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Abstract4

Progress in landscape genetics depends on a strong conceptual foundation and the means5

of identifying mechanistic connnections between environmental factors, landscape features,6

and genetic or genomic variation. Many existing approaches and much of the software com-7

monly in use was developed for population genetics or statistics and is not entirely appropriate8

for landscape genetics. Probabilistic graph models provide a statistically rigorous and flexible9

means of constructing models directly applicable to landscape genetics. Sophisticated soft-10

ware also exists for the analysis of graph models. However, much of that software does not11

handle the types data used by landscape geneticis, model structures involving autoregressive12

spatial interaction between variables, or the scale of landscape genetics problems. Thus, an13

important priority for the field is to develop suitably flexible software tools for graph models14

that overcome these problems and allow landscape geneticists to explore meaningfully mech-15

anistic and flexible models. We are developing such a library and applying it to examples in16

landscape genetics.17

One recurring theme in the landscape genetics literature is that progress is limited by avail-18

able analytical methods (Balkenhol et al., 2009, 2016a; Guillot et al., 2009). In part this derives19

from the fact that many of the available analytical tools and much of the usable software were20

originally developed for population genetics or even broader statistical applications. They may21

include assumptions or be applicable to data that are not completely appropriate for landscape22

genetics studies. Because of this gap, there is no consensus in the literature regarding how to ap-23

proach landscape genetics analysis (Balkenhol et al., 2016a). Indeed, the most extreme view is24

that a comprehensive theory for landscape genetics is lacking and that more focus must be given25

to mechanistic understanding of the influence of landscapes and environments on genetic and ge-26

nomic variation (Balkenhol et al., 2016b). Development of a more comprehensive theory will come27
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in part from an improved foundation of computational tools, especially open source ones, allowing28

explicit and flexible modeling.29

This brief review focuses on three themes. First, it identifies the types of models most likely to30

contribute to advancement of a comprehensive theory of landscape genetics, improved mechanis-31

tic understanding, and better predictive power upon which, for example, conservation policy and32

management can be based. Second, it considers a set of open source software upon which such33

models for landscape genetics might be based. All of these turn out to have significant limitations.34

Consequently, it also suggests characteristics that will be essential for the ongoing development of35

models and computational tools most likely to advance landscape genetics.36

Landscape genetics and Bayesian inference The prevailing challenge in landscape genetics37

is identifying the mechanisms by which landscape and environmental factors influence genetic38

and genomic variation. More precisely, the central question in landscape genetics is the follow-39

ing: given data on intraspecific genetic variation across landscapes (or waterscapes; Manel and40

Holderegger (2013); Selkoe et al. (2016)), what inferences are possible regarding the functional41

mechanisms and factors causing that variation? Framing the question in this way emphasizes the42

inherent connection between the science of landscape genetics and the nature of Bayesian infer-43

ence.44

Bayesian models in landscape genetics The natural connection between landscape genetics and45

Bayesian inference has led to the development of a variety of widely used Bayesian analysis meth-46

ods. Although originally designed for population genetics, the most widely used is Structure,47

which identifies putative populations and assigns individuals to them (Pritchard et al., 2000). Ap-48

plications of Structure in landscape genetics are dominated by either identifying putative popula-49

tions that are subsequently compared with geographic locations or identifying migrant individuals50

whose genetic assignment is inconsistent with their geographic location. Neither of these applica-51

tions addresses directly the core question of landscape genetics. A second set of Bayesian models52

applied to landscape genetics seeks to identify population clusters by modeling allele frequency53

distributions in a spatially explicit way (Chen et al., 2007; Guillot et al., 2005a,b). More recently,54

