
Probabilistic graph models for landscape genetics1

Brook G. Milligan1
2

1Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003 USA3

Corresponding author:4

Brook G. Milligan1
5

Email address: brook@nmsu.edu6

ABSTRACT7

Landscape genetics combines population genetics, landscape ecology, and spatial analysis to
identify landscape and genetic factors that influence genetic and genomic variation. Progress in
the field depends on a strong conceptual foundation and the means of identifying mechanistic
connnections between environmental factors, landscape features, and genetic or genomic variation.
Many existing approaches and much of the software commonly in use was developed for population
genetics or statistics and is not entirely appropriate for landscape genetics. Probabilistic graph
models provide a statistically rigorous and flexible means of constructing models directly applicable
to landscape genetics. Probabilistic graph models also allow construction of mechanistic models,
which are crucial elements in testing hypotheses. Sophisticated software exists for the analysis of
graph models; however, much of it does not handle the types of data used for landscape genetics,
model structures involving autoregressive spatial interaction between variables, or the scale of
landscape genetics problems. Thus, an important priority for the field is to develop suitably flexible
software tools for graph models that overcome these problems and allow landscape geneticists
to explore meaningfully mechanistic and flexible models. We are developing such a library and
applying it to examples in landscape genetics.
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Landscape genetics combines population genetics, landscape ecology, and spatial analysis to8

identify the mechanisms by which landscape and environmental factors influence genetic and ge-9

nomic variation. From the outset, the field has focused on the twin ecological and evolutionary10

processes of gene flow and adaptation (Holderegger et al., 2006; Manel et al., 2003, 2010). Involving11

as it does quantification of both genetics and landscapes, landscape genetics is inherently interdisci-12

plinary (Balkenhol et al., 2009; Holderegger and Wagner, 2008). While the emphasis is often on13

the genetics, explicit consideration of the importance of GIS and allied geospatial disciplines is14

crucial as they can contribute to landscape genetics in many ways (Cushman et al., 2016; Storfer15

et al., 2007). For example, experimental design in landscape genetics must be informed by such16

factors as the spatial extent and grain of available data, and the configuration of landscape features.17

Landscape and environmental data are inherently spatial, and must be acquired, organized, and18

analyzed in the course of a landscape genetics study. Thus, geoscientists and geocomputation will19

play an increasingly important role in landscape genetics.20
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Progress in landscape genetics is so far limited by available analytical methods (Balkenhol et al.,21

2009, 2016a; Guillot et al., 2009). In part this derives from the fact that many of the available22

analytical tools and much of the usable software were originally developed for population genetics23

or even broader statistical applications. They often include assumptions and are applicable to data24

that are not completely appropriate for landscape genetics studies. Because of this gap, there is25

no consensus in the literature regarding how to approach landscape genetics analysis (Balkenhol26

et al., 2016a). Indeed, the ad hoc assortment of methods currently in use lacks a unifying theory;27

consequently, more focus must be given to a mechanistic understanding of the influence of landscapes28

and environments on genetic and genomic variation (Balkenhol et al., 2016b). Development of29

a more comprehensive theory will come in part from an improved foundation of open source30

computational tools allowing explicit and flexible mechanistic modeling.31

This brief review focuses on three themes. First, it identifies the types of models most likely to32

advance a comprehensive theory of landscape genetics, improve mechanistic understanding, and33

provide better predictions serving, for example, conservation policy and management. Second,34

it considers a set of open source software that could be used for general models in landscape35

genetics but that all have significant limitations. Finally, it also suggests how these limitations can36

be overcome with new models and computational tools.37

1 LANDSCAPE GENETICS AND BAYESIAN INFERENCE38

The prevailing challenge in landscape genetics is identifying the mechanisms by which landscape39

and environmental factors influence genetic and genomic variation. More precisely, the central40

question is: given data on intraspecific genetic variation across landscapes (or waterscapes; Manel41

and Holderegger (2013); Selkoe et al. (2016)), what inferences are possible regarding the functional42

mechanisms and factors causing that variation? Framing the question in this way emphasizes the43

inherent connection between the science of landscape genetics and the nature of Bayesian inference.44

The natural connection between landscape genetics and Bayesian inference has led to the45

development of a variety of widely used Bayesian analysis methods. A first set of these includes46

STRUCTURE, which identifies putative populations and assigns individuals to them (Pritchard et al.,47

