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ABSTRACT7

Landscape genetics combines population genetics, landscape ecology, and spatial analysis to
identify landscape and genetic factors that influence genetic and genomic variation. Progress in
the field depends on a strong conceptual foundation and the means of identifying mechanistic
connnections between environmental factors, landscape features, and genetic or genomic variation.
Many existing approaches and much of the software commonly in use was developed for population
genetics or statistics and is not entirely appropriate for landscape genetics. Probabilistic graph
models provide a statistically rigorous and flexible means of constructing models directly applicable
to landscape genetics. Probabilistic graph models also allow construction of mechanistic models,
which are crucial elements in testing hypotheses. Sophisticated software exists for the analysis of
graph models; however, much of it does not handle the types of data used for landscape genetics,
model structures involving autoregressive spatial interaction between variables, or the scale of
landscape genetics problems. Thus, an important priority for the field is to develop suitably flexible
software tools for graph models that overcome these problems and allow landscape geneticists
to explore meaningfully mechanistic and flexible models. We are developing such a library and
applying it to examples in landscape genetics.
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Landscape genetics combines population genetics, landscape ecology, and spatial analysis to8

identify the mechanisms by which landscape and environmental factors influence genetic and ge-9

nomic variation. From the outset, the field has focused on the twin ecological and evolutionary10

processes of gene flow and adaptation (Holderegger et al., 2006; Manel et al., 2003, 2010). Involving11

as it does quantification of both genetics and landscapes, landscape genetics is inherently interdisci-12

plinary (Balkenhol et al., 2009; Holderegger and Wagner, 2008). While the emphasis is often on13

the genetics, explicit consideration of the importance of GIS and allied geospatial disciplines is14

crucial as they can contribute to landscape genetics in many ways (Cushman et al., 2016; Storfer15

et al., 2007). For example, experimental design in landscape genetics must be informed by such16

factors as the spatial extent and grain of available data, and the configuration of landscape features.17

Landscape and environmental data are inherently spatial, and must be acquired, organized, and18

analyzed in the course of a landscape genetics study. Thus, geoscientists and geocomputation will19

play an increasingly important role in landscape genetics.20
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Progress in landscape genetics is so far limited by available analytical methods (Balkenhol et al.,21

2009, 2016a; Guillot et al., 2009). In part this derives from the fact that many of the available22

analytical tools and much of the usable software were originally developed for population genetics23

or even broader statistical applications. They often include assumptions and are applicable to data24

that are not completely appropriate for landscape genetics studies. Because of this gap, there is25

no consensus in the literature regarding how to approach landscape genetics analysis (Balkenhol26

et al., 2016a). Indeed, the ad hoc assortment of methods currently in use lacks a unifying theory;27

consequently, more focus must be given to a mechanistic understanding of the influence of landscapes28

and environments on genetic and genomic variation (Balkenhol et al., 2016b). Development of29

a more comprehensive theory will come in part from an improved foundation of open source30

computational tools allowing explicit and flexible mechanistic modeling.31

This brief review focuses on three themes. First, it identifies the types of models most likely to32

advance a comprehensive theory of landscape genetics, improve mechanistic understanding, and33

provide better predictions serving, for example, conservation policy and management. Second,34

it considers a set of open source software that could be used for general models in landscape35

genetics but that all have significant limitations. Finally, it also suggests how these limitations can36

be overcome with new models and computational tools.37

1 LANDSCAPE GENETICS AND BAYESIAN INFERENCE38

The prevailing challenge in landscape genetics is identifying the mechanisms by which landscape39

and environmental factors influence genetic and genomic variation. More precisely, the central40

question is: given data on intraspecific genetic variation across landscapes (or waterscapes; Manel41

and Holderegger (2013); Selkoe et al. (2016)), what inferences are possible regarding the functional42

mechanisms and factors causing that variation? Framing the question in this way emphasizes the43

inherent connection between the science of landscape genetics and the nature of Bayesian inference.44

The natural connection between landscape genetics and Bayesian inference has led to the45

development of a variety of widely used Bayesian analysis methods. A first set of these includes46

STRUCTURE, which identifies putative populations and assigns individuals to them (Pritchard et al.,47

