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Abstract: 32 

Diversity of complex microbial communities can be rapidly assessed by community 33 

amplicon sequencing of marker genes (e.g., 16S), often yielding many thousands of DNA 34 

sequences per sample. However, analysis of community amplicon sequencing data requires 35 

multiple computational steps which affect the outcome of a final data set. Here we use mock 36 

communities to describe the effects of parameter adjustments for raw sequence quality filtering, 37 

picking operational taxonomic units (OTUs), taxonomic assignment, and OTU table filtering as 38 

implemented in QIIME 1.9.1. We demonstrate a workflow optimization based upon this 39 

exploration which we also apply to environmental samples. We found that quality filtering of 40 

raw data and filtering of OTU tables had large effects on observed OTU diversity. While all 41 

taxonomy assigners performed with similar accuracy, an appropriate choice of similarity 42 

threshold for defining OTUs depended on the method used for OTU picking. Our “default” 43 

analysis in QIIME overestimated mock community diversity by at least a factor of ten, compared 44 

to the optimized analysis which correctly characterized the taxonomic composition of the mock 45 

communities while still overestimating OTU diversity by about a factor of two. Though observed 46 

relative abundances of mock community member taxa were approximately correct, most were 47 

still represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock 48 

community taxa were characterized by multiple substitution and indel errors and the presence of 49 

a low quality base call resulting in sequence truncation during quality filtering. Low quality base 50 

calls were observed at “G” positions most of the time, and were also associated with a preceding 51 

“TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 52 

2508 to 1533 OTUs when comparing output from the default and optimized workflows. We 53 

attribute this reduction in observed diversity to the removal of erroneous sequences from the data 54 

set. Our results indicate that both strict quality filtering of raw sequencing data and careful 55 

filtering of raw OTU tables are important steps for accurate estimation of microbial community 56 

diversity. 57 

 58 

Introduction: 59 

Over the past decade, community amplicon sequencing has become the preferred method 60 

for profiling diversity in microbial communities. Briefly, the technique uses the polymerase 61 

chain reaction (PCR) to amplify a pool of PCR products from an environmental sample to be 62 
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resolved by high throughput DNA sequencing. Similar sequences are binned together into 63 

operational taxonomic units (OTUs) which are compared against a database to obtain taxonomic 64 

classifications. Amplicon sequencing is flexible in that a community can be profiled for different 65 

genes which may represent markers better suited for certain microbial constituents (e.g., 16S for 66 

prokaryotes, ITS for fungi), while profiling with functional genes can offer a better 67 

understanding of community traits (e.g., Bentzon-Tilia et al., 2015). While communities were 68 

originally profiled on 454 pyrosequencing instruments (Sogin et al., 2006), amplicon sequencing 69 

has been adapted to newer instrumentation including sequencers from Illumina (Caporaso et al., 70 

2012) and Pacific Biosciences (Fichot & Norman, 2013). Illumina sequencing is currently the 71 

most popular option due to several factors including cost, throughput, instrument availability, 72 

and the existence of multiple protocols for amplification and sequencing of marker gene pools on 73 

this platform (Caporaso et al., 2012; Bokulich & Mills, 2013; Kozich et al., 2013; Fadrosh et al., 74 

2014). 75 

Accurate determination of community diversity and taxonomic content are often primary 76 

aims of community amplicon sequencing projects. Systematic errors experienced during sample 77 

preparation such as PCR and sequencing errors can contribute to overestimates of diversity 78 

(Kunin, 2010). Additionally, signal cross-talk during index sequence cycles on Illumina 79 

sequencers can lead a researcher to falsely conclude that an organism is present in a sample 80 

(Kircher, Sawyer & Meyer, 2012; Nelson et al., 2014). In the face of such potential 81 

complications, careful analysis is warranted to ensure that diversity estimates are not inflated and 82 

that data are properly filtered to avoid Type II errors. Several comprehensive tools exist for 83 

processing such data including mothur (Schloss et al., 2009), QIIME (Caporaso et al., 2010a), 84 

and UPARSE (Edgar, 2013). Many stand-alone tools are also available for performing specific 85 

bioinformatic tasks which may or may not be implemented in QIIME, mothur or UPARSE. It 86 

may be beneficial in some cases to perform separate bioinformatic steps with different software 87 

packages in order to obtain the most accurate community representation for a given ecosystem. 88 

However, it is up to the individual researcher to have a comprehensive understanding of the 89 

production and processing of amplicon sequencing data in order to make the best decisions 90 

during data processing. 91 

 Automated quality filtering is among the first steps performed in any sequencing project 92 

and is a necessity for managing modern DNA sequencing data sets. To achieve the status of 93 
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“finished,” genome sequencing projects require consensus base quality scores where the 94 

likelihood of an incorrect base call is less than 1 in 100,000 (q50), whereas assemblies using 95 

unfiltered data are considered “standard draft” and are expected to contain errors (Chain & 96 

Grafham, 2009). The default parameters in QIIME 1.9.1 require a minimum quality score of q4 97 

as recommended by Bokulich et al. (2013), and such data should be similarly treated as “draft” 98 

data. More reads are retained for downstream analysis, but a low quality score requirement also 99 

introduces an unknown degree of sequencing error as base quality scores may vary widely across 100 

a single sequencing run. Thus, data generated on runs with higher average error rates are more 101 

likely to overestimate alpha diversity if quality scores are not strictly controlled. While 102 

inconsistent qualities from sequencing runs can be effectively controlled via quality filtering, 103 

default quality filtering in QIIME retains reads that may be variably trimmed to a range of 75-104 

100% of the original sequence length. Because the quality of different sequences may decrease 105 

nonuniformly across a sequencing run, variable read lengths may also contribute to an inflated 106 

estimate of OTU richness if reads are not dereplicated or sorted by size prior to clustering. 107 

 Quality-filtered amplicon sequencing data are clustered into OTU definitions, a 108 

computational process for which numerous programs are available. CD-HIT (Fu et al., 2012), 109 