2000). Although originally designed for population not landscape genetics, it remains the most48

widely used. A second set of Bayesian models applied to landscape genetics includes GENELAND,49

which seeks to identify population clusters by modeling allele frequency distributions in a spatially50

explicit way (Chen et al., 2007; Guillot et al., 2005a,b). More recently, Bayesian models that51

explicitly relate environmental gradients to spatially explicit allele frequency distributions have been52

developed (Coop et al., 2010; Frichot et al., 2013).53

One element is common to all of the available software: each program implements a narrow54

range of possible models and provides very limited opportunity for expanding its scope. For example,55

as discussed below, both STRUCTURE and GENELAND are essentially variants of the same model,56

yet nothing of their implementation is shared so new variants cannot be created by exploiting their57

commonality. Further, the published descriptions do not reveal the inherent similarity between58

STRUCTURE and GENELAND, so conceptual connections are not evident. Consequently, landscape59

geneticists do not recognize a continuum of possible models. Even worse, they cannot exploit the60

continuum by incrementally modifying existing models and competing alternatives against available61
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data. This is a serious limitation for a scientific field that repeatedly asserts that more mechanistic62

and predictive models and a stronger theoretical foundation are essential (Andrew et al., 2013;63

Balkenhol et al., 2016b; Guillot et al., 2009; Manel and Holderegger, 2013).64

2 PROBABILISTIC GRAPH MODELS65

Mathematical graphs are widely used to represent models, including some in landscape genetics.66

Graphs are composed of a set of vertices and a set of edges, each of which connects a pair of vertices.67

Edges may be directed or undirected, and paths are sequences of edges connecting one vertex with68

another, possibly with intervening vertices. A cyclic graph has at least one path starting and ending69

at the same vertex; an acyclic graph lacks any such paths.70

One application of graphs to landscape genetics derives from the population graph concept (Dyer71

and Nason, 2004). Here the graph is composed of vertices representing population distributions in a72

multilocus genetic space, and edges representing interdependencies between populations due, for73

example, to gene flow (Excoffier et al., 1992). The primary application to landscape genetics has74

been identification of conditional independence between populations to remove edges followed by75

analysis of graph structure metrics such as centrality or connnectness (Dyer, 2007; Murphy et al.,76

2016).77

Graph models can be much richer, however, and both STRUCTURE and GENELAND are examples78

used in landscape genetics. Generally, (probabilistic) graph models are composed of vertices79

representing any kind of random variable and edges representing dependencies between them80

(Bishop, 2006; Koller and Friedman, 2009). They are widely used, for example, in latent factor81

analysis (Steyvers and Griffiths, 2007), a field that now finds application broadly in machine learning,82

artificial intelligence, and document and image processing, as well as landscape genetics (Blei et al.,83

2003; Blei, 2012; Frichot et al., 2013; Jia et al., 2011; Pritchard et al., 2000). The population84

graph concept of Dyer and Nason (2004) is clearly a special case where each vertex represents85

the same quantity, a population-specific distribution, but the landscape genetics analysis involving86

edge removal and graph metrics (Murphy et al., 2016) is unrelated to the use of graphs as formal87

probabilistic models (Bishop, 2006; Koller and Friedman, 2009). The value of the latter for landscape88

genetics, both conceptually and for software development, is the focus here.89

Although not described as such, a probabilistic graph model represents the mathematics underly-90

ing STRUCTURE (Pritchard et al., 2000). In this case, the random variables represent population-91

specific distributions of alleles, the probabilistic assignment of alleles to populations, and prior92

distributions that by default are uninformative (Figure 1). The STRUCTURE software supports slight93

variations in the model depicted; for example, assignment of all alleles may be individual-specific94

not allele-specific as shown, and priors may be informative in various ways. These variations,95

however, are extremely limited and do not cover the continuum of related models that is possible.96

One related model, however, is alluded to in Pritchard et al. (2000) and described in detail in97

Falush et al. (2003); but again, the graph model itself is not presented explicitly. The main difference98

is that in this model the population-specific allele distributions are not independent; instead, they are99

correlated via a shared ancestral population (Figure 2).100

A further related model, implemented in GENELAND, is described in Guillot et al. (2005a),101

again without depicting the graph model (Figure 3). This model explicitly adds spatial information102
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to the model; unlike the other two, both the identity of alleles and their spatial location are observed.103

This supports estimating additional random variables such as the inferred location of individuals and104

spatially-explicit allele distributions.105

A comparison of Figures 1–3 makes clear that these are all closely related models, a fact that is106

generally not made evident by the papers describing them. Furthermore, in many ways the graph107

models are more useful than the papers, because they make the conceptual linkages clear and enable108

direct comparisons among them. They also make gaps in the existing models evident; for example,109

none of these include gene flow explicitly despite its clear importance as a mechanism in landscape110

genetics (Holderegger and Wagner, 2008; Manel and Holderegger, 2013; Storfer et al., 2007; van111

