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1 Abstract
é Background. As whole genome sequence data from bacterial isolates becomes
4 cheaper to generate, computational methods are needed to correlate sequence
5 data with biological observations. Here we present the large-scale BLAST score
6 ratio (LS-BSR) pipeline, which rapidly compares the genetic content of hundreds
7  to thousands of bacterial genomes, and returns a matrix that describes the
8 relatedness of all coding sequences (CDSs) in all genomes surveyed. This
9 matrix can be easily parsed in order to identify genetic relationships between
10  bacterial genomes. Although pipelines have been published that group peptides
11 by sequence similarity, no other software performs the large-scale, flexible, full-
12  genome comparative analyses carried out by LS-BSR.
13
14 Results. To demonstrate the utility of the method, the LS-BSR pipeline was
15 tested on 96 Escherichia coli and Shigella genomes; the pipeline ran in 163
16 minutes using 16 processors, which is a greater than 7-fold speedup compared
17 to using a single processor. The BSR values for each CDS, which indicate a
18 relative level of relatedness, were then mapped to each genome on an
19 independent core genome single nucleotide polymorphism (SNP) based
20 phylogeny. Comparisons were then used to identify clade specific CDS markers
21 and validate the LS-BSR pipeline based on molecular markers that delineate
22  between classical E. coli pathogenic variant (pathovar) designations. Scalability
23 tests demonstrated that the LS-BSR pipeline can process 1,000 E. coli genomes
24 in ~60h using 16 processors.
25
26  Conclusions. LS-BSR is an open-source, parallel implementation of the BSR
27  algorithm, enabling rapid comparison of the genetic content of large numbers of
28 genomes. The results of the pipeline can be used to identify specific markers
29 between user-defined phylogenetic groups, and to identify the loss and/or
30 acquisition of genetic information between bacterial isolates. Taxa-specific
31 genetic markers can then be translated into clinical diagnostics, or can be used
32 toidentify broadly conserved putative therapeutic candidates.
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1 INTRODUCTION
2 Whole genome sequence (WGS) data has changed our view of bacterial
3 relatedness and evolution. Computational analyses available for WGS data
4 include, but are not limited to, single nucleotide polymorphism (SNP) discovery
5 (DePristo et al. 2011), core genome phylogenetics (Sahl et al. 2011), and gene
6 based comparative methods (Hazen et al. 2013; Sahl et al. 2013). In 2005, a
7  BLAST score ratio (BSR) method was introduced in order to compare peptide
8 identity from a limited number of bacterial genomes (Rasko et al. 2005).
9 However, the “all vs. all” implementation of this method scales poorly with a
10 larger number of sequenced genomes. Here we present the Large Scale BSR
11  method (LS-BSR) that can rapidly compare gene content of a large number of
12  bacterial genomes. Comparable methods have been published in order to group
13 genes into gene families, including OrthoMCL (Li et al. 2003), TribeMCL (Enright
14 et al. 2002), and GETHOGs (Altenhoff et al. 2013). Although grouping peptides
15 into gene families is not the primary focus of LS-BSR, the output can be parsed
16 to identify the pan-genome (Tettelin et al. 2008) structure of a species; scripts are
17 included with LS-BSR that classify coding sequences (CDSs) into pan-genome
18 categories based on user-defined identity thresholds. Pipelines have also been
19 established to perform comprehensive pan-genome analyses, including PGAP
20 (Zhao et al. 2012), which requires gene annotation, and complicates the analysis
21  of large numbers of novel genomes. GET_HOMOLOGUES (Contreras-Moreira
22 & Vinuesa 2013) is a recently published tool that can be used for pan-genome
23 analyses, including the generation of dendrograms based on the
24  presence/absence of homologous genes; by only using presence/absence based
25 on gene homology, more distantly related gene relatedness cannot be fully
26  investigated. No previously published method carries out the large-scale, flexible,
27  gene-based comparative methods currently performed by LS-BSR.
28
29 MATERIALS AND METHODS
30 The LS-BSR method can either use a defined set of genes, or can use
31 Prodigal (Hyatt et al. 2010) to predict CDSs from a set of query genomes. When
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1 using Prodigal, all CDSs are concatenated and then de-replicated using
2 USEARCH (Edgar 2010) at a pairwise identity of 0.9 (identity threshold can be
3 modified by the user). Each unique CDS is then translated with BioPython
4  (www.biopython.org) and aligned against its nucleotide sequence with TBLASTN
5 (Altschul et al. 1997) to calculate the reference bit score. Each query peptide is
6 then aligned against each genome with TBLASTN and the query bit score is
7 tabulated. The BSR value is calculated by dividing the query bit score by the
8 reference bit score, resulting in a BSR value between 0.0 and 1.0 (values slightly
9 higher than 1.0 have been observed due to variable bit score values obtained by
10 TBLASTN). The results of the LS-BSR pipeline include a matrix that contains
11 each unique CDS name, and the BSR value in each genome surveyed. CDSs
12 that have more than one significant BSR values in at least one genome are also
13 identified in the output. A separate file is generated for CDSs where one
14 duplicate is significantly different than the other in at least one genome; these
15 regions could represent paralogs and may require further detailed investigation.
16  Once the LS-BSR matrix is generated, the results can easily be visualized as a
17 heatmap or cluster with the Multiple Experiment Viewer (MeV) (Saeed et al.
18 2006); the heatmap represents a visual depiction of the relatedness of all
19 peptides in the pan-genome across all genomes. A script is included with LS-
20 BSR (compare_BSR.py) to rapidly compare CDSs between user-defined sub-
21 groups, using a range of BSR thresholds set for CDS presence/absence.
22 Annotation of identified CDSs can then be applied using tools including RAST
23 (Aziz et al. 2008). LS-BSR source code and unit tests can be freely obtained at
24 https://github.com/jasonsahl/LS-BSR under a GNU GPL v3 license.
25
26 RESULTS AND DISCUSSION
27
28 LS-BSR algorithm speed and scalability. To determine the scalability of the
29 LS-BSR method, 1,000 Escherichia coli and Shigella genomes were downloaded
30 from Genbank (Benson et al. 2012); E. coli was used as a test case due to the
31 large number of genomes deposited in Genbank. Genomes were sub-sampled
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1  at different depths (100 through 1000, sampling every 100) with a python script
2 (https://qgist.github.com/jasonsahl/115d22bfa35ac932d452) and processed with
