
 

A peer-reviewed version of this preprint was published in PeerJ
on 18 April 2017.

View the peer-reviewed version (peerj.com/articles/3139), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Chapman SD, Adami C, Wilke CO, B KC D. 2017. The evolution of logic
circuits for the purpose of protein contact map prediction. PeerJ 5:e3139
https://doi.org/10.7717/peerj.3139

https://doi.org/10.7717/peerj.3139
https://doi.org/10.7717/peerj.3139


The evolution of logic circuits for the purpose of protein

contact map prediction

Samuel D Chapman  1  ,  Christoph Adami  2  ,  Claus O Wilke  3  ,  Dukka B KC Corresp.  1 

1 Department of Comptuational Science and Engineering, North Carolina A&T State University, Greensboro, USA

2 Michigan State University, USA

3 Department of Integrative Biology, The University of Texas at Austin, Austin, USA

Corresponding Author: Dukka B KC

Email address: dbkc@ncat.edu

Predicting protein structure from sequence remains a major open problem in protein

biochemistry. One component of predicting complete structures is the prediction of inter-

residue contact patterns (contact maps). Here, we discuss protein contact map prediction

by machine learning. We describe a novel method for contact map prediction that uses the

evolution of logic circuits. These logic circuits operate on feature data and output whether

or not two amino acids in a protein are in contact or not. We show that such a method is

feasible, and in addition that evolution allows the logic circuits to be trained on the dataset

in an unbiased manner so that it can be used in both contact map prediction and the

selection of relevant features in a dataset.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



The evolution of logic circuits for the1

purpose of protein contact map prediction2

Samuel D. Chapman1, Christoph Adami2, Claus O. Wilke3, and Dukka3

B. KC1
4

1Department of Computational Science and Engineering, North Carolina A&T State5

University, Greensboro, NC, United States6

2Michigan State University, East Lansing, MI, United States7

3Department of Integrative Biology, The University of Texas, Austin, TX, United States8

Corresponding Author: Dukka B. KC1 E-mail: dbkc@ncat.edu9

ABSTRACT10

Predicting protein structure from sequence remains a major open problem in protein biochemistry. One

component of predicting complete structures is the prediction of inter-residue contact patterns (contact

maps). Here, we discuss protein contact map prediction by machine learning. We describe a novel

method for contact map prediction that uses the evolution of logic circuits. These logic circuits operate

on feature data and output whether or not two amino acids in a protein are in contact or not. We show

that such a method is feasible, and in addition that evolution allows the logic circuits to be trained on the

dataset in an unbiased manner so that it can be used in both contact map prediction and the selection of

relevant features in a dataset.

11

12

13

14

15

16

17

18

Keywords: Protein Structure Prediction, Evolutionary Computation, Machine Learning19

INTRODUCTION20

Proteins are important biological molecules that perform many functions in an organism. These molecules21

are composed of a string of amino acids comprised of a 20-letter “alphabet” of amino acids. The sequence22

of amino acids is referred to as the primary structure of the protein. Beyond this primary structure,23

proteins are arranged in a higher-order, three-dimensional secondary structure composed of motifs such24

as alpha-helices and beta sheets. This secondary structure in turn is arranged into a tertiary structure that25

forms protein domains, which in turn can form a quaternary structure that is composed of multiple protein26

domains (McNaught and Wilkinson, 1997). To a large extent, the two-dimensional and three-dimensional27

structure of a protein is determined by its amino acid sequence. For example, two cysteine amino acids28

can form a disulfide bond even if they are separated by a large distance in terms of the sequence (have29

a large sequence separation) (Sevier and Kaiser, 2002). Protein structure in turn greatly influences the30

function of a protein.31

However, it is still fairly time-consuming and expensive to acquire an accurate structure of a protein.32

Current experimental methods include crystallizing a protein and performing nuclear magnetic resonance33

(NMR) imaging (Wuthrich, 1986) or X-ray crystallography (Drenth, 2007). The number of structures34

that have been determined in these manners is still quite small—on the order of 100,000 as shown in35

the latest release of the Protein Data Bank (Kouranov et al., 2006) from 2016. This is in contrast to the36

number of proteins whose primary amino acid sequences have been determined, which is in the tens of37

millions according to the latest release of RefSeq (Pruitt et al., 2007) from 2016. Thus, it is desirable to38

find faster and cheaper methods for protein structure determination from sequence. One approach is to use39

computational and machine learning methods to predict protein structure based on available information.40

These methods are collectively referred to in this paper as protein structure prediction (PSP).41

The benefits of using computational methods in PSP are numerous. In addition to providing a less42

costly and faster method for structural prediction and determination, such methods can also guide and43

confirm experimental research. Furthermore, structural prediction can help in understanding evolutionary44

relationships among organisms (Corbett and Berger, 2004) (Yoshikawa and Ogasawara, 1991); aiding in45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



the development of new drugs (Gaulton et al., 2012) (Koch and Waldmann, 2005); and the production of46

synthetic proteins (Ho et al., 2001).47

Computational methods used in protein structure prediction are quite diverse. These include clustering48

methods (Bolten et al., 2001); neural networks (Rost and Sander, 1994); support vector machines (Cheng49

and Baldi, 2007); and template methods (Zhang, 2007). Other examples include those using deep50

learning (Lena et al., 2012), which has recently become popular and used in many applications such as51

image recognition (Ciresan et al., 2012). Computational metopds also predict different aspects of structure,52

including the exact 3D coordinates of the atoms (as in NMR and X-ray crystallography mentioned above),53

the secondary structures of the amino acids (Rost and Sander, 1994), and protein bond angles (Laskowski54

et al., 1993). There also exist de novo or ab initio methods, such as ROSETTA (Simons et al., 1999) and55

QUARK (Xu and Zhang, 2012), which use only the amino acid sequence to predict protein structure (Baker56

and Sali, 2001).57

Another type of structural determination is the amino acid “contact map”, which we discuss in this58

paper (Cheng and Baldi, 2007; Lena et al., 2012). A contact map is the list of amino acids that are in59

proximity to each other below a distance threshold. Computational methods used to elucidate contact60

maps have included support vector machines (Cheng and Baldi, 2007), deep learning (Lena et al., 2012),61

integer programming (Wang and Xu, 2013), and cascading neural networks (Ding et al., 2013).62