Strien et al., 2014). Finally, probabilistic graph models invite the construction of variations by adding112

new random variables or changing dependencies among them, because the biological structure of the113

models is easy to reason about when presented in the form of a graph. Probabilistic graph models,114

therefore, provide an ideal foundation for mechanistic modeling in landscape genetics that can lead115

to an improved theoretical understanding.116

3 A MECHANISTIC MODELING FRAMEWORK FOR LANDSCAPE GE-117

NETICS118

Traditional approaches to landscape genetics descriptively model either genetic characteristics119

associated with each sampled site or individual, or derived genetic measures associated with pairs120

of sampled sites or individuals (Joost et al., 2007). Almost all approaches model these response121

variables using ad hoc distributions taken from more generic statistical literature; for example,122

virtually the entire textbook on landscape genetics (Balkenhol et al., 2016a) follows this pattern.123

In contrast, a mechanistic approach would construct a model of the individual observations, e.g.,124

individual multilocus genotypes (or genomes), as a function of assumed demographic, ecological,125

and population genetic mechanisms.126

As described earlier and illustrated in Figures 1–3, STRUCTURE and GENELAND are examples of127

exactly this approach; the observed alleles are modeled directly in terms of unobserved but inferable128

populations and assignments (Guillot et al., 2005a; Pritchard et al., 2000). Viewed in this context,129

differences between individual- and population-based approaches to landscape genetics are not130

fundamental; rather they reduce to simple differences between the structure of the graphical models131

in use. Individual-based models have graphs that relate observations on individuals to individual-132

specific random variables; examples of the latter are the assignment of an individual’s alleles to133

populations (Z in Figures 1 and 3) and the inferred true location of each individual (s in Figure 3).134

Population-based models have graphs that relate observations on individuals to population-specific135

random variables; examples of the latter are the population-specific allele frequencies (P in Figures 1136

and 3). By including elements of each, Figures 1 and 3 already blur the boundary between individual-137

and population-specific models.138

Given the power of probabilitistic graph models to represent a broad spectrum of intermediate139

cases just as well, a better framework is the set of mechanisms included. From this perspective, it is140

evident that Figure 3 includes spatially-explicit mechanisms whereas Figure 1 does not. It is also141

evident that neither one includes an explicit mechanism for gene flow. The power of probabilitistic142

graph models lies in their ability to cover the entire spectrum of models relevant to landscape143
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genetics and to encourage more transparent reasoning about alternative models. Using them to144

advance landscape genetics is limited only by our ability to compare alternative models, but that in145

turn is severely constrained by the software available to manipulate and analyze them.146

4 OPEN-SOURCE PROBABILISTIC GRAPH MODELS147

As just illustrated, the primary advantages of probabilistic graph models are that complex and148

realisticly mechanistic models can be constructed, and that their model structure can be manipulated149

easily to explore alternatives. Thus, there is great scope for constructing general theories based upon150

manipulating probabilitistic graph models to reflect interesting biological models within landscape151

genetics. However, software tools must exist that enable manipulation and analysis of the graphs,152

and the types of graphs available must match those required by landscape genetics. For many153

applications two types of graphs are enough: Bayesian networks represented by directed acyclic154

graphs (DAGs) and Markov random fields represented by undirected graphs. Landscape genetics155

models, however, often require more general types of graphs to accommodate, for example, spatially156

autoregressive relationships among random variables. Additionally, landscape genetics models often157

require distributions appropriate to a broad range of commonly encountered data types, including158

alleles, genotypes, spatially explicit environmental data. Such a range of discrete and continuous,159

unidimensional and multidimensional data types requires a rich array of probability distributions.160

While the set of probabilistic graph models that has been applied to landscape genetics do not161

harness their full flexibility, there exist modeling software that does better. The most widely used is162

based upon the BUGS language for describing graph models, and includes WinBUGS, OpenBugs163

(Lunn et al., 2009) and JAGS (Plummer, 2015). The BUGS language allows textual description164

of general graph models that include a broad range of distributions. The textual description is165

translated into executable code, a process that introduces some of the limitations common to this166

type of modeling software. First, the flexibility of possible applications is limited by the features167

of the BUGS language. A limited range of data types, generally scalars and vectors or matrices168

constructed from them, is available, only data structures describable in the language may be used,169

and algorithms are limited to those already programmed. Second, the scale of models is also limited170

by the execution environment provided by the implementation. Despite the inherent flexibility171

of graph models in general, both of these limitations are barriers to convenient development of172

landscape genetics models that leverage the flexibility of graph models. While genetic data can173

be recoded in the form of only integers or real numbers, it is tedious and error-prone to do so;174

thus, the limited data types available create needless barriers. A landscape genetics model might175

include thousands or millions of random variables within it; consider, for example, a model of176

population allele freqencies and environmental factors across a landscape grid of 1000×1000 pixels.177