Bayesian models that explicitly relate environmental gradients to spatially explicit allele frequency55

distributions have been developed (Coop et al., 2010; Frichot et al., 2013). One element is com-56

mon to all of these models and associated software: each one covers a particular type of model and57

provides very limited opportunity for exploring related models or for expanding their scope. This58

is a serious limitation for a scientific field that repeatedly asserts that more mechanistic models and59

a stronger theoretical foundation is essential (Balkenhol et al., 2016b).60

Probabilistic graph models This gap is not for lack of a general statistical framework that is61

completely applicable. Probabilistic graph models (Bishop, 2006; Koller and Friedman, 2009) are62

the means of describing and analyzing a broad range of models and sophisticated software exists63
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to handle them. Indeed, the model underlying Structure (Pritchard et al., 2000) is an early con-64

tribution to latent factor analysis, a field that now finds application broadly in machine learning,65

artificial intelligence, and document and image processing, as well as landscape genetics (Fri-66

chot et al., 2013). Probabilistic graph models are composed of random variables (vertices) and67

relationships between them (edges), and are completely distinct from the graph theory applied to68

landscape genetics (Murphy et al., 2016). The primary advantage of probabilistic graph models is69

that complex and realisticly mechanistic models can be constructed, and the model structure can be70

manipulated easily to explore alternatives. Thus, there is great scope for constructing general the-71

ories. For many applications, Bayesian networks represented by directed acyclic graphs (DAGs)72

or Markov random fields represented by undirected graphs are sufficient; landscape genetics mod-73

els, however, often require more general types of graphs to accommodate, for example, spatially74

autoregressive relationships among random variables.75

Open-source probabilistic graph models While probabilistic graph models applied to land-76

scape genetics do not generally harness their full flexibility, there exist modeling software that77

does. The most widely used is based upon the BUGS language for describing graph models,78

and includes WinBUGS, OpenBugs (Lunn et al., 2009) and JAGS (Plummer, 2015). The BUGS79

language allows textual description of general graph models that include a broad range of distribu-80

tions. The textual description is translated into executable code, a process that introduces some of81

the limitations common to this type of modeling software. First, the flexibility of possible appli-82

cations is limited by the features of the BUGS language. A limited range of data types, generally83

scalars and vectors or matrices constructed from them, is available, only data structures describable84

in the language may be used, and algorithms are limited to those already programmed. Second, the85

scale of models is limited by the execution environment provided by the implementation. Despite86

the inherent flexibility of graph models in general, both of these limitations are barriers to con-87

venient development of landscape genetics models that leverage the flexibility of graph models.88

While genetic data can be recoded in the form of only integers or real numbers, it is tedious and89

error-prone to do so; thus, the limited data types available create needless barriers. A landscape90

genetics model might include thousands or millions of random variables within it; consider, for91

example, a model of population allele freqencies and environmental factors across a landscape92

grid of 1000 × 1000 pixels. This puts severe stress on models that cannot harness the full power93

of multithreading, distributed multiprocessing, and careful memory management. Being limited94

by the BUGS language, these programs provide no capacity for modelers to address these issues.95

Another general graph modeling system is Stan, named for Stanislaw Ulam, an inventor of Monte96

Carlo approaches to inference (Carpenter et al., 2015; Gelman et al., 2015). Although more flexible97

in some ways than BUGS, Stan suffers from some of the same limitations that reduce its applica-98

bility to landscape genetics. It has the same limited data types and the execution environment is99

likewise limited by the Stan language. In addition to these two major classes of graph modeling100

software, a broad range of more specialized software systems is also available; many of these are101

summarized by Murphy (2014). Some are open source and may have potential for landscape genet-102
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Primitive Implementation
Name Graph types variables Preprocessing language Reference

Darwin FGs scalars compiled C++ Gould (2015)
HYDRA DAGs, MRFs, FGs, HMMs Java classes compiled Java Warmes (2013)
Infer.NET FGs C# classes compiled C# Minka et al. (2014)
JAGS DAGs scalars interpreted C++ Plummer (2016)
JavaBayes DAGs scalars interpreted Java Cozman (2001)
libDAI FGs discrete compiled C++ Mooiji (2015)
Mocapy++ DAGs, HMMs C++ classes compiled C++ Antonov et al. (2015)
Nimble DAGs scalar interpreted C++ de Valpine et al. (2016)
OpenBUGS DAGs scalar interpreted Component Pascal Thomas (2009)
OpenGM DAGs, MRFs, FGs discrete compiled C++ OpenGM (2015)
PNL DAGs, MRFs C++ classes compiled C++ Sysoyev et al. (2013)
RISO DAGs Java classes compiled Java Dodier (2012)
Stan scalars interpreted C++ Stan Development Team (2016)
Vibes DAGs scalar compiled Java Winn (2004)

