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Abstract: 33 

The diversity of complex microbial communities can be rapidly assessed by high-34 

throughput DNA sequencing of marker gene (e.g., 16S) PCR amplicon pools, often yielding 35 

many thousands of DNA sequences per sample. However, analysis of such community amplicon 36 

sequencing data requires multiple computational steps which affect the outcome of a final data 37 

set. Here we use mock communities to describe the effects of parameter adjustments for raw 38 

sequence quality filtering, picking operational taxonomic units (OTUs), taxonomic assignment, 39 

and OTU table filtering as implemented in the popular microbial ecology analysis package, 40 

QIIME 1.9.1. We demonstrate a workflow optimization based upon this exploration, which we 41 

also apply to environmental samples. We found that quality filtering of raw data and filtering of 42 

OTU tables had large effects on observed OTU diversity. While all taxonomy assignment 43 

programs performed with similar accuracy, an appropriate choice of similarity threshold for 44 

defining OTUs depended on the method used for OTU picking. Our “default” analysis in QIIME 45 

overestimated mock community OTU diversity by at least a factor of ten. Our optimized analysis 46 

correctly characterized mock community taxonomic composition and improved the OTU 47 

diversity estimate, reducing overestimation to a factor of about two. Though observed relative 48 

abundances of mock community member taxa were approximately correct, most were still 49 

represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock 50 

community taxa were characterized by multiple substitution and indel errors and the presence of 51 

a low-quality base call resulting in sequence truncation during quality filtering. Low-quality base 52 

calls were observed at “G” positions most of the time, and were also associated with a preceding 53 

“TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 54 

2508 to 1533 OTUs when comparing output from the default and optimized workflows. We 55 

attribute this reduction in observed diversity to the removal of erroneous sequences from the data 56 

set. Our results indicate that both strict quality filtering of raw sequencing data and careful 57 

filtering of raw OTU tables are important steps for accurately estimating microbial community 58 

diversity. 59 

 60 

 61 

 62 

 63 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2196v3 | CC BY 4.0 Open Access | rec: 26 Oct 2016, publ:



 

3 
 

Introduction: 64 

Over the past decade, amplicon sequencing of marker gene fragments has become the 65 

preferred method for profiling the diversity of microbial communities. Briefly, the technique 66 

uses the polymerase chain reaction (PCR) to amplify a pool of PCR products from an 67 

environmental sample to be resolved by high throughput DNA sequencing. Similar sequences 68 

are binned together into operational taxonomic units (OTUs) and compared against a database to 69 

obtain taxonomic classifications. Amplicon sequencing is flexible in that a community can be 70 

profiled for different genes which may represent markers specifically suited for identification of 71 

certain microbial constituents (e.g., 16S for bacteria and archaea, ITS for fungi). Similarly, 72 

profiling with functional genes can offer a better understanding of community traits (e.g., 73 

Bentzon-Tilia et al., 2015). While communities were originally profiled with high-throughput 74 

sequencing on 454 pyrosequencing instruments (Sogin et al., 2006), amplicon sequencing has 75 

been adapted to newer instrumentation including sequencers from Illumina (Caporaso et al., 76 

2012) and Pacific Biosciences (Fichot & Norman, 2013). Illumina sequencing is currently the 77 

most popular option due to several factors including cost, throughput, instrument availability, 78 

and the existence of multiple protocols for amplification and sequencing of marker gene pools on 79 

this platform (Caporaso et al., 2012; Bokulich & Mills, 2013; Kozich et al., 2013; Fadrosh et al., 80 

2014). 81 

Accurate determination of community diversity and taxonomic content are often primary 82 

aims of community amplicon sequencing projects. Systematic errors experienced during sample 83 

preparation, such as PCR and sequencing errors, can contribute to overestimation of diversity 84 

(Kunin, 2010). Additionally, signal cross-talk during index sequence cycles on Illumina 85 

sequencers can lead to false identification of an organism in a sample (Kircher, Sawyer & 86 