This puts severe stress on models that cannot harness the full power of multithreading, distributed178

multiprocessing, and careful memory management. Being limited by the BUGS language, these179

programs provide restricted capacity for modelers to address these issues.180

Another general graph modeling system is Stan (Carpenter et al., 2015; Gelman et al., 2015).181

Although more flexible in some ways than BUGS, Stan suffers from some of the same limitations that182

reduce its applicability to landscape genetics. It has the same limited data types and the execution183

environment is likewise limited by the Stan language. As a result, neither BUGS nor Stan are ideally184
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Primitive Implementation
Name Graph types variables Preprocessing language Reference

Darwin FGs scalars compiled C++ Gould (2015)
HYDRA DAGs, MRFs, FGs, HMMs Java classes compiled Java Warmes (2013)
Infer.NET FGs C# classes compiled C# Minka et al. (2014)
JAGS DAGs scalars interpreted C++ Plummer (2016)
JavaBayes DAGs scalars interpreted Java Cozman (2001)
libDAI FGs discrete compiled C++ Mooiji (2015)
Mocapy++ DAGs, HMMs C++ classes compiled C++ Antonov et al. (2015)
Nimble DAGs scalar interpreted C++ de Valpine et al. (2016)
OpenBUGS DAGs scalar interpreted Component Pascal Thomas (2009)
OpenGM DAGs, MRFs, FGs discrete compiled C++ OpenGM (2015)
PNL DAGs, MRFs C++ classes compiled C++ Sysoyev et al. (2013)
RISO DAGs Java classes compiled Java Dodier (2012)
Stan scalars interpreted C++ Stan Development Team (2016)
Vibes DAGs scalar compiled Java Winn (2004)

Table 1. A selection of open source software tools for analyzing probabilistic graph models. Type
of graphs include directed acyclic graphs (DAGs), Markov random fields (MRFs), factor graphs
(FGs), hidden Markov models (HMMs), and Gaussian Markov models (GMMs).

suited for landscape genetics applications.185

In addition to these two major classes of graph modeling software, a broad range of more186

specialized software systems is also available; many of these are summarized by Murphy (2014).187

Some are open source and may have potential for landscape genetics applications (Table 1). These188

tools have many of the same limitations as BUGS, JAGS, and Stan. They often handle fewer graph189

types than needed for landscape genetics, the data types are not well suited to landscape genetics, or190

their execution environments are restrictive. In addition, they are much more specialized, difficult to191

program, and likely well beyond the reach of typical landscape geneticists. These characteristics192

mean that landscape geneticists face a fundamental challenge hindering development of a strong193

conceptual foundation for the field based upon the expressive power, flexibility, and statistical rigor194

of probabilistic graph models.195

5 DESIGNING A PROBABILISTIC GRAPH MODEL FOR LANDSCAPE196

GENETICS197

What then is the ideal design of a software system intended to harness the power, flexibility, and198

rigor of probabilistic graph models applied to landscape genetics? First and foremost, it must support199

a full range of relevant graph types, which in particular means not being limited to directed acyclic200

graphs. Second, it must support a full range of useful data types that landscape geneticists work201

with; in addition to simple scalars, vectors, and matrices, these include named alleles and genotypes,202

loci and chromosomes, geographic locations, and spatial data of various sorts. Ideally, user-defined203

or third-party data types should be easy to accommodate. Third, the algorithms available should be204

extensible to allow improved efficiency as needed. Fourth, the execution environment should not205

be limited to that encapsulated within a single, predefined program. This is especially important206

for landscape genetics models that may well encompass thousands or millions of random variables.207

Finally, the power and flexibility of graph models must be abstracted enough that a full spectrum208
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of landscape geneticists can create simple models easily, test alternative and biologically relevant209

models quickly, and improve upon the models and algorithms as needed.210

It is little surprise that existing software tools are unable to meet these stringent demands; they211

are largely conflicting and impossible to resolve without advanced software design. The most likely212

path forward (Lunn et al., 2009) leverages the power of C++ to present high-level abstractions213

based upon embedded domain specific languages (de Guzman and Kaiser, 2017; Niebler, 2017)214

assembled with expression templates (Niebler, 2017; Veldhuizen, 1995) from highly reusable generic215

components (Stepanov and Rose, 2014). We are following these design principles to implement216

a software library, GRAPHMODEL, intended to provide the expressive power and computational217

performance demanded for advancing a coherent conceptual foundation for landscape genetics.218

