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Abstract 
Previous definitions of a Discrete Hankel Transform (DHT) have focused on methods 
to approximate the continuous Hankel integral transform without regard for the 
properties of the DHT itself.  Recently, the theory of a Discrete Hankel Transform was 
proposed that follows the same path as the Discrete Fourier/Continuous Fourier 
transform.  This DHT possesses orthogonality properties which lead to invertibility 
and also possesses the standard set of discrete shift, modulation, multiplication and 
convolution rules.  The proposed DHT can be used to approximate the continuous 
forward and inverse Hankel transform.  This paper describes the matlab code 
developed for the numerical calculation of this DHT. 
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Introduction  
There have been many attempts to define a Discrete Hankel Transform (DHT) in the 
literature, however prior work has focused on proposing methods to approximate 
the calculation of the continuous Hankel integral.  This stands in stark contrast to the 
approach taken with the Fourier transform where the Discrete Fourier Transform 
(DFT) is a transform in its own right, with its own mathematical theory of the 
manipulated quantities. An additional feature of a carefully derived DFT is that it can 
be used to approximate the continuous Fourier transform, with relevant sampling 
and interpolation theories that can be used.  Recently, a DHT was proposed as a 
complete and orthogonal transform that possesses its own mathematical theory, 
including the standard set of shift, modulation, multiplication and convolution rules 
[1].  In addition, this DHT can be used to approximate the continuous Hankel 
transform in the same manner that the Discrete Fourier transform is known to be 
able to approximate the continuous Fourier transform. 
 
Overview of the Discrete Hankel Transform 

The Continous Hankel Transform 
The forward Hankel transform of order n  transforms a function ( )f r  in the spatial 
domain to a function ( )F ρ  in the spatial frequency domain and is given by [2, p. 5.6] 

 ρ ρ
∞

= = ∫0{ ( )} ( ) ( ) ( ) 
n n n

f r F f r rJ r dr   (1) 

where  ( )nJ z  is the nth order Bessel function of the first kind.  The inverse transform 
is given by 
 1

0
{ ( )} ( ) ( ) ( ) n n n nF f r F J r dρ ρ ρ ρ ρ

∞− = = ∫   (2) 

More on the continuous transform can be found in [2]. 
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Discrete Hankel Transform  
The nth order discrete Hankel transform (DHT) proposed in [1] is  defined as the 
transformation of the discrete vector f to vector F given by 
 nNY=F f   (3) 

This discrete transform consists of taking an 1N −  vector f and a ( ) ( )1 1N N− × −  

square matrix of Hankel order n , nNY , to perform the matrix-vector multiplication 
and obtain the 1N − DHT vector F .   If the DHT as defined in (3) is used to 
approximate the CHT, then the vector f  represents the sampled function to be 
transformed and the vector F  represents the discrete function in the transformed 
(Hankel) domain.  The nNY matrix in equation (3) is defined as having the , thm k  entry 
given by  

 , 2
1

2   1 , 1   
( )

nN nm nk
nm k

nN nNn nk

j jY J m k N
j J j j+

 
 
 

= ≤ ≤ −   (4)

   

where nkj  is the thk   zero of the Bessel function of the first kind of order n [1].  
Properties of the DHT as defined in equation (3) are shown in [1]. 
 
Since the core of the tested discrete transform is the transformation matrix nNY , 
various properties have to be maintained. One of these properties is that the matrix 

nNY  possesses orthogonality properties, where nN nNY Y = Ι . In order to preserve the 
requisite properties of nNY and therefore of the DHT itself, the first Bessel zero used 
in computing the entries of the nNY  matrix is the first non-zero value of the Bessel 
zero of order n  .  If the nNY  matrix is not assembled following this rule, the matrix 
loses its orthogonality property and thus performing the discrete transform leads to 
improper results. If the DHT is used to approximate a CHT, then this restriction also 
applies to the discretization of the continuous function, as shall be discussed further 
below.  
 