In the standard approach to contact map prediction (CMP) by machine learning, the methods are63

trained on a set of training examples, and after the training periods are tested on a set of unknown testing64

examples. The training and testing data can encompass any kind of information and class label. For65

example, in protein contact map prediction, a typical example would be a particular pair of amino acids66

in a protein. This pair would have many characteristics associated with it (features such as amino acid67

identity, protein length, and so on), with an accompanying class label (in contact or not in contact) (Cheng68

and Baldi, 2007). The scoring need not be based on class label prediction; for example, in cases69

where atomic coordinates are predicted, scoring can be based on the predicted distance from the true70

coordinates (Cozzetto et al., 2009).71

One popular type of machine learning is the use of evolutionary computation (EC), which has also72

been applied to PSP (Pedersen and Moult, 1996). Broadly speaking, this class of machine learning evolves73

a population of individuals in silico that each represent a candidate solution to the problem at hand. The74

best-performing individuals (i.e., those with the highest score according to a given fitness function) tend to75

perpetuate in the evolutionary process, improving the performance of the method (Back et al., 1997). This76

class of methods has been used in many applications and takes many forms, in areas as diverse as medical77

imaging (Baluja and Simon, 1998), data mining (Alcala-Fdez et al., 2009), signal processing (Fogel,78

2000), and artificial life (Adami, 1998; Ray and Hart, 1999; Ofria and Wilke, 2004).79

In an evolutionary computation program, the representation of an individual–that is, the digital80

encoding of the individual–can be varied. These can include tree structures (Cramer, 1985), strings of81

digits (Edlund et al., 2011), and even software code itself (Ofria and Wilke, 2004). The encoding of these82

individuals must then be translated into a solution for the problem at hand; for example, in the work of83

Ofria et al., the digital organisms composed of computer code are scored based on the complexity of84

logical operations they perform (Adami, 1998; Ofria and Wilke, 2004).85

A particular representation of candidate solutions in evolutionary computation is known as a Markov86

network (MN). Markov networks are a way of relating mathematical variables to one another. These87

relations are probabilistic; when the probabilities are either 0.0 or 1.0, they are said to be deterministic.88

The variables in Markov networks can be arranged such that they are essentially digital logic circuits89

with deterministic probabilities. That is, they are composed of logic gates that accept binary inputs (090

or 1) and produce binary outputs. Markov networks have in recent years become a tool in areas such as91

the navigational control (Edlund et al., 2011), active categorical perception (Marstaller et al., 2013) and92

machine learning in image recognitionChapman et al. (2013).93

This paper examines the use of evolving, deterministic Markov networks toward the problem of94

contact map prediction. In this work, we evolve Markov networks on a training set comprised of pairs of95

amino acids, and at the end of the evolution test the best networks on a testing set. The class labels of the96

examples are whether or not the pairs are in contact or not in contact, and the examples have a mixture of97

688 binary and decimal features that describe them. The training and testing data are each comprised of98

several hundred thousand examples containing both negative and positive contacts. The dataset used is99

taken from SVMcon, a paper that uses support vector machines for protein contact map prediction (Cheng100

2/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Table 1. The characteristic logic table for a deterministic gate with two inputs and two outputs.

Inputs Outputs

a b c d

1 1 0 1

0 1 0 0

1 0 1 1

0 0 0 1

and Baldi, 2007). In our work, the features are used as inputs to the MNs (logic circuits), and the outputs101

are the class labels. Our results show that evolving logic circuits to predict protein contact maps is a viable102

alterinative. To our knowledge, this is the first time that Markov networks have been used in machine103

learning on a bioinformatics problem. Thus, it is a feasible avenue for study and has the possibility104

of being quite useful for this problem. Of course, as there is continual improvement in the fields of105

evolutionary computation and Markov networks, this study should not be seen as representing the “last106

word” on the capacity of this method to tackle this problem.107

Although contact map prediction has improved over the years, there are still a number of challenges108

remaining. For example, it is unlikely that the entire feature set is useful for classification, a fact mentioned109

in the SVMcon paper (Cheng and Baldi, 2007). Indeed, it is extremely difficult to know beforehand110

whether a subset of features performs better on the task, and it may be that the only way to determine111

this for sure is to manually take out features and re-run the method, an approach that is impractical. In112

addition, if it is true that a subset of features may be better than a full set, then it follows that it is difficult113

to know if the addition of more features may help to solve the problem.114

Evolutionary computation has a number of benefits and addresses some of the concerns outlined115

above. For example, once the appropriate fitness function has been selected (along with the evolutionary116

parameters such as mutation rate and number of individuals in the population) the program attempts to117

evolve a most-fit individual according to the fitness function and fitness landscape. There is no “correct”118

information that the EC system is told to use, but rather only the information that produces the best119

outcome through evolution. Thus, when combined with Markov networks, an EC system can discover120

relevant features in an unbiased manner. This is demonstrated by observing which features the Markov121

networks evolved to use in their structures–if a feature was used, this indicates that it helped in increasing122

fitness and was therefore important.123

MATERIALS AND METHODS124

Description of Markov Networks and their Evolution125

Markov networks (MNs) are a set of probabilistically interacting state variables (Koller and Friedman,126

2009). The sets of state variables in a Markov networks are often arranged into input state variables,127

output state variables, and “hidden state” variables that are “inside” the network and can serve as memory128

and can be used for processing. This arrangement can be used to represent many processes, such as129

robotic controllers (Edlund et al., 2011) (e.g. with sensory inputs and movement outputs) or in image130

classification (Chapman et al., 2013) (e.g. pixels as inputs and image classes as ouptuts). In this work, the131

tables that determine the network updates are deterministic rather than probabilisitic, so that the Markov132

networks represent regular logic circuits.133

An example of a 2-input, 2-output gate is shown in Table 1. Here, a and b represent the binary inputs134

and c and d represent the binary outputs.135

The Markov networks (logic circuits) are created through an evolutionary process. Therefore, the136

networks themselves must be encoded symbolically into a “genome.” This is accomplished by representing137

the MNs as a string of integers (bytes), the length of which can be arbitrary but is limited to 40,000138

integers in our work. The genome of an individual MN is comprised of a set of “genes,” which each139

specify one logic gate. Each gene that represents a logic gate begins with an integer that denotes the start140

of the gene, and the gene itself specifies where the specific inputs and outputs are located, as well as141

the logic of the gate. This information is sufficient to describe the entire Markov network. Any other142