Design of any software library must face a fundamental tension between expressive power and219

ease of use for a limited set of use cases. For example, a variety of statistical software packages220

aim to make a limited range of analyses easy for newcomers, but R (R Core Team, 2017) is gaining221

widespread use because it is a Turing-complete language that can express an expansive set of models.222

In the case of GRAPHMODEL, we have focused initially on providing a set of generic components223

that can be composed flexibly to develop an expansive set of models based upon probabilistic graph224

models. Future work will provide increasingly higher levels of abstraction to simplify common use225

cases. Note that the alternative of starting at a high level of abstraction, i.e., restricting the graph226

models that are possible, is incompatible with the realization described here that probabilistic graph227

models are a powerful and natural tool for landscape genetics and other fields.228

The outcome of this work is a highly compact way of encoding probabilistic graph models229

of relevance to landscape genetics and other fields of science. Given the expressive power of the230

language, all of this should be readily accessible to biologists without deep knowledge of C++231

programming. Importantly, models can be described in a formal way that removes the ambiguity232

inherent in natural language descriptions. Finally, because models are encoded directly in C++,233

not interpreted, they can be reused as portions of larger programs for enhanced capability; this234

is fundamentally impossible for interpreted modeling frameworks such as OpenBUGS or JAGS.235

The generality of this approach removes the limitations inherent to the available software and236

characteristic of current approaches to landscape genetics data analysis, and ultimately will make it237

easy to encode, and therefore explore, the complete space of relevant models. Some of the features238

of the GRAPHMODEL library that make this possible are outlined in the following sections.239

Graph model vertices Probabilistic graph models are of course composed of vertices and edges.240

Each vertex represents one of several different types of concepts, including scalar and non-scalar241

random variables, arbitrary expressions, factors that support calculation of a probability density242

function, distributions that support sample generation, and scalar distributions that support calcula-243

tion of a cummulative density function. For purposes of supporting Monte Carlo Markov Chains244

(MCMCs), it is also useful if random variables can summarize a sequence of their own values. All245

of these concepts are encapsulated within the GRAPHMODEL library as a hierarchical set of classes246

(Figure 4). Importantly, each type of vertex also models the concepts of a vertex in an incidence247

graph as defined by the Boost Graph library (Siek et al., 2002, 2017). Furthermore, other types of248

graphs, e.g., a vertex and edge list graph, can be constructed from a set of vertices. As a result,249

any appropriate graph algorithm based upon Boost Graph concepts may be used on probabilistic250
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Implementation

Distribution PDF/CDF Random variate generator

Bernoulli boost/math/distributions/bernoulli.hpp boost/random/bernoulli distribution.hpp
Beta boost/math/distributions/beta.hpp boost/random/beta distribution.hpp
Categorical boost/random/discrete distribution.hpp
Dirichlet boost/math/special functions/gamma.hpp boost/random/gamma distribution.hpp
Multinomial boost/math/special functions/binomial.hpp boost/random/discrete distribution.hpp
Normal boost/math/distributions/normal.hpp boost/random/normal distribution.hpp
Uniform boost/math/distributions/uniform.hpp boost/random/uniform 01.hpp

Table 2. Probability distributions. For distributions with scalar support, both the probability density
(PDF) and cummulative density (CDF) functions are implemented; otherwise, only the PDF is
implemented. For all distributions, generation of random variates is implemented. Where
appropriate, these are implemented as wrappers around standard functions available in the
Boost.Math and Boost.Random libraries.

graph models described using the GRAPHMODEL library. This is one of the important abstractions251

illustrating the power of a generic library for probabilistic graph models.252

Probability distributions At the core, probability distributions are fundamental to any probabilistic253

graph model. Any factor, distribution, or scalar distribution vertex in a graph can be associated254

with an appropriate probability distribution at run-time. The most important distributions for255

landscape genetics are implemented in the GRAPHMODEL library, mostly as simple wrappers256

around the corresponding Boost distributions and generators (Table 2). Given the generic nature257

of the design, extending the library with new distributions based upon pre-existing mathematical258

and statistical libraries is straightforward. For example, the Boost Math library (Agrawal et al.,259