2000). Although originally designed for population not landscape genetics, it remains the most48

widely used. A second set of Bayesian models applied to landscape genetics includes GENELAND,49

which seeks to identify population clusters by modeling allele frequency distributions in a spatially50

explicit way (Chen et al., 2007; Guillot et al., 2005a,b). More recently, Bayesian models that51

explicitly relate environmental gradients to spatially explicit allele frequency distributions have been52

developed (Coop et al., 2010; Frichot et al., 2013).53

One element is common to all of the available software: each program implements a narrow54

range of possible models and provides very limited opportunity for expanding its scope. For example,55

as discussed below, both STRUCTURE and GENELAND are essentially variants of the same model,56

yet nothing of their implementation is shared so new variants cannot be created by exploiting their57

commonality. Further, the published descriptions do not reveal the inherent similarity between58

STRUCTURE and GENELAND, so conceptual connections are not evident. Consequently, landscape59

geneticists do not recognize a continuum of possible models. Even worse, they cannot exploit the60

continuum by incrementally modifying existing models and competing alternatives against available61
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data. This is a serious limitation for a scientific field that repeatedly asserts that more mechanistic62

and predictive models and a stronger theoretical foundation are essential (Andrew et al., 2013;63

Balkenhol et al., 2016b; Guillot et al., 2009; Manel and Holderegger, 2013).64

2 PROBABILISTIC GRAPH MODELS65

Mathematical graphs are widely used to represent models, including some in landscape genetics.66

Graphs are composed of a set of vertices and a set of edges, each of which connects a pair of vertices.67

Edges may be directed or undirected, and paths are sequences of edges connecting one vertex with68

another, possibly with intervening vertices. A cyclic graph has at least one path starting and ending69

at the same vertex; an acyclic graph lacks any such paths.70

One application of graphs to landscape genetics derives from the population graph concept (Dyer71

and Nason, 2004). Here the graph is composed of vertices representing population distributions in a72

multilocus genetic space, and edges representing interdependencies between populations due, for73

example, to gene flow (Excoffier et al., 1992). The primary application to landscape genetics has74

been identification of conditional independence between populations to remove edges followed by75

analysis of graph structure metrics such as centrality or connnectness (Dyer, 2007; Murphy et al.,76

2016).77

Graph models can be much richer, however, and both STRUCTURE and GENELAND are examples78

used in landscape genetics. Generally, (probabilistic) graph models are composed of vertices79

representing any kind of random variable and edges representing dependencies between them80

(Bishop, 2006; Koller and Friedman, 2009). They are widely used, for example, in latent factor81

analysis (Steyvers and Griffiths, 2007), a field that now finds application broadly in machine learning,82

artificial intelligence, and document and image processing, as well as landscape genetics (Blei et al.,83

2003; Blei, 2012; Frichot et al., 2013; Jia et al., 2011; Pritchard et al., 2000). The population84

graph concept of Dyer and Nason (2004) is clearly a special case where each vertex represents85

the same quantity, a population-specific distribution, but the landscape genetics analysis involving86

edge removal and graph metrics (Murphy et al., 2016) is unrelated to the use of graphs as formal87

probabilistic models (Bishop, 2006; Koller and Friedman, 2009). The value of the latter for landscape88

genetics, both conceptually and for software development, is the focus here.89

Although not described as such, a probabilistic graph model represents the mathematics underly-90

ing STRUCTURE (Pritchard et al., 2000). In this case, the random variables represent population-91

specific distributions of alleles, the probabilistic assignment of alleles to populations, and prior92

distributions that by default are uninformative (Figure 1). The STRUCTURE software supports slight93

variations in the model depicted; for example, assignment of all alleles may be individual-specific94

not allele-specific as shown, and priors may be informative in various ways. These variations,95

however, are extremely limited and do not cover the continuum of related models that is possible.96

One related model, however, is alluded to in Pritchard et al. (2000) and described in detail in97

Falush et al. (2003); but again, the graph model itself is not presented explicitly. The main difference98

is that in this model the population-specific allele distributions are not independent; instead, they are99

correlated via a shared ancestral population (Figure 2).100

A further related model, implemented in GENELAND, is described in Guillot et al. (2005a),101

again without depicting the graph model (Figure 3). This model explicitly adds spatial information102
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to the model; unlike the other two, both the identity of alleles and their spatial location are observed.103

This supports estimating additional random variables such as the inferred location of individuals and104

spatially-explicit allele distributions.105

A comparison of Figures 1–3 makes clear that these are all closely related models, a fact that is106

generally not made evident by the papers describing them. Furthermore, in many ways the graph107

models are more useful than the papers, because they make the conceptual linkages clear and enable108

direct comparisons among them. They also make gaps in the existing models evident; for example,109

none of these include gene flow explicitly despite its clear importance as a mechanism in landscape110

genetics (Holderegger and Wagner, 2008; Manel and Holderegger, 2013; Storfer et al., 2007; van111