3/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



characteristics of the candidate solutions, such as the maximum genome size, the rates of mutation, or the143

number of inputs and outputs to a gate, is specified in a configuration file.144

The evolution of the Markov networks in our study follows simple evolutionary operators that act on145

the genome of an individual. Evolutionary operators that can act upon the genes include point mutation146

(which change a single byte) or gene duplication and deletion, which duplicate or delete an entire gene,147

respectively. The rates of each of these are specified in the configuration file. In our work, if two or more148

genes write into the same output, the the final output is OR’d together. More details of the general makeup149

of Markov networks are provided in the Supplementary Information of Edlund et al. (Edlund et al., 2011).150

Dataset Description151

Our work centers on protein structure prediction (PSP); specifically, we investigate how protein feature152

data can be used to predict the amino acid contact map. In order to do this, a dataset of protein sequences153

and protein sequence features must be prepared. We choose to use the feature dataset provided in Cheng154

and Baldi (Cheng and Baldi, 2007). That paper described the creation of a contact map predictor based on155

support vector machines, SVMcon. Their dataset included several hundred proteins divided into a training156

dataset used to train the SVM (485 proteins) and a testing dataset (48 proteins). Each protein was used157

to provide a large number of amino acid contact examples based on the many possible amino acid pairs.158

The sequence separation threshold for pairs was six or greater, and the threshold for contact was eight159

Angstroms or greater.160

Each pair of amino acids in the training or testing set represented a possible contact pair, i.e., each161

pair was either in contact or not in contact. The training dataset contained 267,702 contact pairs, reduced162

from a set of several million. This reduction was done in order to make the dataset more tractable and163

also to increase the proportion of positive contacts; the final training dataset had 94,110 positive contacts,164

a proportion of roughly one-third. The reason the proportion of positive contacts was increased in the165

training dataset was to train the SVM to better recognize these examples. The testing dataset, composed166

of 377,797 examples, used the full proportion of contact examples and contained 10,498 positive contacts.167

Each training and testing example had 688 features associated with it. These features included many168

types of data related to the sequences, such as mutual information, length of sequences, and secondary169

structure, to name a few. There were 145 binary features (0 or 1) and 543 decimal features (capable170

of being any number). Many of these features were based on a sequence alignment of the proteins,171

which allowed all sequences to be compared according to a standardized length. The majority of features172

were based on sliding windows centered around the amino acids in each pair and a window centered173

halfway between the amino acids. There were nine window positions each for each amino acid in the pair174

(including the amino acid in question) and five positions for the central segment. For each of these 23175

positions, there were 27 features giving the entropy (one feature), secondary structure (three features),176

solvent accessibility (two features) and the amino acid profiles for those positions (21 features). Thus,177

the window features comprised 23 * 27 = 621 out of 688 features. It should be noted that out of the 688178

features, only those features associated with secondary structure and solvent accessibility could not be179

calculated precisely from the sequence along. Secondary structure and solvent accessibility were predicted180

using other software (Cheng et al., 2005). A more-detailed description of the dataset and features used181

can be found in the SVMcon paper (Cheng and Baldi, 2007).182

Data Encoding183

Markov networks take binary input. Since many of the features are continuous, it is necessary to develop184

an input encoding that maps to the features. There are several methods that were tried.185

The methods that were tried were based on splitting continuous features into a set number of bins. For186

each type of encoding, a “split” value was given. Each continuous feature was divided into a split value187

of bins based on the complete range of that particular feature (in the training set). For example, if using188

a split of 10, and with a feature with a range from 0.0 to 2.0, the first bin would be from [0.0-0.2) the189

second from [0.2-0.4), and so on. If the testing set had a range that was out of bounds of the training set,190

the lowest and/or highest bin was used.191

The methods that were tried were based on splitting continuous features into a set number of bins.192

For each type of encoding, a split number was given (in our case, there were three splits used—4, 10,193

or 16). Each continuous feature was divided into a split number of bins based on the complete range of194

that particular feature (in the training set). For example, if using a split of 10, and with a feature with a195

range from 0.0 to 2.0, the first bin would be from [0.0-0.20] the second from (0.2-0.4], and so on. If the196

4/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



testing set had a range that was out of bounds of the training set, the lowest and/or highest bin from the197

training set was used. In order to make all feature representations equal, each binary feature had the same198

number of inputs as a continuous feature; for example, if the split was 4, then each binary input used 10199

bits, which were either all 0’s or all 1’s.200

Two additional types of encoding were based on the fact that even-numbered splits can be expressed201

in terms of base 2. For example, a split of 4 bins could be compressed into 2 bits by using the binary202

values 11, 10, 01, and 00, and a split of 16 bins could be compressed into 4 bits along the same principle.203

These two binary splits used were: First, a split of 16 across four bits, and a split of four across two bits.204