UCLUST (Edgar, 2010), BLAST (Altschul, 1990), and Swarm (Mahé et al., 2014) are popular 110 

options that are all available in QIIME. Reference-based analysis techniques, such as BLAST, 111 

are known to incur biases according to the choice of reference database (Nelson et al., 2014), but 112 

can easily be parallelized for more efficient computation. UCLUST can utilize a reference 113 

database, perform database-independent de novo clustering, or, as with the open-reference 114 

strategy currently implemented in QIIME, a combination of both methods (Navas-Molina et al., 115 

2013). Pure de novo analysis is preferred by many as the approach least likely to impose a bias 116 

on the final outcome. One popular option for de novo OTU clustering is CD-HIT, but as this 117 

program cannot be parallelized it can be time-prohibitive when used with larger data sets. 118 

Swarm, another de novo OTU clustering program, allows for portions of the de novo clustering 119 

process to be parallelized, thus eliminating database-specific effects while also optimizing 120 

computational requirements. All OTU picking programs require the researcher to choose a 121 

similarity or distance threshold beyond which two sequences must be considered as separate 122 

OTUs. If present at this stage, PCR or sequencing errors may contribute to OTU inflation to an 123 

unknown degree. In addition to ensuring the data is properly filtered, one can also utilize a 124 
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conservative clustering threshold in order to avoid overestimation of community diversity (e.g., 125 

≤97%; Kunin et al., 2010). 126 

 Taxonomic assignment, achieved through comparison of OTU definition sequences to a 127 

reference database, can also be performed in a variety of ways. Popular methods include 128 

BLAST, UCLUST, and RDP (Wang et al., 2007), and each are available in QIIME. In 2008, Liu 129 

et al. reported that RDP provided the most accurate taxonomic assignments. Presently, other 130 

techniques continue to be utilized by various amplicon sequencing analysis pipelines (e.g., 131 

Giongo et al., 2010; Gweon et al., 2015), revealing a lack of consensus among researchers. 132 

Considering that improved taxonomic accuracies may be observed when sequences obtained for 133 

study organisms are more similar to those populating the reference database, it seems plausible 134 

that the relative success of each algorithm can be context-dependent. For environmental data 135 

sets, accuracies of taxonomic assignments are estimated by means of a confidence value relevant 136 

to the utilized technique (e.g., e-value for BLAST). Careful assessment of taxonomic accuracies 137 

can only be done when the sequence content of a given sample can be anticipated. This can be 138 

achieved with synthetic mock communities created in silico by extracting sequences from a 139 

database (e.g., Bellemain et al., 2010) or using genomic mock communities that combine DNA 140 

extracts from cultured organisms. Neither scenario is likely to provide an outcome that is directly 141 

comparable to the natural complexities of environmental communities, yet both can offer a test 142 

of accuracy for taxonomic assignment methods. 143 

 Once quality filtered sequences have been clustered and taxonomically classified, they 144 

are compiled into an OTU table with count data for each observation. As OTUs defined from 145 

erroneous sequences may persist even to this point in the analysis, the resulting OTU table must 146 

be filtered prior to conducting diversity analyses, and the filtering approach can have a profound 147 

effect on the final result (Bokulich et al., 2013). Although Bokulich et al. (2013) suggested the 148 

inclusion of mock communities on sequencing runs to assess the overall run quality and improve 149 

diversity assessments, they also provide a general recommendation to quality filter the final table 150 

by removing OTUs that represent less than 0.005% of the total read abundance. This has proven 151 

to be a useful guideline for numerous studies in which mock communities were not included. 152 

However, this practice ignores the independence of each sample and will treat samples 153 

differently according to sequencing depth such that low read count samples will be more 154 

severely filtered than samples with higher read counts. 155 
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Considering samples independently, Kircher, Sawyer & Meyer (2012) observed an 156 

indexing inaccuracy rate of 0.3%, citing cluster mixing during sequencing as a mechanism by 157 

which single-indexed Illumina sequences are likely attributed incorrectly to a particular sample. 158 

For certain applications, their result argues that such data must be filtered at this level in order to 159 

avoid Type II errors. Another common practice is to remove singleton OTUs (by sample or by 160 

table) under the assumption that such OTUs represent errors generated during sequencing (see 161 

Dickie, 2010). However, errors introduced during early PCR cycles may be faithfully replicated 162 

many times so as to appear as valid OTUs, causing overestimation of OTU richness even after 163 

singleton filtering (Nguyen et al., 2015). As an alternative, Nguyen et al. (2015) suggest the 164 

removal of low-count or low-proportion OTUs by sample at a threshold informed by mock 165 

community data. Mock communities used in this way may also identify certain sequence motifs 166 

prone to error, which may help to identify whether novel OTUs observed in environmental data 167 

should be considered suspect. Unfortunately, such controls are not available for many data sets 168 

and artificial communities may not perform similarly to environmental communities during 169 

sample prep and analysis. Because samples are amplified independently, PCR errors are likely to 170 

be present in the form of private OTUs observed only in a single sample, so removal of unshared 171 

OTUs may be another effective precaution against overestimation of diversity due to sequencing 172 

error.  173 

 As these examples illustrate, proper filtering of an OTU table is not a straightforward 174 

task. The sequence misattribution rate reported by Kircher, Sawyer & Meyer (2012) is orders of 175 

magnitude above the filtering threshold of 0.005% recommended by Bokulich et al. (2013), 176 

though their recommendation was to filter across the entire OTU table. Since many amplicon 177 

sequencing studies report relatively few taxa present above 0.3% per sample, filtering by sample 178 

at this threshold (Kircher threshold) will exclude many valid taxa. The presence of misattributed 179 

sequences may also diminish the efficacy of private OTU removal to eliminate PCR errors, 180 

though dual-indexing of samples should reduce or eliminate sequence misattribution events 181 

(Kircher, Sawyer & Meyer, 2012). Singleton filtering, however applied, is unlikely to be 182 

thorough enough to remove errors that are either replicated during the PCR process, or represent 183 

systematic errors from the sequencing process. For single- or dual-indexed Illumina data, 184 

filtering at 0.005% across the entire table (Bokulich threshold) may represent a viable 185 
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compromise between confident assignment of sequences to samples and the stringency that one 186 

imposes on filtering the final table. 187 

In this study we used simple genomic mock communities and an environmental data set 188 

to describe the effects of parameter adjustments for methods implemented in QIIME 1.9.1 189 

