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Abstract4

Progress in landscape genetics depends on a strong conceptual foundation and the means5

of identifying mechanistic connections between environmental factors, landscape features, and6

genetic or genomic variation. Many existing approaches and much of the software commonly7

in use was developed for population genetics or statistics and is not entirely appropriate for8

landscape genetics. Probabilistic graph models provide a statistically rigorous and flexible9

means of constructing models directly applicable to landscape genetics. Sophisticated soft-10

ware also exists for the analysis of graph models. However, much of that software does not11

handle the types of data used for landscape genetics, model structures involving autoregressive12

spatial interaction between variables, or the scale of landscape genetics problems. Thus, an13

important priority for the field is to develop suitably flexible software tools for graph models14

that overcome these problems and allow landscape geneticists to explore meaningfully mech-15

anistic and flexible models. We are developing such a library and applying it to examples in16

landscape genetics.17

One recurring theme in the landscape genetics literature is that progress is limited by avail-18

able analytical methods (Balkenhol et al., 2009, 2016a; Guillot et al., 2009). In part this derives19

from the fact that many of the available analytical tools and much of the usable software were20

originally developed for population genetics or even broader statistical applications. They may21

include assumptions or be applicable to data that are not completely appropriate for landscape22

genetics studies. Because of this gap, there is no consensus in the literature regarding how to ap-23

proach landscape genetics analysis (Balkenhol et al., 2016a). Nevertheless, development of a more24

comprehensive theory will come in part from an improved foundation of computational tools, es-25

pecially open source ones, allowing explicit and flexible modeling.26
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This brief review focuses on three themes. First, it identifies the types of models most likely to27

contribute to advancement of a comprehensive theory of landscape genetics, improved mechanis-28

tic understanding, and better predictive power upon which, for example, conservation policy and29

management can be based. Second, it considers a set of open source software upon which such30

models for landscape genetics might be based. All of these turn out to have significant limitations.31

Consequently, it also suggests characteristics that will be essential for the ongoing development of32

models and computational tools most likely to advance landscape genetics.33

Landscape genetics and Bayesian inference The prevailing challenge in landscape genetics is34

identifying the mechanisms by which landscape and environmental factors influence genetic and35

genomic variation. More precisely, the central question in landscape genetics is the following:36

given data on intraspecific genetic variation across landscapes, what inferences are possible re-37

garding the functional mechanisms and factors causing that variation? Framing the question in this38

way emphasizes the inherent connection between the science of landscape genetics and the nature39

of Bayesian inference.40

Bayesian models in landscape genetics The natural connection between landscape genetics and41

Bayesian inference has led to the development of a variety of widely used Bayesian analysis meth-42

ods. Although originally designed for population genetics, the most widely used is Structure,43

which identifies putative populations and assigns individuals to them (Pritchard et al., 2000). A44

second set seeks to identify population clusters by modeling allele frequency distributions in a spa-45

tially explicit way (Chen et al., 2007; Guillot et al., 2005a,b). More recently, Bayesian models that46

explicitly relate environmental gradients to spatially explicit allele frequency distributions have47

been developed (Coop et al., 2010; Frichot et al., 2013). One element is common to all of these48

models and associated software: each one covers a particular type of model and provides very49

limited opportunity for exploring related models or for expanding their scope. This is a serious50

limitation for a scientific field that repeatedly asserts that more mechanistic and predictive models51

and a stronger theoretical foundation is essential (Andrew et al., 2013; Balkenhol et al., 2016b;52

Guillot et al., 2009; Manel and Holderegger, 2013).53

Probabilistic graph models This gap is not for lack of a general statistical framework that is54

completely applicable. Probabilistic graph models (Bishop, 2006; Koller and Friedman, 2009) are55

the means of describing and analyzing a broad range of models and sophisticated software ex-56

ists to handle them. They are composed of random variables (vertices) and relationships between57

them (edges). Despite the superficial similarity involving graphs, probabilistic graph models are58

completely distinct from graph theory as applied to landscape genetics (Murphy et al., 2016). Gen-59

erally, there is great scope for constructing general theories based upon manipulating probabilitistic60

graph models to reflect interesting biological models within landscape genetics. However, software61

tools must exist that enable manipulation and analysis of the graphs, and the types of graphs avail-62

able must match those required by landscape genetics. For many applications two types of graphs63
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are enough: Bayesian networks represented by directed acyclic graphs (DAGs) and Markov ran-64