We chose these five particular splits for a number of reasons. Based on the general layout of the data,205

we decided that the lowest split should be 4 as anything less would be too granular on feature data that206

tended to have at least 4, and often more, distinct values. Second, the highest split of 16 was chosen as a207

reasonable upper limit, and 10 was chosen as the midpoint between the lowest and highest splits. There is208

no theory suggesting which split to use, but in practice Markov networks can sometimes have difficulty209

evolving to find the correct inputs if there are too many of them, which slows down the clock time of the210

simulation itself (Chapman et al., 2013). The number of inputs for the split of 4 was 4*688 = 2752, the211

number for the split of 10 was 10*688 = 6880, and the number for the split of 16 was 16*11008. Due to212

time limitations, it was impossible to perform an exhaustive parameter sweep of all the splits, even from 2213

to 16.214

Evolution of Markov Networks on the Dataset215

The training (evolution) of the Markov networks is achieved by the following steps. We first create an216

initial population of random networks. We then evolve these networks over a number of updates on a217

subset of the training dataset. In our case, we ran the evolution over 100,000 updates. For every 25,000218

updates, we evolved the networks on a different set of 50,000 training examples. The sets of training219

examples were separate; thus, there used a total of 200,000 training examples. We used different sets of220

training examples for two reasons. First, it forced the Markov networks to evolve on different examples221

over time instead of focusing only on one dataset. Second, because of time limitations, it was not possible222

to evolve the networks on a greater number of examples.223

During the runs, the networks “learn” (through evolution) to differentiate between positive and224

negative contacts based on their features. In each update, the networks are tested on the training set and225

a fitness is assigned to them according to a fitness function. Individuals with the highest fitness tend to226

survive in the population and reproduce; these “children” undergo mutation, and in the process, may do227

better than their parents at recognizing contacts. Mutation can affect almost any part of the networks,228

including the number of features used as input, the number of gates, and the gate logic. In the end, there229

are two binary outputs provided: an output for a negative contact decision, and one for a positive contact230

decision. Note that it is possible for a Markov network to give both answers, signifying both a positive231

and negative contact decision, but in practice, this does not happen very often.232

In our work, we have tried a number of fitness functions, and so far accuracy has proven to be the233

best in terms of the final scoring method, described below. Accuracy is defined as TP + TN / P + N,234

where TP is the number of true positive (correctly-predicted) guesses and TN is the number of true235

negative (correctly-predicted) guesses in the dataset. Here, accuracy is calculated separately for both236

positive contacts and negative contacts. Also, a reward for output alone is also included for each accuracy237

to encourage “empty” networks to evolve to produce outputs. The vector magnitude of these results238

is combined as shown in Equation (1), and therefore the maximum fitness is the square root of 8.0.239

Calculating the square root is done in order to “smooth” the resulting fitness values. At each update,240

every newly-produced individual MN that has not been tested on the training set is tested according to the241

fitness function.242

f =
√

(accpos +outpos)2 +(accneg +outneg)2, (1)

At the end of an evolutionary run, the best MN in a population is tested on the testing set, which it has243

not seen before, and performance is assessed according to specificity, sensitivity, and Fmax. Specificity244

is the number of correctly-predicted positive contacts divided by the number of total predicted positive245

contacts. Sensitivity is the number of correctly-predicted positive contacts over the total number of246

positive contacts. Because it is easy to get a specificity of 1.0 by simply giving one very good guess, and247

5/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Table 2. Parameters for the evolutionary algorithm.

Parameter Value

Updates 100,000

Population size 500

Starting gates 100

Inputs per gate 4

Outputs per gate 4

Gene duplication rate per update 0.05

Gene deletion rate per update 0.05

Site mutation rate per update 0.001

a sensitivity of 1.0 by simply guessing all contacts to be positive, Fmax is also used, which combines the248

two measures and is shown in Equation (2). The maximum Fmax possible is 0.5.249

Fmax =
speci f icity∗ sensitivity

speci f icity+ sensitivity
, (2)

Note that negative contacts are not considered in the three performance measures (even though they250

are used in the fitness function), since positive contacts are of more interest and more difficult to determine251

in contact map prediction. Finally, even though Fmax is used as the scoring measure, we deermined that252

it was inferior to accuracy as a fitness function.253

In order to achieve better performance, committees of MNs are assembled from the highest-fitness254

individuals from each of the 60 evolutionary runs. These 60 MNs are tested on the testing set, and255

for each testing example, the sum of all 60 negative contact answers is compared to the sum of all 60256

positive contact answers. The final answer is the answer with the highest number of votes (ties are broken257

randomly).258

The list of parameters for the evolutionary runs is given in Table 2.259

RESULTS260

Performance on the Dataset261

Markov networks were evolved using five different input data encodings (treatments), described in the262

Methods section. For each encoding, 60 different populations were run and the best individuals from each263

population (according to the fitness function) were tested on each example from the testing set and their264

answers combined. The evolution continued for 100k updates, and at intervals of 25k updates, results265

on the test set for committee sizes up to 60 were recorded. Figures 2, 3, 4, and 5 show the results for266

the treatments that used splits of 4 with 4 bits per feature, splits of 16 with 16 bits per feature, splits of 4267

with 2 bits per feature, and splits of 16 with 4 bits per feature, respectively. Even though the treatments268

ended at 100k updates, the best results for all treatments were from 75k updates; this is probably due269

to overfitting of the Markov networks to the training set in their evolution. Also, the improvement in270

performance of each treatment at the four update intervals tended to level out after around 20 committee271

members and does not tend to improve with more. This is an indication that increasing the number of272

committee members would not help the performance for this treatment.273

Figure 6 shows the Fmax results at 75k updates for all treatments. It is interesting to note that the274

two best treatments were the two that compressed the number of bits per feature according to a base-2275

compression: the treatment that used a split of 16 with 4 bits/feature had a final Fmax of 0.103 and the276

one with a split of 4 with 2 bits/feature had a final Fmax of 0.102. The splits of 10 with 10 bits per feature,277

16 with 16 bits per feature, and 4 with 4 bits per feature had Fmax results of 0.098, 0.097, and 0.097,278

respectively.279

All of the treatments did significantly better than random. Under random guessing that guessed 50280

percent of the examples to be positive contacts, the Fmax would be 0.026. Under random guessing that281

used the proportion of positive contacts from the training set (35.155 percent), the Fmax would also be282

0.026.283

6/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Figure 1. Results for the split of 10 with 10 bits per feature (6880 total bits). The highest Fmax at 60

committee members is at 75k, with an Fmax of 0.098.

Figure 2. Results for the split of 16 with 16 bits per feature (11008 total bits). The highest Fmax at 60

committee members is at 75k, with an Fmax of 0.097.

Figure 3. Results for the split of 4 with 4 bits per feature (2752 total bits). The highest Fmax at 60

committee members is at 75k, with an Fmax of 0.097.

Figure 4. Results for the split of 16 with 4 bits per feature (2752 total bits). The highest Fmax at 60

committee members is at 75k, with an Fmax of 0.102.