Strien et al., 2014). Finally, probabilistic graph models invite the construction of variations by adding112

new random variables or changing dependencies among them, because the biological structure of the113

models is easy to reason about when presented in the form of a graph. Probabilistic graph models,114

therefore, provide an ideal foundation for mechanistic modeling in landscape genetics that can lead115

to an improved theoretical understanding.116

3 A MECHANISTIC MODELING FRAMEWORK FOR LANDSCAPE GE-117

NETICS118

Traditional approaches to landscape genetics descriptively model either genetic characteristics119

associated with each sampled site or individual, or derived genetic measures associated with pairs120

of sampled sites or individuals (Joost et al., 2007). Almost all approaches model these response121

variables using ad hoc distributions taken from more generic statistical literature; for example,122

virtually the entire textbook on landscape genetics (Balkenhol et al., 2016a) follows this pattern.123

In contrast, a mechanistic approach would construct a model of the individual observations, e.g.,124

individual multilocus genotypes (or genomes), as a function of assumed demographic, ecological,125

and population genetic mechanisms.126

As described earlier and illustrated in Figures 1–3, STRUCTURE and GENELAND are examples of127

exactly this approach; the observed alleles are modeled directly in terms of unobserved but inferable128

populations and assignments (Guillot et al., 2005a; Pritchard et al., 2000). Viewed in this context,129

differences between individual- and population-based approaches to landscape genetics are not130

fundamental; rather they reduce to simple differences between the structure of the graphical model131

in use. Individual-based models have graphs that relate observations on individuals to individual-132

specific random variables; examples of the latter are the assignment of an individual’s alleles to133

populations (Z in Figures 1 and 3) and the inferred true location of each individual (s in Figure 3).134

Population-based models have graphs that relate observations on individuals to population-specific135

random variables; examples of these are the population-specific allele frequencies (P in Figures 1136

and 3). By including elements of each, Figures 1 and 3 already blur the boundary between individual-137

and population-specific models.138

Given the power of probabilitistic graph models to represent a broad spectrum of intermediate139

cases just as well, a better framework is the set of mechanisms included. From this perspective, it is140

evident that Figure 3 includes spatially-explicit mechanisms whereas Figure 1 does not. It is also141

evident that neither one includes an explicit mechanism for gene flow. The power of probabilitistic142

graph models lies in their ability to cover the entire spectrum of models relevant to landscape143
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genetics and to encourage more transparent reasoning about alternative models. Using them to144

advance landscape genetics is limited only by our ability to compare alternative models, but that in145

turn is severely constrained by the software available to manipulate and analyze them.146

4 OPEN-SOURCE PROBABILISTIC GRAPH MODELS147

As just illustrated, the primary advantages of probabilistic graph models are that complex and148

realisticly mechanistic models can be constructed, and that their model structure can be manipulated149

easily to explore alternatives. Thus, there is great scope for constructing general theories based upon150

manipulating probabilitistic graph models to reflect interesting biological models within landscape151

genetics. However, software tools must exist that enable manipulation and analysis of the graphs,152

and the types of graphs available must match those required by landscape genetics. For many153

applications two types of graphs are enough: Bayesian networks represented by directed acyclic154

graphs (DAGs) and Markov random fields represented by undirected graphs. Landscape genetics155

models, however, often require more general types of graphs to accommodate, for example, spatially156

autoregressive relationships among random variables. Additionally, landscape genetics models often157

require distributions appropriate to a broad range of commonly encountered data types, including158

alleles, genotypes, spatially explicit environmental data. Such a range of discrete and continuous,159

unidimensional and multidimensional data types requires a rich array of probability distributions.160

While the set of probabilistic graph models that has been applied to landscape genetics do not161

harness their full flexibility, there exist modeling software that does better. The most widely used is162

based upon the BUGS language for describing graph models, and includes WinBUGS, OpenBugs163

(Lunn et al., 2009) and JAGS (Plummer, 2015). The BUGS language allows textual description164

of general graph models that include a broad range of distributions. The textual description is165

translated into executable code, a process that introduces some of the limitations common to this166

type of modeling software. First, the flexibility of possible applications is limited by the features167

of the BUGS language. A limited range of data types, generally scalars and vectors or matrices168

constructed from them, is available, only data structures describable in the language may be used,169

and algorithms are limited to those already programmed. Second, the scale of models is also limited170

by the execution environment provided by the implementation. Despite the inherent flexibility171

of graph models in general, both of these limitations are barriers to convenient development of172

landscape genetics models that leverage the flexibility of graph models. While genetic data can173

be recoded in the form of only integers or real numbers, it is tedious and error-prone to do so;174

thus, the limited data types available create needless barriers. A landscape genetics model might175

include thousands or millions of random variables within it; consider, for example, a model of176

population allele freqencies and environmental factors across a landscape grid of 1000×1000 pixels.177