Meyer, 2012; Nelson et al., 2014). In the face of such potential complications, careful analysis is 87 

necessary to ensure that diversity estimates are not inflated and that data are properly filtered to 88 

avoid Type II errors. Several comprehensive tools exist for processing such data including 89 

mothur (Schloss et al., 2009), QIIME (Caporaso et al., 2010a), and UPARSE (Edgar, 2013). 90 

Many stand-alone tools are also available for performing specific bioinformatic tasks which may 91 

or may not be implemented in QIIME, mothur or UPARSE. It may be beneficial in some cases to 92 

perform separate bioinformatic steps with different software packages in order to obtain the most 93 
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accurate community representation for a given ecosystem. For instance, the use of various pre-94 

processing tools (e.g., error correction, chimera filtering) may improve the outcome for a given 95 

data set. In this instance, the average researcher would require greater familiarity with the 96 

production and processing of amplicon sequencing data in order to make the best decisions 97 

during data processing. 98 

 Automated quality filtering is among the first steps performed in any sequencing project 99 

and is a necessity for managing modern DNA sequencing data sets. To achieve the status of 100 

“finished,” genome sequencing projects require consensus base quality scores where the 101 

likelihood of an incorrect base call is less than 1 in 100,000 (q50), whereas assemblies using 102 

unfiltered data are considered “standard draft” and are expected to contain errors (Chain & 103 

Grafham, 2009). The default parameters in QIIME 1.9.1 require a minimum quality score of q4 104 

as recommended by Bokulich et al. (2013), and should be similarly treated as “draft” data. More 105 

reads are retained for downstream analysis, but a low quality score requirement also introduces 106 

an unknown degree of sequencing error as base quality scores may vary widely across a single 107 

sequencing run. Thus, data generated on runs with higher average error rates are more likely to 108 

overestimate alpha diversity if quality scores are not strictly controlled (at the expense of 109 

sequencing depth). Inconsistent qualities from sequencing runs can be effectively controlled via 110 

quality filtering, and default quality filtering in QIIME retains reads that may be variably 111 

trimmed to a range of 75-100% of the original sequence length. Because the quality of different 112 

sequences may decrease non-uniformly across a sequencing run, variable read lengths may also 113 

contribute to an inflated estimate of OTU richness if reads are not de-replicated or sorted by size 114 

prior to clustering. Various error correction algorithms are available for processing Illumina data 115 

(e.g., Kelley, Schatz & Salzberg, 2010; Medvedev et al., 2011; Nikolenko, Korobeynikov & 116 

Alekseyev, 2013), the use of which may result in an increased number of reads retained 117 

following quality filtering. Callahan et al. (2016) recently demonstrated a data processing 118 

workflow that utilized error correction with good success, where the number of expected taxa 119 

approximately equaled the number of observed OTUs, though we do not explore the use of error 120 

correction techniques here. Chimera filtering, commonly performed following quality filtering, is 121 

essential to remove PCR artifacts and further improves sequencing data quality. 122 
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 Quality-filtered amplicon sequencing data are clustered into OTU definitions, a 123 

computational process for which numerous programs are available. CD-HIT (Fu et al., 2012), 124 

UCLUST (Edgar, 2010), BLAST (Altschul, 1990), and Swarm (Mahé et al., 2014) are popular 125 

options that are all available in QIIME. Reference-based analysis techniques, such as BLAST, 126 

are known to incur biases according to the choice of reference database (Nelson et al., 2014), but 127 

can easily be parallelized for more efficient computation. UCLUST can utilize a reference 128 

database, perform database-independent de novo clustering, or, as with the open-reference 129 

strategy currently implemented in QIIME, a combination of both methods (Navas-Molina et al., 130 

2013). Pure de novo analysis is preferred by many as the approach least likely to impose a bias 131 

on the final outcome. One popular option for de novo OTU clustering is CD-HIT, but as this 132 

program cannot be parallelized it can be time-prohibitive when used with larger data sets. 133 