7/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Figure 5. Results for the split of 4 with 2 bits per feature (1376 total bits). The highest Fmax at 60

committee members is at 75k, with an Fmax of 0.102.

Figure 6. Results at 75k updates for all five split treatments. The highest Fmax is achieved by the split

of 16, 4 bits per feature encoding, with an Fmax of 0.103.

We now take a detailed look at the treatment that used a split of 4 with 2 bits/feature. This treatment284

was chosen for two reasons. First, its Fmax performance is very close to the best (Fmax of 0.102 vs.285

Fmax of 0.103 obtained by the encoding using a split of 16 with 4 bits/feature); second, it is the simplest286

type of encoding, using only 2 bits/feature, making it simpler to analyze and describe. Figure 7 shows the287

specificity and sensitivity values over the committee sizes at 75k updates for the split of 4 with 2 bits per288

feature treatment. The specificity at 60 committee members was 0.14, and the sensitivity was 0.35. As289

one can see, even if sensitivity goes down, specificity can go up, leading to a higher Fmax value.290

We also comapre our results from the split 4, 2 bits/feature encoding to the results from the SVMcon291

paper by Cheng et al. (Cheng and Baldi, 2007). Table 3 gives the total specificity and sensitivity values292

on the testing set for Markov networks and SVMcon across several sequence separations (values under293

the separation of >=6 are for every testing example since that is the smallest separation possible). As294

one can see, at all sequence separations, SVMcon has a higher specificity, but SVMcon has a higher295

sensitivity. Table 4 shows the Fmax results on the testing set across the six SCOP protein classes covered296

by the testing set and three sequence separation thresholds. Unfortunately, Markov networks do not do as297

well as SVMcon. It is clear that this is because SVMcon does better in terms of specificity; therefore, if298

Markov networks could be made to be more conservative in their guesses, they might achieve a higher299

overall specificity without sacrificing sensitivity.300

Figure 7. Specificity and sensitivity results at 75k updates for the split of 4 with 2 bits per feature

treatment. Specificity at 60 committee members was 0.14, and sensitivity was 0.35.

8/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Table 3. Average specificity and sensitivity of Markov networks and SVMcon across different sequence

separations.

Method Separation >=6 Separation >=12 Separation >=24

Spec. Sens. Spec. Sens. Spec. Sens.

Markov networks 0.144 0.347 0.132 0.280 0.109 0.209

SVMcon 0.37 0.21 0.30 0.20 0.21 0.19

Table 4. Fmax comparisons between MN—SVMcon of different SCOP protein classes and sequence

separations.

SCOP class Number Fmax, separation >=6 Fmax,separation >=12 Fmax,separation >=24

MN SVMcon MN SVMcon MN SVMcon

alpha 11 0.076 0.12 0.012 0.087 0.009 0.050

beta 10 0.102 0.117 0.093 0.111 0.069 0.096

alpha+beta 15 0.109 0.161 0.094 0.146 0.070 0.110

alpha/beta 7 0.105 0.126 0.103 0.121 0.097 0.117

small 4 0.089 0.120 0.051 0.113 0.021 0.063

coil-coil 1 0.063 0.142 0.023 0.025 N/A N/A

all 48 0.102 0.134 0.090 0.120 0.072 0.010

Network Recognition of Features301

In an evolutionary run, the Markov networks evolve to use certain input bits (and therefore features) to302

make their decisions; that is, they evolve to recognize the subset of input bits that give them the best303

answer (“salient” bits). Figure 8 shows a typical network with its output from the treatment that used a304

split of 4 with 2 bits/feature, at 75,000 updates. Each green circle is an input used by the network, with305

the red circles representing gates and the blue circles outputs. Because this figure is illustrative, the inputs306

and gates are unordered. There are several things to notice in this figure. First, even though there are307

1,376 possible bits that the network could use, it only connects to 118 in this example. Second, in this308

network it is common for gates to have connections to multiple input nodes and for outputs to have many309

gate inputs–the networks are quite complex. Third, there are three outputs. Our system allows up to two310

outputs to evolve for each class label, so that one output in a pair can serve as a “veto” output to prevent311

too many “yes” outputs. Here, the positive contact label (on the right) evolved two outputs.312

Because of the nature of the evolutionary process, the networks can select the best features in an313

unbiased manner. Figure 9 demonstrates how networks focus on some features rather than others. In314

this histogram, taken from the results from the encoding that uses a split of 4 with 2 bits/feature at 75k315

updates, we plot the frequency distribution of features used over the networks that use them, by assuming316

that a feature is “recognized” if there is at least one network that reads from one of the bits for that feature.317

We see that most features are recognized by only a few networks–for example, nearly a hundred318

features are recognized by only 3 networks, with nearly another hundred recognized by only 4 networks.319

However, less than 20 features are recognized by no networks. This may be due to networks randomly320

evolving to recognize a feature before losing that recognition in the evolutionary process, such that it321

would be very difficult for no networks to recognize a feature. Also, no features are recognized by all 60322

networks, although there are a few that come close.323

Table 5 gives information on the general statistics of the networks according to how many features324

they recognized. As shown in this table, the average and median tend to be quite similar when examining325

the number of bits recognized by the networks and the number of features. In addition, even though the326

maximum number of possible bits used is twice that of the number of features used, this number is not327

very much higher than the number of features used. In fact, overall, the average number of features used328

(90.0) is quite small compared to the maximum of 688 and is approximately 13 percent.329

It is desirable to examine more closely which features the Markov networks select, because it stands to330

9/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Figure 8. A sample network diagram taken from the treatment of a split of 4 with 2 bits/feature at 75k

updates. Out of a possible 1376 bits, the network has evolved to recognize only 118 of these. Inputs bits

are green, gates are red, and outputs are blue. The inputs and gates are unordered. Note that a pair of

outputs has evolved to represent a positive contact answer (the maximum is two), but that the negative

contact answer evolved only one.

Figure 9. A histogram showing how many features are recognized by each number of networks

(encoding split of 4 with 2 bits/feature). A network only has to have input from one bit of a feature to

recognize it.

Table 5. Feature recognition values of the networks from the encoding of split 4 with 2 bits/feature. For

a network to recognize a feature, it only has to connect to one bit for that feature.