2017) implements 33 distinct statistical distributions and the Boost Random library (Maurer, 2017)260

implements 28 random number distributions. This represents a rich set of extensions that will be261

added to GRAPHMODEL. Other libraries could, of course, be used as the source of additional262

distributions.263

Expressions Leveraging the power of probabilistic graph models for computational modeling264

requires construction of arbitrary expressions that, for example, represent the value of a parameter for265

a distribution. In C++, expression templates are a powerful mechanism of representing expression266

trees (Niebler, 2017; Veldhuizen, 1995). Although earlier versions used Boost.Proto (Niebler, 2017),267

the GRAPHMODEL library currently uses the Yap expression template library (Laine, 2016), because268

of its greater power, compactness, and expressiveness. This enables, for example, expressions like269

lit(p) + sample(normal_distribution(mean=0,standard_deviation=0.1))270

to represent a random walk sampler that generates samples as deviates from the current value of a271

random variable p, which might differ each time a sample is generated. Use of template expressions272
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Name Description

abs() Absolute value
exp() Exponential
log() Logarithm
pow() Power
sqrt() Square root

Table 3. Mathematical functions. These mathematical functions are implemented as expression
templates and therefore can be used as primitives in mathematical expressions.

like this that capture natural mathematical statements as executable computations is one of the273

powerful mechanisms for achieving flexibility and generality in the GRAPHMODEL library.274

Function expressions One expectation for mathematical expressions is that they include functions275

such as log() or sqrt(). Mathematical software libraries, of course, provide a rich set of such276

functions, but not in a form amenable to expression templates. The GRAPHMODEL library, however,277

already implements the most common (Table 3). More importantly, construction of new expressions278

for mathematical (or other) functions is straightforward; all that is required is a class that wraps279

the mathematical function of interest, a pair of functions for evaluating the function within an280

expression tree, and a set of functions that construct the expression from its arguments (Figure 5).281

This pattern can be easily repeated to extend the set of mathematical functions available within the282

GRAPHMODEL library.283

Execution environment The execution environment for any modeling software is crucial, as it often284

determines the performance and therefore the set of problems that are feasible to solve. Just as285

one design goal for the GRAPHMODEL library is to support arbitrary probabilistic graph models,286

another is to avoid any limitations on the execution environment. Two of the performance critical287

elements of evaluating a probabilistic graph model are calculating joint probability distributions and288

generating an MCMC sample for a potentially large set of random variables. Both of these might289

benefit from parallel, asynchronous computation, but especially the latter must be done in a way290

that avoids inherent dependencies among random variables. Any practical computation will likely291

require mixtures of sequential and asynchronous computations. Further, the choice should be in292

the hands of the model developer, not imposed by the execution environment. These design goals293

are addressed in the GRAPHMODEL library by allowing run-time definition of the policies used to294

evaluate joint probability distributions and generate MCMC samples. By default the policies perform295

calculations sequentially and can be ignored for simple models, which are unlikely to benefit from296

asynchronous computation. However, alternative policies are possible and the library provides one297

based upon the Boost Asynchronous library (Henry, 2015), which contains a wide range of parallel298

asynchronous algorithms that go to great lengths to avoid any waiting for task completion. Boost299

Asynchronous also provides threadpools that can distribute tasks across a cluster of machines. Thus,300

composing applications for distributed asynchronous model computation is also supported with301

no modification to the core GRAPHMODEL classes. Furthermore, run-time selection of sequential302
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or asynchronous computation may be made at the level of individual random variables or MCMC303

generators, which provides great flexibility in the execution environment.304

Data sources Any modeling software must interact with a variety of sources of data; indeed, the305

generality of probabilistic graph models would be useless unless a diversity of data types can be306

associated with random variables or expressions. This flexibility is supported in the GRAPHMODEL307

library in several ways. First, all concrete types, including the variate type of random variables, the308

result type of expressions, and the probability type for PDF calculations, are template parameters309

for all the relevant classes. Therefore, they can be selected arbitrarily by the modeler. For example,310

the random variable class can represent a numerical scalar, a boolean value, a discrete valued311

variable, or a vector depending on the variate template argument. Indeed, any type that can participate312

in the expressions used in the model is a legitimate source of data, so the library can be extended in313

arbitrary ways with user-defined types used as template arguments. Second, external data can be314

read from a variety of data sources. One common source of data is from a file containing a dataframe,315

one form of which is the traditional tab-delimited file created by spreadsheets or other software. The316