3 LS-BSR using 16 processors. A plot of wall time and the number of genomes
4 processed demonstrates the scalability of the method (Figure 1A). To
5 demonstrate the parallel nature of the algorithm, 100 E. coli genomes were
6 processed with different numbers of processors. The results demonstrate
7  decreased runtime of LS-BSR with an increase in the number of processors used
8 (Figure 1B).
9
10 Improvements on a previous BSR implementation. The LS-BSR method is
11 an improvement on a previous BSR implementation
12 (http://bsr.igs.umaryland.edu/) in terms of speed and ease of use. The former
13 BSR algorithm (Rasko, et al., 2005) requires peptide sequences and genomic
14  coordinates of CDSs to run. LS-BSR only requires genome assemblies in
15 FASTA format, which is the standard output of most genome assemblers. To
16 test the speed differences between methods, 10 E. coli genomes (Supplemental
17 Table 1) were processed with both methods. Using the same number of
18 processors (n=2) on the same server, the original BSR method took ~14 hours
19  (wall time) to complete, while the LS-BSR method took ~25 minutes to complete
20 (wall time). Because the original BSR method is an “all vs. all” comparison and
21 the LS-BSR method is a “one vs. all” comparison, this difference is expected to
22 be more pronounced as the number of genomes analyzed increases.
23
24 Test case: analysis of 96 E. coli and Shigella genomes. To demonstrate the
25 utility of the LS-BSR pipeline, a set of 96 E. coli and Shigella genomes were
26  processed (Supplemental Table 1); these genomes are in various stages of
27 assembly completeness and have been generated with various sequencing
28 technologies from Sanger to lllumina. The BSR matrix was generated in 2h34m
29 from a set of ~20,000 unique CDSs using 16 processors. In addition to the LS-
30 BSR analysis, a core genome single nucleotide polymorphism (SNP) phylogeny
31 was inferred on 96 genomes using methods published previously (Sahl et al.
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1 2011); the SNP phylogeny with labels is shown in Supplemental Figure 1.
2  Briefly, all genomes were aligned with Mugsy (Angiuoli & Salzberg 2010) and the
3 core genome was extracted from the whole genome alignment; the alignment file
4  was then converted into a multiple sequence alignment in FASTA format. Gaps
5 in the alignment were removed with Mothur (Schloss et al. 2009) and a
6 phylogeny was inferred on the reduced alignment with FastTree2 (Price et al.
7  2010).
8 The compare_BSR.py script included with LS-BSR was used to identity CDS
9 markers that are unique to specific phylogenetic clades (Figure 2). Identified
10 CDSs had a BSR value =0.8 in targeted genomes and a BSR value <0.4 in non-
11 targeted genomes; the gene annotation of all marker CDSs is detailed in
12  Supplemental Table 2. The conservation and distribution of all clade-specific
13 markers was visualized by correlating the phylogeny with a heatmap of BSR
14 values (Figure 2). This presentation provides an easy way for the user to
15  highlight features conserved in one or more phylogenomic clades.
16 E. coli and Shigella pathogenic variants (pathovars) are delineated by the
17 presence of genetic markers primarily present on mobile genetic elements
18 (Rasko et al. 2008). The conservation of these markers was used as a validation
19 of the LS-BSR method. A representative sequence from each pathovar-specific
20 marker (Supplemental Table 2) was screened against the 96-genome test set
21 and the BSR values (Supplemental Table 3) were visualized as a heatmap
22 (Figure 2). The BSR matrix demonstrates that pathovar-specific genes were
23 accurately identified in each targeted genome (Supplemental Table 3, Figure 2).
24 For example, the ipaH3 marker was positively identified in all Shigella genomes
25 and the Shiga toxin gene (stx2a) was conserved in the clade including O157:H7
26 E. coli (Figure 2). A sub-set of these 96 E. coli genomes is included with the
27 repository as test data to characterize the conservation and distribution of
28  pathovar specific genes.
29 Finally, the BSR values were used to cluster all 96 genomes with an average
30 linkage algorithm implemented in MeV and the structure of the resulting
31 dendrogram was compared to the core SNP phylogeny. The BSR based
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1 clustering method incorporates both the core and accessory genome, while the
2 SNP phylogeny relies on core genomic regions alone. A comparison of the tree
3 structures demonstrates that while Shigella genomes share a diverse
4  evolutionary history (Figure 3A), they all cluster together based on gene
5 presence and conservation (Figure 3B). This result was also observed using a k-
6 mer frequency method (Sims & Kim 2011), which uses all possible k-mer values
7  to infer a phylogeny and validates the findings of the LS-BSR pipeline. The
8 dendrogram also differed from the core SNP phylogeny in other genomes, which
9 could represent either assembly problems, or more likely the acquisition of
10 accessory genomic regions that are not a product of direct descent.
11 LS-BSR was compared to a recently released software package,
12 GET_HOMOLOGUES (Contreras-Moreira & Vinuesa 2013), which performs
13  several pan-genome based analyses. A set of 100 E. coli / Shigella genomes
14  was chosen for the comparative analysis. For LS-BSR, the genome assemblies
15 were used, while for GET_HOMOLOGUES, CDSs were identified with Prodigal
16 and the resulting peptides were used as input. LS-BSR finished in 2h39m, while
17  the clustering step in GET_HOMOLOGUES took 29h20m to finish using the
18 same number of allocated processors. Based on this result, LS-BSR offers a
19  significant speedup compared to comparable methods for large-scale genetic
20 comparisons.
21
22 CONCLUSIONS
23 The LS-BSR method can rapidly compare the gene content of a relatively
24 large number of bacterial genomes in either draft or complete form, though with
25 more fragmented assemblies LS-BSR is likely to perform sub-optimally. As
26  sequence read lengths improve, assembly fragmentation should become less
27  problematic due to more contiguous assemblies. LS-BSR can also be used to
28 rapidly screen a collection of genomes for the conservation of known virulence
29 factors or genetic features. By using a range of peptide relatedness, instead of a
30 defined threshold, homologs and paralogs can also be identified for further
31 characterization.
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LS-BSR is written in python, with many steps conducted in parallel. This
allows the script to scale well from hundreds to thousands of genomes. The LS-
BSR method is a major improvement on a previous BSR implementation in terms
of speed, ease of use, and utility. As more WGS data from bacterial genomes
becomes available, methods will be required to quickly compare their genetic
content and perform pan-genome analyses. LS-BSR is an open-source software