Statistic Networks

Average bits recognized 97.6

Median bits recognized 98.0

Average features recognized 90.0

Median features recognized 90.5

10/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Table 6. The features most recognized by the Markov networks.

Feature Networks

Contact pair sequence separation >=50 59

C-terminus amino acid window position 5,

sheet secondary structure

58

N-terminus amino acid window position 5,

sheet secondary structure

54

Amino acid central segment window position

4, coil secondary structure

50

Amino acid central segment window position

4, sheet secondary structure

49

Contact pair sequence separation <=49 48

Amino acid central segment window position

5, coil secondary structure

45

N-terminus amino acid window position 5,

exposed solvent accessibility

45

Amino acid central segment window position

5, sheet secondary structure

43

Contact pair sequence separation of 6 42

N-terminus amino acid window position 5,

buried solvent accessibility

42

C-terminus amino acid window position 5,

buried solvent accessibility

40

reason that these salient are important in general for the task of contact map determination. Table 6 gives331

a list of the top 12 features in the treatment according to the number of networks that recognized them. It332

is clear from this table that secondary structure and solvent accessibility features are very important to333

the Markov network decisions, and presumably to determination of contact map prediction in general.334

The importance of contact pair sequence separation to the networks, specifically a separation of 6 and a335

separation of >=50, seems to suggest that the networks use the extremes of distance as a way to help336

with classification.337

Figure 10(a) demonstrates feature usage related to secondary structure features. Each pair of amino338

acids in a training or testing sample is situated in a sliding window of size 9, giving a total number of 18339

positions. There are a number of features at each of these positions, including the secondary structures. At340

each of these window positions, the figure shows the number of networks (out of the 60) that evolved to341

recognize the three kinds of secondary structure after 75,000 updates. We also see that the most common342

type of secondary structure recognized by the MNs is sheet. Further, the MNs focus on recognizing343

secondary structures that are closer to the central amino acids. Interestingly, even though the number of344

networks for each kind of secondary structure decreases as the window positions move away from the345

center, the number of networks for the “outside” positions for each window is greater for both helix and346

coil. It is also clear that the peaks in the centers and outsides of the windows are high in absolute terms as347

well; most features in the dataset are not recognized by many networks.348

Similarly, Figure 10(b) shows from the same treatment how many networks out of 60 evolve to349

recognize each feature that describes the sequence separation between the amino acid pair. There is a350

clear focus on sequence separations that are either very small or very large. One can see that, at least in351

relation to this dataset, the Markov networks are recognizing that certain pair separations are more useful352

than others.353

It is clear from these figures that a number of secondary structure and sequence separation features are354

important to the networks. Indeed, 9 out of the top 10 features in terms of networks that recognized them355

deal with either secondary structure or sequence separation (the tenth deals with solvent accessibility).356

As mentioned before, since MNs will tend to evolve to recognize features that benefit them, they will357

usually only recognize a small subset of the total features. To further demonstrate that the features chosen358

11/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



(a)

(b)

Figure 10. (a): Number of networks out of the 60 that evolved to recognize each kind of secondary

structure along the two size-9 sliding windows. Encoding was split of 4, 2 bits/feature. (b): Number of

networks out of the 60 that evolved to recognize the amino acid pair separation features. Encoding was

split of 4, 2 bits/feature. Each tick shown is a different contact separation feature.

Figure 11. Fmax of the original split-4, 2 bits per feature encoding with all features, and the same kind

of run with the reduced feature set that only used features recognized by at least 6 of the networks from

the first run.

by the MNs are useful, other evolutionary runs were performed that had as input only the most-used359

features in the original runs. To this end, the 60 networks from the encoding that used a split of 4 with 2360

bits per feature were examined after a run of 75,000 updates to see which features they recognized. The361

training and testing datasets were changed to contain only features that were recognized by at least 6 of362

the networks, and a new evolutionary run with the same parameters was performed on this reduced-feature363

dataset. The number of features in this new run was 309, or roughly 45 percent of the original number364

of features. Figure 11 shows the Fmax results of this new run compared to the original run. Although365

the Fmax results of the new run are smaller, this difference is quite small, indicating that the Markov366

networks have discovered what the salient features for solving the problem. Also, it demonstrates that367

searching for the right features via trial and error is perhaps not necessary; simply picking the features368

that the most networks recognize is suitable for finding the best features.369

This figure demonstrates two things. First, many features that were chosen for the dataset were370

unncessary to obtain the same level of performance. In addition, the Markov networks successfully371

evolved to discover which features were useful in contact map prediction.372

It is worth noting that many of the 688 features that were not used in the reduced feature set were373

features that described the amino acid percentages that were based on a sequence alignment of the374

proteins. Considering the two size-9 windows and the size-5 central segment window, and the fact that375

12/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



the amino acids were the 20 canonical amino acids plus a gap, there were 23*21 = 483 total features in376

the dataset based on amino acid percentages alone. Yet only 164 of these (34 percent) were used in the377

reduced-feature dataset, as opposed to 145 of the remaining 205 features (71 percent of the remaining).378

Some notable observations included the fact that all but one (22 out of 23) of the gap amino acid features379

qualified. This could be due to the importance of gap additions in sequence alignments. In addition, most380

of the central segment window amino acid features were salient–88 out of 104, or 85 percent–and often381

had a relatively high number of networks that recognized them.382

The salient features of the size-9 windows around the contact pairs were not as numerous (76 out383

of 378 features, or 20 percent) and tended to have relatively low numbers of networks that recognized384

them. An interesting exception was the feature for cysteine in the fifth position (central position) for the385

C-terminus window. A total of 19 networks recognized this feature. Because cysteine is so important to386

protein structure, this is not surprising, and the cysteine feature in the center of the N-terminus window387

was recognized by 8 networks as well.388

DISCUSSION389

As demonstrated in our results, the performance of the evolution of Markov networks depends mainly on390

two things: First, the fitness function used, and second, the encoding of the dataset. For example, with391

respect to encoding, the two treatments that performed the best were the two that used the reduced-bit392

binary encodings. It is hypothesized that one reason that these two treatments did better than the other393

three is that there were fewer bits for the MNs to evolve to choose, but also that condensing bits would394