GRAPHMODEL library provides support for reading dataframe files and allowing expressions to317

reference, not copy, individual elements within a dataframe. For example, the following code reads318

a dataframe and creates a reference of type double to the first sample.319

auto dataframe = read_dataframe("dataframe.dat");320

auto dataframe_element = make_element<double>(dataframe,0,"sample");321

In the field of landscape genetics, another common source of information is georeferenced raster322

or vector files in any of a large number of commonly used formats. The GRAPHMODEL library323

includes an interface to the GDAL library (Open Source Geospatial Foundation, 2017), which324

includes drivers for 142 raster formats and 84 vector formats. As with dataframes, the provided325

interface supports associating expressions with values obtained from a dataset; a random variable326

can, for example, represent the elevation at a particular location in space. Finally, because the327

GRAPHMODEL library is not a separate language but is a domain-specific language within C++,328

the full power of C++ and any possible libraries are available for interacting with data sources.329

Arbitrary code or third-party libraries may be used to access data and associate it with random330

variables, distributions, or expressions used in a probabilistic graph model.331

Probability calculations All computationally efficient representations of real numbers are approxi-332

mate and cover a restricted subset. This can be a serious problem when calculating joint probability333

distributions, because they often involve products of a very large number of terms. Naı̈ve solutions334

based upon, for example, native data types can easily result in underflow errors, which are usually335

silent yet yield completely erroneous results. The concrete probability type for random variables and336

distributions is a template parameter and thus can be selected by the modeler to avoid these problems.337

One option provided by the GRAPHMODEL library is a numeric type storing its value internally338

on a logarithmic scale, but implementing the normal arithmetic operators (e.g., +,−,∗,/,%) and339

functions as efficiently as possible. For example, the default lognumeric type (which is a base e340

double) and a base 10 float alternative are declared as follows:341

using probability_type = lognumeric<>;342

using probability_type = lognumeric<float,base::ten>;343
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Another option is to use one of many available arbitrary precision numeric libraries that are readily344

available. Because all of the code in the GRAPHMODEL library is generic, any type that implements345

arithmetic operators and functions appropriately can be used for probability calculations.346

Future development The fundamental design goals focusing on supporting generic and flexible347

probabilistic graph models have largely been accomplished in the implementation of the GRAPH-348

MODEL library. Arbitrarily complex graph models can be composed, joint probability distributions349

calculated, and samples generated from the distribution of random variables. While this already350

supports a wide range of applications in landscape genetics and other fields, several important351

advances remain for future development. Because the library purposely provides great flexibility and352

generality so as not to limit its applicability, it necessarily presents a relatively low level of abstrac-353

tion. Thus, an important direction for future development is to provide higher layers of software that354

increase the level of abstraction, thereby further increasing the library’s expressiveness. One example355

is additional overloading of operators to reduce boilerplate when associating probability distributions356

with random variables. A small addition to the library could enable the model of STRUCTURE357

to be expressed very compactly (Figure 6), which would also enable biologists to explore related358

models easily. A second direction for future development is to expand the range of probability359

distributions and mathematical functions that can be used as primitives within expressions. Given the360

idiomatic nature of the wrappers, this is a very straightforward task that could rapidly lead to scores361

of new distributions and functions. A third direction for future development is to create a variety of362

applications aimed at particular classes of models. For example, STRUCTURE and GENELAND could363

be reimplemented easily; one benefit would be the large-scale parallelization inherently provided by364

the GRAPHMODEL library, something that would require a complete redesign and reimplementation365

to add to STRUCTURE or GENELAND.366

The value of a generic library is evident in this list of future directions: the fact that each of367

these is a straightforward task is a consequence of a solid foundation that can be easily extended in a368

variety of different ways. The widespread use of class and function templates, expression templates,369

static type safety coupled with run-time type hiding when appropriate, and clear association between370

computational components and the concepts of probabilistic graph models has yielded highly flexible371

software that can be composed into a variety of models. Reliance on generic programming allows372

the library to deduce much about the types in use and combine them correctly.373

6 CONCLUSION374

Landscape genetics suffers greatly from the absence of an analytical foundation that encourages375

development of a mechanistic understanding of the impact of environmental and landscape factors376

on genetic and genomic variation (Balkenhol et al., 2016a). This stems in part from the adoption of377

software tools and methods originally developed for other purposes. There exist well-established378

concepts and statistical approaches associated with probabilitistic graph models that are ideally379

suited as the needed foundation for landscape genetics. Unfortunately, the associated software tools380

cannot be borrowed directly, because they are limited in ways that do not accommodate the needs of381

landscape geneticists. One priority that would directly advance the field and resolve these problems382

is the development of probabilistic graph model tools that do apply generally to landscape genetics.383

Despite the inherent difficulty of this task, we have developed a suitable library and are beginning to384
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apply it to landscape genetics.385

7 SUPPLEMENTAL MATERIALS386

The source code for the GRAPHMODEL library, version 0.1.2, is available as a supplemental387

compressed tar file graph model-0.1.2.tgz.388
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N individuals