Table 1: A selection of open source software tools for analyzing probabilistic graph models. Type
of graphs include directed acyclic graphs (DAGs), Markov random fields (MRFs), factor graphs
(FGs) hidden Markov models (HMMs), and Gaussian Markov models (GMMs).

ics applications (Table 1). It is clear from the Table 1, however, that even beyond their specialized103

nature and general inaccessability to landscape geneticists, these tools also suffer from many of the104

same limitations. They often handle a more limited range of graphs than is needed for landscape105

genetics, the data types are not well suited to landscape genetics, or their execution environments106

are limiting. Overall, landscape geneticists interested in developing a strong conceptual foundation107

for the field based upon the expressive power, flexibility, and statistical rigor of probabilistic graph108

models are faced with a fundamental challenge. Existing frameworks such as provided by BUGS,109

JAGS, and Stan offer much flexibility and power but are designed for types of graphs, random110

variables, and data types that are not ideally suited to landscape genetics. Other software libraries111

may suffer from these same limitations but in addition are much more difficult to program and well112

beyond the reach of typical landscape geneticists.113

Designing a probabilistic graph model for landscape genetics What then is the ideal design of114

a software system intended to harness the power, flexibility, and rigor of probabilistic graph models115

applied to landscape genetics? First and foremost, it must support a full range of relevant graph116

types, which in particular means not being limited to directed acyclic graphs. Second, it must117

support a full range of useful data types that landscape geneticists work with; in addition to simple118

scalars, vectors, and matrices, these include named alleles and genotypes, loci and chromosomes,119

spatial data of various sorts, and geographic locations. Ideally, user-defined or third-party data120

types should be easy to accommodate. Third, the algorithms available should be extensible to121

allow improved efficiency as needed. Fourth, the execution environment should not be limited to122

that encapsulated within a single, predefined program. This is especially important for landscape123

genetics models that may well encompass thousands or millions of random variables. Finally, all of124
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this power and flexibility must be abstracted enough that a full spectrum of landscape geneticists125

can create simple models easily, test alternative and biologically relevant models flexibly, and126

improve upon the models and algorithms as needed. It is little surprise that existing software tools127

are unable to meet these stringent demands; they are largely conflicting and impossible to resolve128

without advanced software design. The most likely path forward (Lunn et al., 2009) leverages the129

power of C++ to present high-level abstractions based upon embedded domain specific languages130

(de Guzman and Kaiser, 2016; Niebler, 2016) assembled with expression templates (Niebler, 2016;131

Veldhuizen, 1995) from highly reusable generic components (Stepanov and Rose, 2014). Although132

beyond the scope of this paper, we are following these design principles to implement a software133

library intended to provide the expressive power and computational performance demanded for134

advancing a coherent conceptual foundation for landscape genetics.135

Conclusion Landscape genetics suffers greatly from the absence of an analytical foundation that136

encourages development of a mechanistic understanding of the impact of environmental and land-137

scape factors on genetic and genomic variation (Balkenhol et al., 2016a). This stems in part from138

the adoption of software tools and methods originally developed for other purposes. There exist139

well-established concepts and statistical approaches associated with probabilitistic graph models140

that are ideally suited as the needed foundation for landscape genetics. Unfortunately, the asso-141

ciated software tools cannot be borrowed directly, because they are limited in ways that do not142

accommodate the needs of landscape geneticists. One priority that would directly advance the143

field and resolve these problems is the development of probabilistic graph model tools that do ap-144

ply to landscape genetics. Despite the inherent difficulty of this task, we have developed a suitable145

library and are beginning to apply it to landscape genetics.146
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