dom fields represented by undirected graphs. Landscape genetics models, however, often require65

more general types of graphs to accommodate, for example, spatially autoregressive relationships66

among random variables.67

Open-source probabilistic graph models While probabilistic graph models applied to land-68

scape genetics do not generally harness their full flexibility, there exist modeling software that69

does. The most widely used is based upon the BUGS language for describing graph models,70

and includes WinBUGS, OpenBugs (Lunn et al., 2009) and JAGS (Plummer, 2015). The BUGS71

language allows textual description of general graph models that include a broad range of distribu-72

tions. The textual description is translated into executable code, a process that introduces some of73

the limitations common to this type of modeling software. Another general graph modeling system74

is Stan, named for Stanislaw Ulam, an inventor of Monte Carlo approaches to inference (Carpenter75

et al., 2015; Gelman et al., 2015). Although more flexible in some ways than BUGS, Stan suffers76

from some of the same limitations that reduce its applicability to landscape genetics. It has the77

same limited data types and the execution environment is likewise limited by the Stan language.78

In addition to these two major classes of graph modeling software, a broad range of more special-79

ized software systems is also available; many of these are summarized by Murphy (2014). Some80

are open source and may have potential for landscape genetics applications. However, they often81

handle a more limited range of graphs than is needed for landscape genetics, the data types are not82

well suited to landscape genetics, or their execution environments are limiting. This means that83

landscape geneticists face a fundamental challenge hindering development of a strong conceptual84

foundation for the field based upon the expressive power, flexibility, and statistical rigor of prob-85

abilistic graph models. Existing frameworks such as provided by BUGS, JAGS, and Stan offer86

much flexibility and power but are designed for types of graphs, random variables, and data types87

that are not ideally suited to landscape genetics. Other software libraries may suffer from these88

same limitations but in addition are much more difficult to program and well beyond the reach of89

typical landscape geneticists.90

Designing a probabilistic graph model for landscape genetics What then is the ideal design of91

a software system intended to harness the power, flexibility, and rigor of probabilistic graph models92

applied to landscape genetics? First and foremost, it must support a full range of relevant graph93

types, which in particular means not being limited to directed acyclic graphs. Second, it must94

support a full range of useful data types that landscape geneticists work with; in addition to simple95

scalars, vectors, and matrices, these include named alleles and genotypes, loci and chromosomes,96

spatial data of various sorts, and geographic locations. Ideally, user-defined or third-party data97

types should be easy to accommodate. Third, the algorithms available should be extensible to98

allow improved efficiency as needed. Fourth, the execution environment should not be limited to99

that encapsulated within a single, predefined program. This is especially important for landscape100

genetics models that may well encompass thousands or millions of random variables. Finally, all of101
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this power and flexibility must be abstracted enough that a full spectrum of landscape geneticists102

can create simple models easily, test alternative and biologically relevant models flexibly, and103

improve upon the models and algorithms as needed. It is little surprise that existing software tools104

are unable to meet these stringent demands; they are largely conflicting and impossible to resolve105

without advanced software design. The most likely path forward (Lunn et al., 2009) leverages the106

power of C++ to present high-level abstractions based upon embedded domain specific languages107

(de Guzman and Kaiser, 2016; Niebler, 2016) assembled with expression templates (Niebler, 2016;108

Veldhuizen, 1995) from highly reusable generic components (Stepanov and Rose, 2014). Although109

beyond the scope of this paper, we are following these design principles to implement a software110

library intended to provide the expressive power and computational performance demanded for111

advancing a coherent conceptual foundation for landscape genetics.112

Conclusion Landscape genetics suffers greatly from the absence of an analytical foundation that113

encourages development of a mechanistic understanding of the impact of environmental and land-114

scape factors on genetic and genomic variation (Balkenhol et al., 2016a). This stems in part from115

the adoption of software tools and methods originally developed for other purposes. There exist116

well-established concepts and statistical approaches associated with probabilitistic graph models117

that are ideally suited as the needed foundation for landscape genetics. Unfortunately, the asso-118

ciated software tools cannot be borrowed directly, because they are limited in ways that do not119

accommodate the needs of landscape geneticists. One priority that would directly advance the120

field and resolve these problems is the development of probabilistic graph model tools that do ap-121

ply to landscape genetics. Despite the inherent difficulty of this task, we have developed a suitable122

library and are beginning to apply it to landscape genetics.123
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