“force” the MNs to evolve over all bits for a continuous feature due to the nature of the binary encodings.395

Also, with respect to fitness functions, the best found so far has been accuracy. This is perhaps396

due to the fact that accuracy is such a simple fitness function–it is simply the proportion of correct397

guesses (true negative true positive) in the dataset and does not require a complex formula. Furthermore,398

while other fitness functions such as Fmax measure, specificity/sensitivity, or Matthews correlation399

coefficient (Matthews, 1975) have been tried and have not performed as well as accuracy, there is400

the intriguing idea that a “committee of committees” could be used based on a combination of the401

answers from runs of several fitness functions. Furthermore, it has been noted that a different fitness402

function/encoding combination might produce better results; in addition, a different type of evolutionary403

algorithm (such as NSGA2 (Deb et al., 2002)) or different evolutionary parameters, such as the type of404

population replacement (in our case, we used tournament selection) (Blickle and Thiele, 1996) could405

possibly foster a more-productive fitness landscape and therefore performance. In particular, Markov406

networks, at least compared to the SVMcon results, were not very conservative in their answers, and thus407

had a higher sensitivity (and lower specificity). If it could be determined why the networks had trouble in408

this regard, it might be possible to improve their performance by tuning the factors mentioned above. The409

open-ended nature of evolutionary computation is both a blessing and a curse. The usage and theory of410

evolutionary computation is continuously being worked on and improved by many researchers, allowing411

for the possibility of a great increase in performance of this method. However, it is always unknown412

which specific fitness function and other parameters to use, and thus there is still an element of trial and413

error.414

One of the primary strengths of the evolution of Markov networks is that the evolution proceeds in415

an unbiased manner. Thus, as demonstrated in the results section, networks evolve to recognize some416

features more than others. This is useful, since it allows one to differentiate some features as being “better”417

than others according to how many networks evolve to recognize them. Figure 9 shows that there is quite418

a bit of diversity in terms of which features are recognized as salient, and Table 6 shows how certain419

groups of related features features (e.g., secondary structure and solvent accessibility) are important to420

the decisions of the networks. Furthermore, Table 5 shows that the networks are fairly parsimonious in421

their decisions and need only a relatively small fraction of the total bits to make their decisions. Finally,422

Figure 11 shows that, when considering only the most-used features, they are capable of performing423

almost as well when using all the features. This parsimonious behavior that focuses on only a few salient424

features, and which can also identify groups of related features, shows that Markov networks do not425

necessarily have to grow to an arbitrary and unwieldy complexity in order to achieve improved results,426

even though they are capable of doing so.427

13/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



CONCLUSION428

We have shown that the evolution of Markov networks is able to produce MNs that are able to make429

contact map predictions and recognize relevant features from the SVMcon dataset. As far as we know,430

this is the first time that such a method has been used on a bioinformatics problem. The results show431

that the method is promising, and may have wider applications. Naturally, because this is the first time432

such a method has been used in this manner, there is room for improvement. In particular, the Markov433

networks we evolved tend to overpredict, sacrificing specificity while increasing sensitivity. There are a434

number of specific ways in which our method could be improved, including using a different evolutionary435

algorithm, fitness function, MN structure, encoding, or feature space. We could also use our method in436

conjunction with other methods; for example, if used with other methods, our method and others could437

form a committee where each receives a voting weight for a contact pair example. One such additional438

method could include PsiCOV (Jones et al., 2012), which involves finding correlated mutations between a439

protein containing the contact pairs and a large database of proteins. Other possible additional methods440

include the LASSO feature selection method (Tibshirani, 1996), and random forests (Liaw and Wiener,441

2002; Rainforth and Wood, 2015), among others.442

Furthermore, we have shown that the evolution of Markov networks can, in an unbiased manner,443

produce networks that recognize relevant (salient), useful features from a dataset. Choosing these salient444

features could help to remove extraneous features, a task that would otherwise be computationally445

intensive. This could be especially relevant to a problem that uses many more features (in the thousands446

or tens of thousands) than ours. Also, one could use this feature information as a prediction tool to guess447

which kinds of features are useful or not. For example, if it is demonstrated that all features relating to a448

particular class of amino acid (e.g. polar amino acids) are used by the Markov networks, then it might be449

desirable to find more features of this type. Furthermore, this offers the possibility that Markov networks450

could be used as a general-purpose feature detector in other scientific work.451

ACKNOWLEDGMENTS452

We wish to thank Dr. David B. Knoester for deveoping the Markov network codebase and for help453

adapting it to this work. We wish to acknowledge the support of the Michigan State University High454

Performance Computing Center and the Institute for Cyber-Enabled Research (iCER). This material is455

based in part upon work supported by the National Science Foundation under Cooperative Agreement No.456

DBI-0939454. Any opinions, findings, and conclusions or recommendations expressed in this material457

are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.458

REFERENCES459

Adami, C. (1998). Introduction to Artificial Life. Telos, Springer Verlag.460

Alcala-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M. J., Ventura, S., Garrell, J., Otero, J., Romero, C.,461

Bacardit, J., Rivas, V. M., et al. (2009). KEEL: A software tool to assess evolutionary algorithms for462

data mining problems. Soft Computing, 13(3):307–318.463

Back, T., Fogel, D. B., and Michalewicz, Z. (1997). Handbook of Evolutionary Computation. IOP464

Publishing Ltd.465

Baker, D. and Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294(5540):93–466

96.467

Baluja, S. and Simon, D. (1998). Evolution-based methods for selecting point data for object localization:468

Applications to computer-assisted surgery. Applied Intelligence, 8(1):7–19.469

Blickle, T. and Thiele, L. (1996). A comparison of selection schemes used in evolutionary algorithms.470

Evolutionary Computation, 4(4):361–394.471

Bolten, E., Schliep, A., Schneckener, S., Schomburg, D., and Schrader, R. (2001). Clustering protein472

sequences—structure prediction by transitive homology. Bioinformatics, 17(10):935–941.473