(Caporaso et al., 2010a) on sequence quality filtering, OTU picking, taxonomic assignment, and 190 

OTU table filtering. We hypothesized that observed OTU diversity is dramatically inflated due to 191 

the presence of PCR and/or sequencing artifacts, and that such effects should be observed in 192 

simple genomic mock communities. Using five mock communities consisting of 4-8 taxa each, 193 

we developed a modified protocol for the analysis of 16S community amplicon sequencing data, 194 

and demonstrate the method on an environmental data set. By carefully controlling each of the 195 

steps that we investigated, we were able to describe mock community compositions more 196 

correctly than with a default workflow. 197 

 198 

Materials and Methods: 199 

 200 

Mock communities 201 

 DNA was extracted from axenic cultures of Pseudomonas aeruginosa (Proteobacteria), 202 

Proteus vulgaris (Proteobacteria), Klebsiella pneumoniae (Proteobacteria), Escherichia coli 203 

(Proteobacteria), Bacillus megaterium (Firmicutes), Lactococcus lactis (Firmicutes), 204 

Staphylococcus aureus (Firmicutes), and Micrococcus luteus (Actinobacteria) using a PowerSoil 205 

DNA Extraction Kit (MoBio Laboratories, Carlsbad, CA). DNA was quantified by PicoGreen 206 

(Life Technologies, Carlsbad, CA) fluorescence, and normalized to approximately 0.75 ng/µL. 207 

Five mock communities containing different ratios of bacterial taxa were constructed from the 208 

extracted DNA. Community 0 contained equal volumes of DNA from each taxon; Community 209 

1a contained 8% M. luteus, 42% B. megaterium, 42% L. lactis, and 8% S. aureus; Community 1b 210 

contained 42% M. luteus, 8% B. megaterium, 8% L. lactis, and 42% S. aureus; Community 2a 211 

contained 8% E. coli, 8% K. pneumoniae, 42% P. vulgaris, and 42% P. aeruginosa; Community 212 

2b contained 42% E. coli, 42% K. pneumoniae, 8% P. vulgaris, and 8% P. aeruginosa. Final 213 

concentrations for each mock community were determined to be ~ 0.75 ng/µL (Table S1: mock 214 

community construction). Expected compositions of mock communities were corrected for 215 

genome size and copy number against the CBS Genome Atlas Database (Hallin & Ussery, 2004). 216 
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 217 

Environmental samples 218 

 Environmental samples with an expected environmental contrast were collected from the 219 

Northern Arizona University Pinyon Pine Common Garden near Sunset Crater National 220 

Monument, AZ. During garden installation in October 2009, soil samples were collected from 221 

holes dug to plant seedlings (“pre-tree” treatment). Soil core samples were taken from the same 222 

seedlings in December 2010 (“post-tree” treatment). The top 2 centimeters (cm) of soil were 223 

brushed aside prior to taking cores. A 2.5 cm diameter metal corer was placed 2 cm from the 224 

seedling base and driven to a depth of 10 cm. Samples were kept on ice in the field and stored at 225 

-20 oC until DNA extraction. DNA was extracted from homogenized soil cores using a 226 

PowerSoil DNA Extraction Kit. Only samples which produced a clean ribosomal PCR product 227 

were included in this study, resulting in unequal sample sizes between pre-tree (n = 13) and post-228 

tree (n = 28) groups. A random number generator was used to select a subset of post-tree samples 229 

(n = 13) for comparisons of data with equal sample sizes. Samples were normalized to c. 1 ng/µL 230 

prior to PCR amplification for library construction. 231 

The environmental samples presented here are meant only to allow a demonstration of 232 

the effects of a mock community-based workflow optimization on actual data. Though we expect 233 

the presence of a tree to create additional niche space which would increase observed diversity, 234 

no background soil control samples were collected. Observed differences, though likely to be 235 

real, could be influenced in part or in total by interannual environmental variations. Additionally, 236 

pre-tree and post-tree samples were collected during different months of the year, so seasonal 237 

differences could also contribute to the outcome. 238 

 239 

Library construction and sequencing 240 

 Amplicons were produced in a two-step protocol as suggested by Berry et al. (2011). 241 

Briefly, samples were amplified in triplicate PCR reactions for the 16S v4 region using the 242 

universal prokaryotic primers 515F and 806R (Bates et al., 2011). First round reactions were 243 

performed in triplicate in 384 well plates. The 8 µL volumes contained the following: 1 µM each 244 

primer (Eurofins MWG Operon, LLC), 200 µM each dNTP (Phenix Research, Candler, NC), 245 

0.01 U/µL Phusion Hot Start II DNA Polymerase (Life Technologies), 1X HF Phusion Buffer 246 

(Life Technologies), 3 mM MgCl2, 6% glycerol, and 1 µL normalized template DNA. Cycling 247 
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conditions were: 2 minutes at 95°C followed by 20 cycles of 30 seconds at 95°C, 30 seconds at 248 

55°C, 4 minutes at 60°C. Triplicate reactions for each sample were pooled by combining 4 µL 249 

from each, and 2 µL was used to check for results on a 1% agarose gel. The remainder was 250 

diluted 10-fold and used as template in a second PCR reaction in which 12 base Golay indexed 251 

tails (Caporaso et al., 2012) were added. Second round reaction conditions were identical to the 252 

first round except only one reaction was conducted per sample and only 15 total cycles were 253 

performed. Indexed PCR products were purified using carboxylated magnetic beads as described 254 

in Rohland & Reich (2012), quantified by PicoGreen fluorescence, and an equal mass of each 255 

sample was combined into a final sample pool. The pool was purified and concentrated, and 256 

subsequently quantified by quantitative PCR against Illumina DNA Standards (Kapa 257 

Biosystems, Wilmington, MA). Sequencing was carried out on a MiSeq Desktop Sequencer 258 

(Illumina Inc, San Diego, CA) running in paired end 2x150 mode.  259 

 260 

Data processing and statistical analysis 261 

 All bioinformatics were carried out on a Mac Pro (Apple, Inc.) running Ubuntu Linux 262 