This puts severe stress on models that cannot harness the full power of multithreading, distributed178

multiprocessing, and careful memory management. Being limited by the BUGS language, these179

programs provide restricted capacity for modelers to address these issues.180

Another general graph modeling system is Stan (Carpenter et al., 2015; Gelman et al., 2015).181

Although more flexible in some ways than BUGS, Stan suffers from some of the same limitations that182

reduce its applicability to landscape genetics. It has the same limited data types and the execution183

environment is likewise limited by the Stan language. As a result, neither BUGS nor Stan are ideally184

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2225v4 | CC BY 4.0 Open Access | rec: 22 May 2017, publ: 22 May 2017



Primitive Implementation
Name Graph types variables Preprocessing language Reference

Darwin FGs scalars compiled C++ Gould (2015)
HYDRA DAGs, MRFs, FGs, HMMs Java classes compiled Java Warmes (2013)
Infer.NET FGs C# classes compiled C# Minka et al. (2014)
JAGS DAGs scalars interpreted C++ Plummer (2016)
JavaBayes DAGs scalars interpreted Java Cozman (2001)
libDAI FGs discrete compiled C++ Mooiji (2015)
Mocapy++ DAGs, HMMs C++ classes compiled C++ Antonov et al. (2015)
Nimble DAGs scalar interpreted C++ de Valpine et al. (2016)
OpenBUGS DAGs scalar interpreted Component Pascal Thomas (2009)
OpenGM DAGs, MRFs, FGs discrete compiled C++ OpenGM (2015)
PNL DAGs, MRFs C++ classes compiled C++ Sysoyev et al. (2013)
RISO DAGs Java classes compiled Java Dodier (2012)
Stan scalars interpreted C++ Stan Development Team (2016)
Vibes DAGs scalar compiled Java Winn (2004)

Table 1. A selection of open source software tools for analyzing probabilistic graph models. Type
of graphs include directed acyclic graphs (DAGs), Markov random fields (MRFs), factor graphs
(FGs), hidden Markov models (HMMs), and Gaussian Markov models (GMMs).

suited for landscape genetics applications.185

In addition to these two major classes of graph modeling software, a broad range of more186

specialized software systems is also available; many of these are summarized by Murphy (2014).187

Some are open source and may have potential for landscape genetics applications (Table 1). These188

tools have many of the same limitations as BUGS, JAGS, and Stan. They often handle fewer graph189

types than needed for landscape genetics, the data types are not well suited to landscape genetics, or190

their execution environments are restrictive. In addition, they are much more specialized, difficult to191

program, and likely well beyond the reach of typical landscape geneticists. These characteristics192

mean that landscape geneticists face a fundamental challenge hindering development of a strong193

conceptual foundation for the field based upon the expressive power, flexibility, and statistical rigor194

of probabilistic graph models.195

5 DESIGNING A PROBABILISTIC GRAPH MODEL FOR LANDSCAPE196

GENETICS197

What then is the ideal design of a software system intended to harness the power, flexibility, and198

rigor of probabilistic graph models applied to landscape genetics? First and foremost, it must support199

a full range of relevant graph types, which in particular means not being limited to directed acyclic200

graphs. Second, it must support a full range of useful data types that landscape geneticists work201

with; in addition to simple scalars, vectors, and matrices, these include named alleles and genotypes,202

loci and chromosomes, geographic locations, and spatial data of various sorts. Ideally, user-defined203

or third-party data types should be easy to accommodate. Third, the algorithms available should be204

extensible to allow improved efficiency as needed. Fourth, the execution environment should not205

be limited to that encapsulated within a single, predefined program. This is especially important206

for landscape genetics models that may well encompass thousands or millions of random variables.207

