 95 of DX-500 Ion Chromatograph of figure 1 in the user friendly way provided by GET-

IT: information is the same but the presentation is deeply changed.

-

90

96

⁷ http://edidemo.get-it.it

⁸ http://www.enveurope.eu/news/envthes-environmental-thesaurus

Figure 2: HTML page, provided by GET-IT, for metadata of a DX-500 Ion Chromatograph.

After sensor metadata registration and sharing, the next step is the inclusion of related collected data, originally on spreadsheets or paper. First, we modeled data according to O&M, after which each measure can be composed by the following elements: feature of interest, phenomenon time, result time, procedure, observed property, result. In this work, parameters measured (i.e. observed properties in O&M) have been borrowed from the terms present in the EnvThes vocabulary, in order to harmonize and semantically enrich the metadata.

Once modeled data following O&M, SOS services interfaces made available by GET-IT GUI enable their upload and interoperable distribution; SOS InsertObservation registers data to distribute them in the form of interoperable SOS services, GetObservation retrieves them in XML format. GET-IT also provides friend GUI for InsertObservation (fig. 3) and for GetObservation in an interactive web map (fig. 4).

111

113

115

Figure 3: GET-IT form for InsertObservation.

114 **Figure 4**: GET-IT web map and graphical dialogue window to show results of GetObservation.

RESULTS AND CONCLUSIONS

Through the use of GET-IT and its SOS services, in the framework of the project NextData "Data-LTER-Mountain", LTER-Italy researchers making observations on mountain lakes shared seventy new observations and relative metadata, available at the CNR ISE SDI node. Observations of the sites Lake Paione Inferiore and Lake

- Paione Superiore cover a time range of about thirty years with a biyearly resolution;
- observations of the Lakes Scuro and Santo Parmense cover a time range variable
- between fifty and thirty years with a time resolution between monthly and quarterly.
- 123 The result is considerable bearing in mind that, compared to the amount of
- observations and metadata at the start of the project, there was an increase of 488% in
- the number of observations and relative metadata distributed for a total number of
- records in the repository of approximately 60,000.
- By this test, we proved that by exploiting GET-IT researchers can easily create,
- manage, edit and share sensors metadata and ecological observations of mountain
- lakes water based on OGC SWE initiative; LTER Italy researchers can distribute their
- own dataset in other projects, external to the network, in an interoperable way,
- avoiding unnecessary and harmful duplication, by means of web portals compatible
- with OGC standards. They also can use controlled vocabulary resources of EnvThes
- in SensorML and O&M, with semantic harmonization of output parameters for
- sensors and measured parameters for observations.
- The experiment carried out has helped LTER-Italy researchers to realize the benefit of
- metadating, which is often considered a useless and time-consuming transaction,
- 137 though IT developers must still do more to facilitate the semi-automatic and
- simplified insertion of metadata as much as possible. In addition, the current GET-IT
- client for observations manages only two-dimensional time-series: future work will
- prepare new clients to enable other types of observations, i.e. observations in three-
- dimensional water columns and wind directions.

REFERENCES

142

- Benthall, B. & Gill, S. (2010). SDI Best Practices with GeoNode. In Proceedings of Free and Open Source Software for Geospatial Conference (FOSS4G 2010).
- Boots, M., & Robin, A. (2007). OGC SensorML: Model and Xml Encoding Standard. Open Geospatial Consortium.
- 147 Cox, S. (2013). Geographic information Observations and measurements OGC and ISO 19156.
- Fugazza, C., Basoni, A., Menegon, S., Oggioni, A., Pavesi, F., Pepe, M., Sarretta, A., &
 Carrara, P. (2014). RITMARE: Semantics- Aware harmonisation of data in Italian marine
 research. In Procedia computer science (Vol. 33, pp. 261–265). Amsterdam: Elsevier.
 doi:10.1016/j.procs.2014.06.041
- Marchetto, A., Mosello, R., Rogora, M., Manca, M., Boggero, A., Morabito, G., Musazzi, S,.
- Tartari, G.A., Nocentini, A.M., Pugnetti, A., Bettinetti, R., Panzani, P., Armiraglio, M.,
- 155 Cammarano P., & Lami A. (2004). The chemical and biological response of two remote
- mountain lakes in the Southern Central Alps (Italy) to twenty years of changing physical and chemical climate. J. Limnol. 63: 77-89.
- Winslow, D. (2010). GeoNode Architecture: wrangling \$100 million worth of open source software to make SDI building a walk in the park. In Proceedings of Free and Open Source
- Software for Geospatial Conference (FOSS4G 2010).