14.04 LTS (Canonical Ltd.) or the monsoon high-performance computing cluster at Northern 263 

Arizona University (https://nau.edu/hpc/) running CentOS 6.6 (The CentOS Project). Figures 264 

were generated in Veusz v1.24 (http://home.gna.org/veusz/) or Geneious v8.1 (Biomatters Ltd.). 265 

As contaminating PhiX Control sequence can complicate sequencing projects (Mukherjee et al., 266 

2015), we calculated the amount of PhiX Control among our demultiplexed data and removed it 267 

prior to sample processing. This task was performed with the akutils phix_filtering 268 

command in akutils v1.2 (Krohn, 2016; https://github.com/alk224/akutils-v1.2) which maps raw 269 

data against the Enterobacteria phage phiX174 sensu lato complete genome sequence 270 

(NC_001422.1) using Smalt 0.7.6 (http://www.sanger.ac.uk/resources/software/smalt/). 271 

 Paired end reads were joined using the akutils join_paired_reads command in 272 

akutils which employs fastq-join from ea-utils (Aronesty, 2011). Demultiplexing and quality 273 

filtering of raw, joined data (mean length = 253 bp) was carried out in QIIME with the 274 

split_libraries_fastq.py script using default parameters, or with more strict 275 

requirements of a minimum quality threshold of q20 (q = 19), allowing 0-3 low-quality base 276 

calls (r = 1-3), and requiring at least 95% of each read to be high quality (p = 0.95). Chimeras 277 

were removed using vsearch 1.1.1 (Rognes et al., 2015; https://github.com/torognes/vsearch) 278 
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against the Gold reference database (http://drive5.com/uchime/gold.fa). OTU picking and 279 

taxonomy assignments were performed using the akutils pick_otus command in akutils. 280 

After manual inspection of sequence divergence among congeneric mock community members, 281 

sequences were de-replicated on the first 100 bases using the prefix_suffix OTU picker in 282 

QIIME. OTU picking was performed with multiple similarity thresholds using common OTU 283 

picking algorithms (CD-HIT, UCLUST and BLAST at 97%, 95%, 92%, 90%, 85%, and Swarm 284 

at d1, d2, d3, d4, d5). BLAST was used only for closed reference analysis, UCLUST for open 285 

reference analysis, and CD-HIT and Swarm for de novo analyses. Taxonomy was assigned using 286 

BLAST, RDP, and UCLUST using default settings available in QIIME 1.9.1. Reference-based 287 

OTU picking steps and taxonomy assignments were conducted against the Greengenes 97% 288 

database (McDonald et al., 2012) which had been formatted to include only the v4 region using 289 

the akutils format_database command in akutils. Sequence alignments and phylogenetic 290 

trees were produced using the akutils align_and_tree command in akutils which aligns 291 

sequences using PyNAST (Caporaso et al., 2010b) and generates phylogenies with FastTree 292 

(Price, Dehal & Arkin, 2009). Diversity analyses were conducted using the akutils 293 

core_diversity command in akutils. 294 

 In order to facilitate assessment of optimal workflow steps, we first sought to establish a 295 

method of filtering the final OTU tables by eliminating OTUs resulting from mixed clusters. To 296 

this end, we processed the mock and environmental data sets through a default QIIME workflow 297 

(see below) to assess taxonomic components, and compared methods for filtering OTU tables, 298 

which would remove contaminating taxa. An ideal filtering method should remove erroneous 299 

OTUs that arise either from sequencing error or cluster mixing. Table filtering was carried out 300 

using either the Kircher threshold (0.3% by sample; Kircher, Sawyer & Meyer, 2012), the 301 

Bokulich threshold (0.005% by table; Bokulich et al., 2013), singletons removed by table (mc2), 302 

or singletons removed by sample (n2). Private OTUs were assumed to be errors and were also 303 

removed in the n2 tables. Filtered OTU tables were grouped according to filtering method, and 304 

differences in the amount of OTUs classified as contaminating taxa was assessed by one-way 305 

ANOVA. Tukey’s HSD test was used to determine which groups were statistically distinct. 306 

 An optimal workflow was chosen by assessing diversity estimates and taxonomic 307 

identities assigned to mock community data. The optimal OTU picking algorithm was 308 

determined as the method that yielded the correct diversity result over the broadest range of 309 
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similarity thresholds. Taxonomic accuracy was determined by seeding the Greengenes database 310 

with the expected sequences from the mock community constituent taxa prior to analysis, and 311 

inspecting the results. OTU tables from the optimal workflow across the accurate range of 312 

similarity thresholds were filtered at each of the four thresholds described above. Our “default 313 

QIIME workflow” was identical to the optimal workflow with the following changes: the 314 

split_libraries_fastq.py command was performed with default settings; OTU picking 315 

was performed with the pick_open_reference_otus.py command; taxonomic assignment 316 

was performed with UCLUST; OTU tables were filtered with the Bokulich threshold. Results 317 

from the optimal workflow were compared to the result obtained from our default workflow. 318 

Environmental data was then processed using the best workflow determined from this process 319 

and compared to the default result. 320 

 Diversity analyses for mock community data were calculated on OTU tables that had 321 

been rarefied to 10,000 reads, or 5,000 reads for environmental data. Comparison of observed 322 

mock community composition to the a priori expectation (Table S1) was conducted with 323 

Spearman’s rank correlation using species-level assignments. Comparison of observed OTU 324 

diversity between environmental sample groupings was performed with nonparametric t-tests. A 325 

random subset of post-tree samples from the environmental data (n = 13) was selected to 326 

determine if unequal sample sizes were contributing to observed OTU diversity. Distance 327 

matrices were calculated from environmental data for weighted UniFrac distance (Lozupone & 328 