The inverse discrete Hankel transform f of the vector F  is then given by 
 nNY=f F   (5) 

The discrete forward and inverse Hankel transforms as given in equations (3) and (5) 
have been shown to possess the standard set of shift, modulation, multiplication and 
convolution rules.  In addition, this DHT can be used to approximate the continuous 
Hankel transform in the same manner that the Discrete Fourier transform is known 
to be able to approximate the continuous Fourier transform at certain discrete 
points.    
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Discrete Hankel Transform to approximate the Continuous Hankel Transform  
Given  a continuous function ( )f r   evaluated at the discrete points nkr  in the space 
domain  (1 1k N≤ ≤ − ),  its nth order Hankel-transform function ( )F ρ  evaluated at 

the discrete points nmρ  (1 1m N≤ ≤ − ), can be approximately given by [1] 

 [ ] [ ]
1

,
1

N
nN nN

m k
k

F m Y f k Yα α
−

=

= ⇒ =∑ F f   (6) 

where α  is a scaling factor to be discussed below, and ( )nmF m F ρ   = ,  

( )nkf k f r   = .  

Conversely, given a continuous function ( )F ρ   evaluated at the discrete points nmρ  in 
the frequency domain (1 1m N≤ ≤ − ),  its nth order inverse Hankel transform 
function ( )f r  evaluated at the discrete points nkr  (1 1k N≤ ≤ − ), can be 
approximately given by 

 
1

,
1

1 1[ ] [ ]
N

nN nN
m k

m
f k Y F m Y

α α

−

=

= ⇒ =∑ f F   (7) 

For both the forward and inverse transforms, α   is a scaling factor which depends on 
the function properties and shall be discussed further below. The choice of 
discretization points nkr   and nmρ  is also discussed below. The full theory of the 
discrete Hankel transform is given in [1]. 

Discretization Points 
In order to properly use the discrete transform to approximate the continuous 
transform, a function has to be discretized at specific sampling points. For a finite 
spatial range[0, ]R  and a Hankel transform of order n  , these sampling points are 
given in the space domain  as  

     for 1 1nk
nk

nN

jr R k N
j

= ≤ ≤ −   (8) 

For the finite frequency domain range [0, ]Wρ  and a Hankel transform of order n , the 
sampling points are given by 

     for 1 1nm
nm

nN

j W m N
j ρρ = ≤ ≤ −   (9) 

It is important to note that as in the case of the computation of the transformation 
matrix nNY  , the first Bessel zero 1nj   used in computing the discretization points is 
the first non-zero value.   
 

The relationship nNjW
Rρ =  , derived in [1], holds between the ranges in space and 

frequency.  Choosing N determines the dimension (size) of the DHT and determines
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nNj .  The determination of nNj  (via choosing N) determines the range in one domain 
once the range in the other domain is chosen.  In fact, any two of , , nNR W jρ  can be 
chosen but the third must follow from nNW R jρ = .  A similar relationship applies when 
using the Discrete Fourier Transform, any two of the range in each domain and the 
size of the DFT can be chosen independently.  

Scaling Factor 
The scaling factor α  necessary for using the DHT to approximate the CHT depends 
on whether the function is space-limited or band-limited. Since it might be hard to 
determine if a function is space or band limited, the concept of effective limit is 
introduced. Therefore, a function defined as being “effectively limited in space by R” 
means that if r R> , then as r →∞  , ( ) 0f r → . In other words, the function can be 
made as close to zero as desired by selecting an R that is large enough.  The same 
idea can be applied to the spatial frequency domain, where the effective domain 
would be denoted by Wρ . The conditions and corresponding scaling factors are listed 
in Table 1. 

Table 1: Scaling factor under various conditions 

 Condition Scaling Factor 

1 Space-limited function  
2

nN

R
j

α =   

2 Frequency-limited function  2
nNj

Wρ

α =   

 
The detailed derivation of these scaling factors was shown in [1].  It can be observed 
that the scaling factors for the space-limited or frequency limited cases can be 
derived from each other via nNW R jρ = . 
 
Implementation and architecture 
The software is based on the MATLAB programming language. The implementation 
of the discrete Hankel transform is decomposed into distinct functions. These 
functions consist of the various steps that have to be performed in order to properly 
execute the transform.  These steps are as follows: 

1. Calculations of N  Bessel zeros of the Bessel function of order n   

2. Generation of N  sample points (if using the DHT to approximate the 

continuous transform) 

3. Discretization of the function (if needed) 

4. Creation of the nNY  transformation matrix 

5. Performing the matrix-function multiplication 
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The steps are the same regardless of if the function is in the space or frequency 
domain and are summarized in Figure 1.  