Chapman, S. D., Knoester, D. B., Hintze, A., and Adami, C. (2013). Evolution of an artificial visual cortex474

for image recognition. In Advances in Artificial Life (ECAL 2013), pages 1067–1074. MIT Press.475

Cheng, J. and Baldi, P. (2007). Improved residue contact prediction using support vector machines and a476

large feature set. BMC bioinformatics, 8(1):1.477

Cheng, J., Randall, A. Z., Sweredoski, M. J., and Baldi, P. (2005). Scratch: A protein structure and478

structural feature prediction server. Nucleic acids research, 33(suppl 2):W72–W76.479

14/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural networks for image480

classification. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages481

3642–3649. IEEE.482

Corbett, K. D. and Berger, J. M. (2004). Structure, molecular mechanisms, and evolutionary relationships483

in dna topoisomerases. Annu. Rev. Biophys. Biomol. Struct., 33:95–118.484

Cozzetto, D., Kryshtafovych, A., Fidelis, K., Moult, J., Rost, B., and Tramontano, A. (2009). Evaluation485

of template-based models in CASP8 with standard measures. Proteins: Structure, Function, and486

Bioinformatics, 77(S9):18–28.487

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential programs. In488

Proceedings of the First International Conference on Genetic Algorithms, pages 183–187.489

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic490

algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2):182–197.491

Ding, W., Xie, J., Dai, D., Zhang, H., Xie, H., and Zhang, W. (2013). CNNcon: Improved protein contact492

maps prediction using cascaded neural networks. PloS one, 8(4):e61533.493

Drenth, J. (2007). Principles of protein X-ray crystallography. Springer Science & Business Media.494

Edlund, J. A., Chaumont, N., Hintze, A., Koch, C., Tononi, G., and Adami, C. (2011). Integrated495

information increases with fitness in the evolution of animats. PLoS Comput Biol, 7(10):e1002236.496

Fogel, D. B. (2000). Evolutionary computation: Principles and practice for signal processing, volume 43.497

SPIE Press.498

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S.,499

Michalovich, D., Al-Lazikani, B., et al. (2012). Chembl: a large-scale bioactivity database for drug500

discovery. Nucleic acids research, 40(D1):D1100–D1107.501

Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G., and Dowdy, S. F. (2001). Synthetic protein502

transduction domains: enhanced transduction potential in vitro and in vivo. Cancer research, 61(2):474–503

477.504

Jones, D. T., Buchan, D. W., Cozzetto, D., and Pontil, M. (2012). PSICOV: precise structural con-505

tact prediction using sparse inverse covariance estimation on large multiple sequence alignments.506

Bioinformatics, 28(2):184–190.507

Koch, M. A. and Waldmann, H. (2005). Protein structure similarity clustering and natural product508

structure as guiding principles in drug discovery. Drug discovery today, 10(7):471–483.509

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT510

press.511

Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., and Berman, H. M.512

(2006). The rcsb pdb information portal for structural genomics. Nucleic acids research, 34(suppl513

1):D302–D305.514

Laskowski, R. A., Moss, D. S., and Thornton, J. M. (1993). Main-chain bond lengths and bond angles in515

protein structures. Journal of molecular biology, 231(4):1049–1067.516

Lena, P. D., Nagata, K., and Baldi, P. F. (2012). Deep spatio-temporal architectures and learning for517

protein structure prediction. In Advances in Neural Information Processing Systems, pages 512–520.518

Liaw, A. and Wiener, M. (2002). Classification and regression by random Forest. R news, 2(3):18–22.519

Marstaller, L., Hintze, A., and Adami, C. (2013). The evolution of representation in simple cognitive520

networks. Neural Computation, 25:2079–2107.521

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of t4 phage522

lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2):442–451.523

McNaught, A. D. and Wilkinson, A. (1997). Compendium of chemical terminology, volume 1669.524

Blackwell Science Oxford.525

Ofria, C. and Wilke, C. O. (2004). Avida: A software platform for research in computational evolutionary526

biology. Artificial life, 10(2):191–229.527

Pedersen, J. T. and Moult, J. (1996). Genetic algorithms for protein structure prediction. Current Opinion528

in Structural Biology, 6(2):227–231.529

Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2007). Ncbi reference sequences (refseq): a curated non-530

redundant sequence database of genomes, transcripts and proteins. Nucleic acids research, 35(suppl531

1):D61–D65.532

Rainforth, T. and Wood, F. (2015). Canonical correlation forests. arXiv preprint arXiv:1507.05444.533

Ray, T. S. and Hart, J. (1999). Evolution of differentiated multi-threaded digital organisms. In Intelligent534

15/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016



Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on,535

volume 1, pages 1–10. IEEE.536

Rost, B. and Sander, C. (1994). Combining evolutionary information and neural networks to predict537

protein secondary structure. Proteins: Structure, Function, and Bioinformatics, 19(1):55–72.538

Sevier, C. S. and Kaiser, C. A. (2002). Formation and transfer of disulphide bonds in living cells. Nature539

reviews Molecular cell biology, 3(11):836–847.540

Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D. (1999). Ab initio protein structure prediction of541

casp iii targets using rosetta. Proteins: Structure, Function, and Bioinformatics, 37(S3):171–176.542

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical543

Society. Series B (Methodological), pages 267–288.544

Wang, Z. and Xu, J. (2013). Predicting protein contact map using evolutionary and physical constraints545

by integer programming. Bioinformatics, 29(13):i266–i273.546

Wuthrich, K. (1986). NMR of proteins and nucleic acids. Wiley.547

Xu, D. and Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure fragments548

and optimized knowledge-based force field. Proteins: Structure, Function, and Bioinformatics,549

80(7):1715–1735.550

Yoshikawa, H. and Ogasawara, N. (1991). Structure and function of dnaa and the dnaa-box in eubacteria:551

evolutionary relationships of bacterial replication origins. Molecular microbiology, 5(11):2589–2597.552

Zhang, Y. (2007). Template-based modeling and free modeling by I-TASSER in CASP7. Proteins:553

Structure, Function, and Bioinformatics, 69(S8):108–117.554

16/16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2197v1 | CC BY 4.0 Open Access | rec: 1 Jul 2016, publ: 1 Jul 2016