Knight, 2005). Tests of differences of total beta diversity were carried out on distance matrices 329 

using PERMANOVA (Anderson, 2001), and differences in multivariate dispersion were detected 330 

with PERMDISP (Anderson, Ellingsen & McArdle, 2006). 331 

 Representative sequences for the optimized mock community result were extracted from 332 

the output data. When multiple OTU definition sequences represented the same taxonomic 333 

identity, they were aligned with Mafft v7.123b (Katoh & Standley, 2013) using the L-INS-i 334 

setting. The lower abundance OTU for each multi-OTU taxon was assumed to be erroneous and 335 

base differences compared to the major OTU were characterized. Trinucleotide motifs preceding 336 

each base difference and terminal truncation position were tabulated. Because 2x150 sequencing 337 

data does not fully overlap for 515F-806R amplicons (mean length = 253 bp), terminal base and 338 

preceding trimers were considered in the context of the second read. Environmental data 339 

processed through the optimal workflow was also investigated for terminal truncation positions 340 
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and preceding trinucleotide motifs. Because we have no reliable reference sequence for many 341 

environmental OTUs, we investigated only OTUs that shared a taxonomic designation with at 342 

least one other OTU, and had been truncated by more than 3 bases during quality filtering. For 343 

mock and environmental data, motif and terminal base representations were tested against the 344 

assumption of random occurrence with Chi-square tests. 345 

 346 

Results: 347 

 The sequencing run clustered at 1119 k/mm2 (+/- 70) and resulted in 17.96 million total 348 

reads passing filter, an overall error rate of 0.36%, and 91% of reads exceeded q30. PhiX 349 

Sequencing Control v3 sequences (Illumina, Inc.) constituted 8.31% of the total run (percent 350 

aligned). Once demultiplexed, mock community data contained 4.35% PhiX (103,070/2,371,510 351 

reads) while the environmental data contained 4.10% PhiX (259,366/6,332,586 reads). Raw 352 

sequencing data for the samples used in this study and a QIIME-formatted mapping file are 353 

publicly available in the QIITA database (https://qiita.ucsd.edu/) under study ID number 10479. 354 

Under default QIIME assessment, the mock community data showed substantial OTU 355 

inflation; where there should have been just 8 OTUs, there were 127 (Table S2, default mock 356 

analysis). When the environmental data set was processed through the same workflow, 73 OTUs 357 

were classified at the family level as Sphingomonadaceae. Together, these OTUs made up 5.3% 358 

of environmental sequences, and Sphingomonadaceae was the most abundant classification 359 

observed at the family level (Table S3, default environmental analysis). Three OTUs 360 

representing about 0.13% of the mock community data set were also classified as 361 

Sphingomonadaceae, a designation which should be absent from the mock data. This result led 362 

us to surmise that sequences from the environmental data set were contaminating the mock 363 

communities during sequencing. Such sample cross-talk presumably arises from the cluster 364 

mixing effect described by Kircher, Sawyer & Meyer (2012) where the index read from a 365 

flowcell cluster is spuriously attributed to a neighboring cluster. The mock data also contained 3 366 

OTUs classified as Planococcaceae (<0.03%) and 1 OTU classified as Methylobacteriaceae 367 

(<0.01%), again corresponding with OTUs observed within the environmental data. 368 

Sphingomonadaceae sequences were observed across all five mock communities, whereas 369 

Planococcaceae was only associated with communities 0, 1a, and 1b, suggesting that cluster-370 

mixing events may occur non-randomly. Methylobacteriaceae was present as just a single read 371 
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among community 1b. Three mock community OTUs were observed at low levels in 372 

communities from which they should be absent, indicating additional cluster-mixing within the 373 

mock community data. 374 

As the most prevalent non-target taxon observed among the mock community data, we 375 

sought to establish a method for filtering OTU tables that would eliminate the presence of 376 

contaminating Sphingomonadaceae reads. OTU tables generated for the mock communities by 377 

each of the OTU picking, taxonomy assignment and table filtering methods were compared for 378 

the presence of Sphingomonadaceae contaminants. Considering filtering method (mc2, n2, 379 

Kircher threshold, or Bokulich threshold) as the predictive variable, we found strong differences 380 

among them in removing non-target OTUs (F3,239 = 89.301, p < 0.0001). The least severe 381 

filtering method (mc2) retained the most Sphingomonadaceae OTUs (2.50 +/- 1.21) followed by 382 

n2 (2.45 +/- 1.21), and Bokulich threshold (1.85 +/- 0.86). Only the Kircher threshold completely 383 

removed Sphingomonadaceae contamination from the mock community OTU tables effectively 384 

(Tukey’s HSD, p < 0.05). 385 

 Default quality filtering and OTU picking in QIIME resulted in overestimation of mock 386 

community diversity regardless of how the final OTU table was filtered (Figure 1a-d; Figure S1: 387 

Default mock community rarefactions). Diversity estimates were inflated up to 35 times when 388 

singletons were removed by table, compared to nearly 3.5 times when filtering with the Kircher 389 

threshold. Despite the reduction of OTU inflation by an order of magnitude, these results indicate 390 

that revisions to initial processing steps may yield improved results. We therefore sought to 391 

establish an optimized workflow that would produce the correct number of OTUs for an input of 392 

known constituents. Using data that had been filtered according to strict standards during the 393 

split_libraries_fastq.py step in QIIME (q = 19, r = 0, p = 0.95), a correct result was 394 

achieved for each of the OTU picking algorithms tested. However, each algorithm differed in 395 

which similarity threshold was required for the optimal result (Table 1). Closed reference picking 396 

with BLAST overestimated diversity above a similarity threshold of 92%. Open reference 397 

picking with UCLUST overestimated diversity at every threshold except 95% similarity. De 398 

novo picking using CD-HIT at thresholds below 92% and Swarm resolutions below d4 399 

underestimated diversity. Swarm yielded the correct result over the broadest range of tested 400 

similarity thresholds (d1-d4), and offers other attractive features that made it stand out among the 401 

tested OTU pickers (e.g., de novo picking, multi-threaded analysis). Thus, Swarm was chosen as 402 
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the optimal OTU picking method for the remainder of the study. We chose d4 similarity as the 403 

optimal threshold as it was the most conservative setting to yield a correct result. 404 

 Taxonomic accuracy for Swarm-picked OTUs (d4) was assessed for the different 405 

taxonomy assigners using default parameters in QIIME 1.9.1. To control for reference database 406 

bias, we added representative sequences from each of the correct OTUs to our Greengenes 407 

reference with a unique identifier. We observed that BLAST returned the representative 408 

sequence 100% of the time, while RDP and UCLUST never found the exact match (Table 2). 409 