 
Figure 1 - Steps for evaluation of DHT 

 
Furthermore, the nNY  transformation matrix is used for both the forward and inverse 
transform. Steps 2-3 only need to be performed if the function (vector) to be 
transformed is not already given as a set of discrete points. In the case of a 
continuous function in either the space or frequency domain, it is important to use 
the sampling points as proposed in equations(8) ,(9) and then to discretize the 
continuous function by evaluating at these points. Failing to do so results in the 
function not being properly transformed since there is a necessary relationship 
between the sampling points and the transformation matrix nNY .  In order to 
perform the steps listed above, several Matlab functions have been developed. 
These functions are listed in Table 2. 
 

Table 2: Set of available functions 

Function Name Calling Sequence Description 
besselzero besselzero(n,k,kind) Calculation of k Bessel zeros of 

the nth order Bessel function of 
kind - developed in [3] 

freqSampler freqSampler(R,zeros) Creation of sample points in the 
frequency domain (eq. (9)) 

spaceSampler spaceSampler(R,zeros) Creation of sample points in the 
space domain (eq. (8)) 

YmatrixAssembly YmatrixAssembly(n,N,zeros) Creation of nNY matrix (eq. (4)) 
from the zeros 

 
Additionally, the matlab script GuidetoDHT.m is included to illustrate the execution 
of the necessary computational steps. 
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Quality control  
The software was tested by using the DHT to approximate the computation of both 
the continuous Hankel forward and inverse transforms and comparing the results 
with known (continuous) forward and inverse Hankel transform pairs. Different 
transform orders n  were evaluated.   
 
For the purpose of testing the accuracy of the DHT and IDHT, the dynamic error was 
used, defined as [4] 

 ( )
*

10 *

( ) ( )
20log

max ( )
f v f

e v
f v

ν −
=  

  
  (10) 

This error function compares the difference between the exact function values ( )f v  
(evaluated from the continuous function) and the function values estimated  via the 
discrete transform, *( )f ν , scaled with the maximum value of the discretely 
estimated samples.  Equation (10) can be used to evaluate the computation of either 
forward or inverse Hankel transform via the DHT/IDHT and compared with known 
continuous Hankel relationships.  The dynamic error uses the ratio of the absolute 
error to the maximum amplitude of the function on a log scale. Therefore, negative 
decibel errors imply an accurate discrete estimation of the true transform value.  The 
transform was also tested for accuracy on itself.   This is performed by consecutive 
forward and then inverse transformation in order to verify that the transforms 
themselves do not add errors. For this evaluation, the average absolute error 

*

1

1 N

i i
i

f f
N =

−∑  was used. 

 
The methodology of the testing is given in further detail in [5] and also in the theory 
paper, [1]. 
 
(2) Availability  
 
Operating system 
Windows XP and higher. 
 
Programming language 
Matlab 
 
Additional system requirements 
If using Matlab 7, minimum system requirements are 512MB of RAM (1024 MB 
recommended) and 460MB of hard disk space.  System requirements for Matlab 
R2014 require 1024 MB (At least 2048 MB recommended) or RAM and 1 GB for 
MATLAB only, 3–4 GB for a typical installation.  This code should run on older 
versions of Matlab although it was tested using Matlab R2014. 
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Dependencies 
Matlab software by mathworks. 
 
List of contributors 
Ugo Chouinard, Natalie Baddour, Greg von Winckel 

 
Software location: 

Archive (e.g. institutional repository, general repository) (required)  
Name: Figshare 
Persistent identifier: http://dx.doi.org/10.6084/m9.figshare.1453205  
Licence: CC-BY 
Publisher: Natalie Baddour 
Date published: 18/06/15 

 
Language 
English 
 
 
(3) Reuse potential  
The Discrete Hankel Transform is applicable to many areas of scientific computation 
and potential reuse could be very high.  
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