package to rapidly perform these comparative genomic workflows.
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Figure Legends:

Figure 1. Time performance of the LS-BSR pipeline. Panel A) 1000
Escherichia coli and Shigella genomes were randomly sub-sampled and
analyzed using default LS-BSR parameters and 16 processors. Wall time was

plotted against the number of genomes analyzed. The results demonstrate that

O© 0 N O Ul WP

the LS-BSR pipeline scales well with increasing numbers of genomes. Panel B)

10 The same set of 100 E. coli genomes was processed with different numbers of
11  processors and the wall time was plotted. The results demonstrate that using
12  additional processors decreases the overall run time of LS-BSR.

13

14 Figure 2. The distribution of virulence factors and phylogenomic markers
15 associated with a core single nucleotide polymorphism (SNP) phylogeny. The
16 core SNP phylogeny was inferred from a whole genome alignment produced by
17  Mugsy (Angiuoli & Salzberg 2010). Known virulence genes (Supplemental Table
18 2) were screened against 96 Escherichia coli and Shigella genomes using
19 BLASTN within LS-BSR. Clade specific markers were identified at defined nodes
20 in the phylogeny (A through Q). Gene annotations for these markers are detailed
21 in Supplemental Table 2.

22

23  Figure 3. A comparison of 96 Escherichia coli | Shigella genomes between
24  (Panel A) a core single nucleotide polymorphism (SNP) phylogeny or (Panel B) a
25 cluster generated with the Multiple Experiment Viewer (Saeed et al. 2006) from
26 BLAST Score Ratio (BSR) values that include the entire pan-genome. Colors
27 applied to each classical E. coli phylogroup were applied to the SNP phylogeny
28 and transferred to the BSR cladogram. Shigella genomes are marked with a red
29 circle.

30

31 Supplemental Figure 1. A core genome SNP phylogeny of 96 Escherichia coli
32 and Shigella genomes. The core genome was extracted from the output of
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Mugsy (Angiuoli & Salzberg 2010) and the phylogeny was inferred with
FastTree2 (Price et al. 2010). This phylogeny contains labels that can be used to

identify specific genomes in Figures 2 and 3.
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