Even though RDP and UCLUST did not find optimal sequences, assignments were correct, 410 

though less specific in taxonomic depth. BLAST yielded similar results when the representative 411 

sequences were not present in the database (Table 2). While BLAST offers the advantage of 412 

obtaining the best sequence match when available in the database, RDP and UCLUST both offer 413 

an advantage in substantially reducing computational time while providing reasonable accuracy 414 

for most applications. For the analysis presented here, we chose BLAST as the optimal 415 

taxonomy assigner for its superior accuracy. 416 

 A perfect result for analysis of our mock communities requires stringent quality filtering 417 

of the raw data. Default quality filtering in QIIME 1.9.1 was established according to Bokulich et 418 

al. (2013). This imposes a minimum Phred quality score of 4 (q = 3), truncates sequences after 419 

three bases are observed below this threshold (r = 3), and retains truncated reads that represent a 420 

minimum of 75% of the original sequence length (p = 0.75). In contrast, we performed strict 421 

quality filtering using q = 19, r = 0, and p = 0.95. This more stringent filtering protocol ensures 422 

that data used for analysis are of much higher quality with approximately uniform read lengths. 423 

An important consequence of such stringency is that much of the raw data is discarded. Of the 424 

2,373,247 raw mock community sequences, default quality filtering retained 2,020,542 reads 425 

(85.1%), whereas stringent parameters retained just 657,544 reads (27.7%). Holding constant q = 426 

19 and p = 0.95, we found that increasing r during quality filtering had a profound effect on the 427 

amount of data retained (Figure 2a). Allowing r = 1 resulted in an increase of data retention from 428 

approximately 27% (r = 0) to over 56%. When r = 2 and r = 3, increases in data retention 429 

showed diminishing returns, with 70% and 75% of the data retained, respectively. However, we 430 

also found that allowing r > 0 will generally cause an inaccurate estimate of the number of 431 

OTUs, depending on the criteria used for OTU picking (Figure 2b). With the d1 resolution, 432 

increasing r will create a proportional inflation in the number of OTUs determined by Swarm. At 433 
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d2 resolution, allowing r = 1 still correctly described our simple mock community whereas 434 

allowing r = 2 or r = 3 caused diversity to be overestimated. At resolutions d3 and d4, allowing r 435 

> 0 caused underestimates of diversity. This suggests that the best result is obtained with the 436 

most stringent quality filter, which we selected for our optimal workflow (q = 19). Similar results 437 

using more data may be possible by allowing a small amount of errors (e.g., r = 1) and picking 438 

OTUs with a more conservative similarity threshold (e.g., Swarm at d2 resolution). 439 

 The Kircher threshold was effective at removing contaminating OTUs in our mock 440 

community data thus yielding a near-perfect result (Figure 3). However, we anticipated that such 441 

filtering could be too stringent for environmental analysis given the low per-sample OTU 442 

frequencies commonly reported (e.g., Sogin et al., 2006). We compared the expected mock 443 

community results to those observed with either default settings, or optimized settings for quality 444 

filtering, OTU picking and taxonomy assignment, using each of the final OTU table filtering 445 

methods we tested. For all comparisons, Spearman’s rank correlation yielded significant p-values 446 

(<0.001), so we present only correlation values and 95% confidence intervals here. When 447 

comparing the default analysis to the expected outcome, Spearman’s r showed a negative 448 

correlation (r = −0.3494; CI = [−0.4280, −0.2655]). Optimized results exhibited strong positive 449 

correlations regardless of filtering threshold used. Lower values for Spearman’s r occured when 450 

diversity was overestimated and when contaminants were present. Correlation with the expected 451 

outcome improved as filtering stringency increased with every filtering method producing a 452 

dramatic improvement over the default workflow (mc2: r = 0.8075, CI = [0.7663, 0.8420]; n2: r 453 

= 0.8702, CI = [0.8344, 0.8987]; Bokulich threshold: r = 0.9135, CI = [0.8841, 0.9357]; Kircher 454 

threshold: r = 0.9646, CI = [0.9495, 0.9752]). The Bokulich threshold was chosen as our optimal 455 

OTU table filtering method because it yielded the best correlation without being overly strict. 456 

Output for the environmental data using either the default or optimized workflow were 457 

examined for basic diversity statistics. Default analysis identified 2508 OTUs classified into 388 458 

taxonomic assignments (OTUs per taxon: mean = 6.46, median = 2; Figure S3: Default 459 

environmental rarefactions). The optimized analysis identified 1533 OTUs classified into 328 460 

taxonomic assignments (OTUs per taxon: mean = 4.67, median = 2; Figure S4: Optimized 461 

environmental rarefactions). By treatment, OTU diversity was reduced about twofold when 462 

assessed via the optimized workflow and compared to the default results (Figure 4a-4b). In the 463 

default analysis, pre-tree soils hosted 978.30 +/- 128.42 OTUs while post-tree soils had 1138.35 464 
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+/- 86.34 OTUs (nonparametric T-test = 4.578, p < 0.001). In the optimized analysis, pre-tree 465 

soils contained 543.28 +/- 79.32 compared to 674.95 +/- 50.21 OTUs in post-tree soils 466 

(nonparametric T-test = 6.277, p < 0.001). Differences in beta diversity were observed between 467 

treatments for each workflow using weighted UniFrac distance matrices (Figure 4c-4d; default 468 

PERMANOVA = 8.181, p < 0.001; optimized PERMANOVA = 9.355, p < 0.001). We also 469 

noticed an increase in multivariate dispersion in the optimized workflow, though the differences 470 

were not found to be significant in either case (default PERMDISP = 1.086, p = 0.294; optimized 471 

PERMDISP = 2.160, p = 0.158). When data was processed with equivalent sample sizes, the 472 

same patterns were observed for both alpha diversity (pre-tree = 545.76 +/- 78.84, post-tree = 473 

679.00 +/- 47.86; nonparametric T-test = 5.004, p < 0.001) and beta diversity (PERMANOVA = 474 