M alleles/individual

K populations

α θ

λ P

AlleleZ

Figure 1. Plate notation (Bishop, 2006) for the locus-specific graph model used by STRUCTURE

(Pritchard et al., 2000). Each circle represents a random variable (or a set of them for those enclosed
within boxes) and each arrow represents a dependency of one random variable upon another. This
models N individuals each sampled for M (usually two) alleles. P represents the allele frequency
distribution in each of K populations and Z represents the assignment of alleles to populations. θ is
the distribution of assignments and α and λ are Bayesian priors. The single filled circle indicates
that among these random variables only the alleles have been observed; the rest are inferred (or
fixed in the case of α and λ ).
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N individuals

M alleles/individual

K populations

α θ

λ PA

P

AlleleZ

F

Figure 2. Plate notation for the correlated allele frequency extension (Falush et al., 2003) to the
locus-specific graph model used by STRUCTURE. This models an ancestral population (PA) from
which a correlated set of extant populations (P) have been derived. The pattern of correlation
between populations is governed by F .
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N individuals

M alleles/individual

m spatial tiles

K populations

ε

Location

λ PA

ω m

ξ K P

c

F

AlleleZ

s

u

Figure 3. Plate notation for the spatially-explicit extension of STRUCTURE used by GENELAND

(Guillot et al., 2005a,b). Additional random variables include the true (s) and observed (shaded)
locations of sampled individuals and the error (ε) between them, and the locations of points defining
the Voronoi tessellation (u) and their population identity (c). In this case, both the number of
Voronoi cells (m) and the number of populations (K) are random variables.
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Figure 4. Conceptual class hierarchy of graph model vertices. Each vertex in a probabilistic graph
model corresponds conceptually to one of these basic concepts. Additionally, the run-time behavior
of the classes can be modified. For example, the specific distribution represented by a vertex can be
modified at run-time by replacing its corresponding strategy.
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// A class wrapping the log() function provided in the C library
//
template < typename Expression >
class log_function
{

using self = log_function;
public:
template < typename E

, typename = mpl::enable_constructor_t<self,E>
>

explicit log_function (E&& expression)
: expression_(std::forward<E>(expression))

{}
template < typename ... T >
auto operator () (T&& ... t) const
{
using std::log;
return log(expression_(std::forward<T>(t)...));

}
private:
Expression expression_;

};

// Evaluate a terminal containing a log_function value
//
template < typename ... T, typename ... Args >
auto transform_expression (expression_terminal<log_function<T...>> expr,

Args&& ... args)
{ return evaluate_terminal(expr,std::forward<Args>(args)...); }

// Evaluate a terminal containing a reference to a log_function
//
template < typename ... T, typename ... Args >
auto transform_expression (expression_terminal<log_function<T...>&> expr,

Args&& ... args)
{ return evaluate_terminal(expr,std::forward<Args>(args)...); }

// Construct a log expression function
//
template < typename Wrapper >
auto log (expression_function<Wrapper>&& function)
{

using function_type = expression_function<Wrapper>;
using log_function_type = log_function<function_type>;
return make_expression_function(log_function_type(std::move(function)));

}

template < typename Expr >
auto log (Expr&& expr)
{ return log(make_expression_function(std::forward<Expr>(expr))); }

template < typename Expression >
auto log (log_function<Expression> const& expr) { return expr; }

template < typename Expression >
auto log (log_function<Expression>&& expr) { return std::move(expr); }

Figure 5. Implementation of the log() expression function.
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observed_allele_type X;
allele_assignment_type Z;
individual_admixture_distribution_type theta;
population_allele_frequency_distribution_type P;
diriclet_parameter_type alpha;
diriclet_parameter_type lambda;

allele_frequency_type Pr;

for (auto population : populations)
P(population) =˜ dirichlet(lambda);

for (auto individual : individuals)
{
theta(individual) =˜ dirichlet(alpha);
for (auto allele : alleles(individual))
{
Z(individual,allele) =˜ multinomial(theta(individual));
for (auto population : populations)
Pr(individual) += Z(population,individual) * P(population);

X(individual,allele) =˜ bernoulli(Pr(individual,allele));
}

}

Figure 6. Compact implementation of the STRUCTURE model with admixture (Pritchard et al.,
2000). This is C++ source code for the probabilistic graph model corrresponding to one of the
models in STRUCTURE. A few additional lines of code transforms this into a model with correlated
allele frequencies (Falush et al., 2003) or one with spatially explicit observations (Guillot et al.,
2005a).
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