Finally, the power and flexibility of graph models must be abstracted enough that a full spectrum208
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of landscape geneticists can create simple models easily, test alternative and biologically relevant209

models quickly, and improve upon the models and algorithms as needed.210

It is little surprise that existing software tools are unable to meet these stringent demands; they211

are largely conflicting and impossible to resolve without advanced software design. The most likely212

path forward (Lunn et al., 2009) leverages the power of C++ to present high-level abstractions213

based upon embedded domain specific languages (de Guzman and Kaiser, 2016; Niebler, 2016)214

assembled with expression templates (Niebler, 2016; Veldhuizen, 1995) from highly reusable generic215

components (Stepanov and Rose, 2014). Although beyond the scope of this paper, we are following216

these design principles to implement a software library intended to provide the expressive power and217

computational performance demanded for advancing a coherent conceptual foundation for landscape218

genetics. The outcome is a highly compact way of encoding probabilistic graph models of relevance219

to landscape genetics (Figure 4). Given the expressive power of the language, all of this should220

be readily accessible to biologists without deep knowledge of C++ programming. Importantly,221

models can be described in a formal way that removes the ambiguity inherent in natural language222

descriptions. Finally, because models are encoded directly in C++, not interpreted, they can be223

reused as portions of larger programs for enhanced capability; this is fundamentally impossible for224

interpreted modeling frameworks such as OpenBUGS or JAGS. The generality of this approach225

removes the limitations inherent to the available software and characteristic of current approaches to226

landscape genetics data analysis, and makes it easy to encode, and therefore explore, the complete227

space of relevant models.228

6 CONCLUSION229

Landscape genetics suffers greatly from the absence of an analytical foundation that encourages230

development of a mechanistic understanding of the impact of environmental and landscape factors231

on genetic and genomic variation (Balkenhol et al., 2016a). This stems in part from the adoption of232

software tools and methods originally developed for other purposes. There exist well-established233

concepts and statistical approaches associated with probabilitistic graph models that are ideally234

suited as the needed foundation for landscape genetics. Unfortunately, the associated software tools235

cannot be borrowed directly, because they are limited in ways that do not accommodate the needs of236

landscape geneticists. One priority that would directly advance the field and resolve these problems237

is the development of probabilistic graph model tools that do apply generally to landscape genetics.238

Despite the inherent difficulty of this task, we have developed a suitable library and are beginning to239

apply it to landscape genetics.240
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N individuals

M alleles/individual

K populations

α θ

λ P

AlleleZ

Figure 1. Plate notation (Bishop, 2006) for the locus-specific graph model used by STRUCTURE

(Pritchard et al., 2000). Each circle represents a random variable (or a set of them for those enclosed
within boxes) and each arrow represents a dependency of one random variable upon another. This
models N individuals each sampled for M (usually two) alleles. P represents the allele frequency
distribution in each of K populations and Z represents the assignment of alleles to populations. θ is
the distribution of assignments and α and λ are Bayesian priors. The single filled circle indicates
that among these random variables only the alleles have been observed; the rest are inferred (or
fixed in the case of α and λ ).
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N individuals

M alleles/individual

K populations

α θ

λ PA
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F

Figure 2. Plate notation for the correlated allele frequency extension (Falush et al., 2003) to the
locus-specific graph model used by STRUCTURE. This models an ancestral population (PA) from
which a correlated set of extant populations (P) have been derived. The pattern of correlation
between populations is governed by F .
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Figure 3. Plate notation for the spatially-explicit extension of STRUCTURE used by GENELAND

(Guillot et al., 2005a,b). Additional random variables include the true (s) and observed (shaded)
locations of sampled individuals and the error (ε) between them, and the locations of points defining
the Voronoi tessellation (u) and their population identity (c). In this case, both the number of
Voronoi cells (m) and the number of populations (K) are random variables.
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observed_allele_type X;
allele_assignment_type Z;
individual_admixture_distribution_type theta;
population_allele_frequency_distribution_type P;
diriclet_parameter_type alpha;
diriclet_parameter_type lambda;

allele_frequency_type Pr;

for (auto population : populations)
P(population) =˜ dirichlet(lambda);

for (auto individual : individuals)
{
theta(individual) =˜ dirichlet(alpha);
for (auto allele : alleles(individual))
{
Z(individual,allele) =˜ multinomial(theta(individual));
for (auto population : populations)
Pr(individual) += Z(population,individual) * P(population);

X(individual,allele) =˜ bernoulli(Pr(individual,allele));
}

}

Figure 4. Compact implementation of the STRUCTURE model with admixture (Pritchard et al.,
2000). This is C++ source code for the probabilistic graph model corrresponding to one of the
models in STRUCTURE. A few additional lines of code transforms this into a model with correlated
allele frequencies (Falush et al., 2003) or one with spatially explicit observations (Guillot et al.,
2005a).
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