6.585, p < 0.001), though statistical power was slightly reduced, and multivariate dispersion 475 

increased (PERMDISP = 3.248, p = 0.071), consistent with a reduction in sample size. 476 

Of the 17 OTUs observed in the optimized mock result, the nine extra OTUs therein were 477 

composed of three contaminants and six spurious OTUs representing sequence variants of the 478 

target taxa. All extra OTUs were present at low levels ranging from 0.003% to 0.17% per sample 479 

(Table S4). That sequence counts of contaminant OTUs were observed in all samples, but only 480 

for select taxa, strongly suggests that cluster mixing events occur non-randomly during Illumina 481 

sequencing. Species-level mock community observations from the optimized workflow describe 482 

the eight constituent taxa at approximately the correct proportions. However, six of the eight taxa 483 

were represented by two OTUs each. The main OTU for each taxon was present as 6.30% to 484 

19.09% of the total community while the rates of lower frequency OTUs ranged from 0.01% to 485 

0.05%. Manual inspection of conspecific OTU sequence alignments revealed multiple 486 

substitution and indel positions within the first 100 bases which prevented these sequences from 487 

dereplicating into the correct sequence during our workflow (Table S5: OTU sequence 488 

alignments by taxonomy). Additionally, these sequence variants were shorter than the main 489 

constituent sequence by at least seven bases, indicating that they derive from inherently lower 490 

quality reads. Inspection of trinucleotide motifs preceding each substitution or indel position did 491 

not reveal any pattern relating to the observed errors (Table S6: Error-associated sequence 492 

motifs). Consistent with the results of Schirmer et al. (2015), we observed a higher rate of errors 493 

among A or C bases than G or T errors (error ratio = 1.67). Since A and C or G and T bases 494 

share fluorescence excitation wavelengths during Illumina 4-channel sequencing-by-synthesis 495 
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(SBS), this result suggests that some of the errors we observed were indeed the result of 496 

systematic errors during sequencing, although this study was not designed to distinguish between 497 

such errors and those generated during PCR. Examining the terminal trinucleotide motif 498 

immediately preceding truncation positions (Table S7: Terminal-associated sequence motifs) we 499 

observed “TTT” 83% of the time (Χ2
63 = 271.333, p < 0.0001). Additionally, the correct base at 500 

the truncation position was “G” 83% of the time (Χ2
3 = 11.33, p = 0.0101). An example 501 

alignment for the two OTUs representing B. megaterium is presented in Figure 5a, illustrating 502 

the “TTT” motif preceding a “G” truncation position (reverse complimented). 503 

Truncation positions and preceding trimers were also characterized for environmental 504 

data, resulting in 34 “suspect” OTUs (Table S8: Environmental terminal errors). Of these, 27 505 

OTUs had been truncated at a “G” position (79.41%; Χ2
3 = 54.235, p < 0.0001), and just 10 506 

possible trimers were represented preceding the truncation position. The motifs “TTT” and 507 

“TTC” were substantially overrepresented, being observed 14 (41.18%) and 7 (20.59%) times, 508 

respectively (Χ2
63 = 474.235, p < 0.0001). An example alignment for 5 OTUs classified to the 509 

family level as Sphingomonadaceae is presented in Figure 5b, and includes one such suspect 510 

OTU with a “TTT” motif preceding a “G” truncation position (reverse complimented). 511 

 512 

Discussion: 513 

 We have shown that amplicon sequencing data from Illumina MiSeq instruments should 514 

be stringently filtered in order to provide the most accurate estimates of diversity. Kunin et al. 515 

(2010) found that diversity was grossly overestimated for their mock community data until a 516 

quality threshold of q27 was implemented. Similarly, Nelson et al. (2014) observed high 517 

overestimation of mock community diversity (25-125 times expected) unless the data was 518 

carefully controlled. Our optimal workflow still overestimated the OTU diversity of our simple 519 

mock communities by a factor of about 2. This slight overestimation is a dramatic improvement 520 

over that obtained by default processing, and our optimized protocol yielded a reasonable 521 

characterization of taxonomic content for mock communities (Table S4) and environmental data 522 

(Table S9) alike. 523 

Schirmer et al. (2015) observed that error rates as reported by the sequencer according to 524 

the PhiX Control v3 do not accurately reflect those of amplicon sequences. Their conclusion that 525 

actual error rates were higher than those indicated by q-scores reported by the MiSeq has 526 
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important implications for the use of Illumina sequencing in estimating microbial diversity. It is 527 

possible that newer imaging strategies (e.g., 2-channel SBS chemistry used by Illumina NextSeq 528 

and MiniSeq instruments) will provide improved parity between the estimated and actual error 529 

rates, but this will require careful testing to determine empirically. Of the non-target OTUs 530 

present in our optimized mock community result, one third were contaminants arising from 531 

cluster mixing events during sequencing and two thirds were sequence variants of the constituent 532 

OTUs which may have arisen during PCR, sequencing, or a combination of the two. Cluster 533 

mixing can be controlled by dual-indexing of samples (Kircher, Sawyer & Meyer, 2012), but 534 

errors arising during PCR or sequencing represent systematic errors inherent to the procedure of 535 

amplicon sequencing which are difficult, if not impossible, to completely eliminate irrespective 536 

of indexing strategy. Even though dual-indexing offers a clear advantage over single indexing 537 

with regard to sample attribution, single-indexed protocols (e.g., Caporaso et al., 2012) remain 538 

popular and are widely used. Such data still yields valuable information and should not be 539 

discounted, as long as researchers are aware of the limitations. Dual-indexed designs should be 540 

encouraged for new research projects (e.g., Kozich et al., 2013; Fadrosh et al., 2014). 541 

We echo the recommendation by others (e.g., Bokulich et al., 2013; Schirmer et al., 542 

2015) to include control mock community samples to guide data analysis. PhiX Control v3 is 543 

still needed to improve sequence diversity for the purpose of cluster map generation 544 

(https://support.illumina.com/content/dam/illumina-545 

marketing/documents/products/technotes/hiseq-phix-control-v3-technical-note.pdf), but an 546 

alternative reference sequence could be used with onboard mock communities to more directly 547 

estimate error profiles for community amplicon sequencing data. PhiX sequence itself likely 548 

contributes little (if at all) to inflation of diversity estimates, and is easily quantified and 549 

removed. Though such an effect is direct evidence of cluster mixing, the rate of PhiX infiltration 550 

is likely much higher than the rate of sample mixing because PhiX Control is unindexed, 551 

producing no fluorescent signal during indexing cycles. Spurious OTUs defined from 552 

contaminating PhiX sequence may be more prevalent amid sequence data which was 553 

accompanied by higher concentrations of PhiX Control v3 during sequencing. 554 

Though this study was not designed for careful investigation of errors generated during 555 

amplicon sequencing projects, we were able to observe that certain bases and motifs were more 556 

frequently associated with low-quality base calls than should be expected by chance. The 557 
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presence of a “TTT” or “TTC” motif immediately preceding a “G” position near the end of a 558 

sequence (near the start of the second read) was most frequently associated with an erroneous or 559 

suspect OTU (Table S7). Indeed, mock community diversity was inflated on account of this 560 

effect, but determining the source of such error requires more careful investigation than is 561 

possible here. In addition to the terminal truncation observations, we note that all other observed 562 

errors in the mock community sequences occurred within the first 100 bp of sequence, specific to 563 

the non-overlapping region of the first sequencing read (Figure 5a). It is likely that the errors we 564 

observed here would have occurred less frequently had we used fully-overlapping reads for this 565 

study. Importantly, the motif-specific patterns we observed were consistent between the mock 566 

and environmental data sets (Figure 5; Table S7; Table S8). 567 

Estimates of alpha diversity are more sensitive than beta diversity calculations to the 568 

effects of cluster mixing and systematic errors. Input sequence quality had the most profound 569 

effect on alpha diversity estimates. Increasing the number of allowed low-quality reads (r 570 

parameter in split_libraries_fastq.py) increases the amount of data available for 571 

processing, but also changes observed diversity. For this reason, we suggest that diversity 572 

estimates should be performed only with data that has been stringently filtered for quality. 573 

Because errors in amplicon sequencing data may follow sequence-specific patterns (Schirmer et 574 

al., 2015; this study), spurious OTUs may provide artificial support to the statistical separation of 575 

experimental treatments when derived from OTUs driving such differences. Alternatively, 576 

spurious OTUs arising from taxa which are not differentially represented among treatments 577 

could provide artificial noise, making it more difficult to detect real differences. In either 578 

scenario, careful quality filtering can diminish such effects. 579 

Given the vast number of studies that have already utilized Illumina sequencing for 580 

community amplicon profiling, it seems likely that estimates of alpha diversity for a wide variety 581 

of environments could be inflated due to uncontrolled error rates. Here we observed this effect 582 

with a QIIME-based workflow, though QIIME is just one of a variety of tools used in data 583 

analysis for such work. That errors may arise systematically during PCR or sequencing implies 584 

that a similar effect is likely to be observed regardless of which analysis pipeline is used to 585 

assess the data. We also made use of a high-fidelity polymerase (Phusion Hot Start II) in contrast 586 

to many studies which continue to utilize Taq polymerase, with which PCR-derived errors will 587 

be more prevalent. Lower fidelity will promote more PCR-derived errors, and those generated 588 
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during early cycles will be highly perpetuated, an effect which would be more problematic under 589 

high-cycling conditions. Because errors may follow sequence-specific patterns, some diversity 590 

estimates may be particularly inflated for certain taxa, which can further affect studies using 591 

taxonomic content to predict community function (e.g. Langille et al., 2013). The use of 592 

phylogenetic metrics (e.g., phylogenetic diversity for alpha diversity, UniFrac for beta diversity) 593 

during data analysis will likely diminish the effects of complications associated with 594 

systematically-inflated OTU diversity. Though the quality-filtering recommendations outlined by 595 

Bokulich et al., (2013) have subsequently provided valuable guidance to numerous researchers, 596 

careful consideration of the results presented here and elsewhere (Kunin et al., 2010; Schirmer et 597 

al., 2015) will improve upon our collective interpretation of microbial diversity across 598 

environments. 599 

 600 

Conclusions: 601 

 In this study, we observed that each of the various workflow components tested (quality 602 

filtering, OTU picking, taxonomic assignment, and OTU table filtering) affect the outcome of an 603 

amplicon sequencing project. Though high quality output can be achieved through a variety of 604 

means, in this study the optimal result was achieved with a specific set of steps. We outline them 605 

here as a general recommendation for processing community amplicon data generated on MiSeq 606 

instruments through QIIME 1.9.1 (Caporaso et al., 2010a). Analysis parameters can and should 607 

be adjusted as necessary for individual data sets. The optimal workflow as performed in this 608 

study was as follows (optimized steps in bold): 609 

 610 

1. Remove PhiX Control v3 contamination with Smalt 611 

2. Align read pairs with fastq-join 612 

3. Strict quality filter in QIIME (q = 19, r = 0, p = 0.95) 613 

4. Chimera filtering with vsearch 614 

5. Sequence dereplication with prefix/suffix OTU picker 615 

6. Pick OTUs with Swarm (d4 resolution, adjust as necessary) 616 

7. Assign taxonomy with BLAST (default settings) 617 

8. Filter output table at the Bokulich threshold 618 

 619 
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Our results were consistent with the hypothesis that mock community diversity would be 620 

inflated due to the presence of PCR or sequencing errors in the data. By imposing more rigorous 621 

quality filtering of raw sequencing data, much of this error is removed. The effects of remaining 622 

errors can be minimized by utilizing a conservative similarity or distance threshold during OTU 623 

picking. By characterizing mock communities at multiple thresholds, one can identify a 624 

sufficiently conservative similarity or distance value (d4 in our case) which should offer 625 

improved confidence when measuring environmental diversity. If mock communities are 626 

unavailable, we advocate the use of a workflow based upon the above optimization. For studies 627 

utilizing an alternative locus, we suggest adjusting the clustering threshold based on the length of 628 

the amplicon (e.g., more conservative clustering for longer amplicons) until mock communities 629 

can be employed to determine a more informed threshold. 630 
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