Swarm, another de novo OTU clustering program, allows for portions of the de novo clustering 134 

process to be parallelized, thus eliminating database-specific effects while also optimizing 135 

computational requirements. All OTU picking programs require the researcher to choose a 136 

similarity or distance threshold beyond which two sequences must be considered as separate 137 

OTUs. If present at this stage, PCR or sequencing errors may contribute to OTU inflation to an 138 

unknown degree. In addition to ensuring the data are properly filtered, one can also utilize a 139 

conservative clustering threshold in order to avoid overestimation of community diversity (i.e., 140 

≤97%; Kunin et al., 2010). 141 

 Taxonomic assignment, achieved through comparison of OTU definition sequences to a 142 

reference database, can also be performed in a variety of ways. Popular methods include 143 

BLAST, UCLUST, and RDP (Wang et al., 2007), and each are available in QIIME. In 2008, Liu 144 

et al. reported that RDP provided the most accurate taxonomic assignments. Presently, other 145 

techniques continue to be utilized by various amplicon sequencing analysis pipelines (e.g., 146 

Giongo et al., 2010; Gweon et al., 2015), revealing a lack of consensus among researchers. 147 

Considering that improved taxonomic accuracies may be observed when sequences obtained for 148 

study organisms are more similar to those populating the reference database, the relative success 149 

of each algorithm may be context-dependent. For environmental data sets, accuracies of 150 

taxonomic assignments are estimated by means of a confidence or quality value relevant to the 151 

utilized technique (e.g., e-value for BLAST). Careful assessment of taxonomic accuracies can 152 
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only be done when the sequence content of a given sample can be anticipated. This can be 153 

achieved with synthetic mock communities created in silico by extracting sequences from a 154 

database (e.g., Bellemain et al., 2010) or using genomic mock communities that combine DNA 155 

extracts from cultured organisms. Neither scenario is likely to provide an outcome that is directly 156 

comparable to the natural complexities of environmental communities, yet both can offer a 157 

measure of accuracy for taxonomic assignment methods. 158 

 Once quality filtered sequences have been clustered and taxonomically classified, they 159 

are compiled into an OTU table with count data for each observation. As OTUs defined from 160 

erroneous sequences may persist to this point in an analysis, the resulting OTU table must be 161 

filtered prior to conducting diversity analyses, and the filtering approach can have a profound 162 

effect on the final result (Bokulich et al., 2013). Although Bokulich et al. (2013) suggested the 163 

inclusion of mock communities on sequencing runs to assess the overall run quality and improve 164 

diversity assessments, they also provide a general recommendation to quality filter the final table 165 

by removing OTUs that represent less than 0.005% of the total read abundance. This has proven 166 

to be a useful guideline for numerous studies in which mock communities were not included. 167 

However, this practice ignores the independence of each sample and will treat samples 168 

differently according to sequencing depth such that low read count samples will be more 169 

severely filtered than samples with higher read counts. 170 

Considering samples independently, Kircher, Sawyer & Meyer (2012) observed an 171 

indexing inaccuracy rate of 0.3%, citing cluster mixing during sequencing as a mechanism by 172 

which single-indexed Illumina sequences are likely attributed incorrectly to a particular sample. 173 

For certain applications, their result argues that such data must be filtered at 0.3% by sample in 174 

order to avoid Type II errors. Another common practice is to remove singleton OTUs (by sample 175 

or by table) under the assumption that such OTUs represent errors generated during sequencing 176 

(see Dickie, 2010). However, errors introduced during early PCR cycles may be faithfully 177 

replicated many times so as to appear as valid OTUs, causing overestimation of OTU richness 178 

even after singleton filtering (Nguyen et al., 2015). As an alternative, Nguyen et al. (2015) 179 

suggest the removal of low-count or low-proportion OTUs by sample at a threshold informed by 180 

mock community data. Mock communities used in this way may also identify certain sequence 181 

motifs prone to error, which may help to identify whether novel OTUs observed in 182 
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environmental data should be considered suspect. Unfortunately, such controls are not available 183 

for many data sets and artificial communities may not perform similarly to environmental 184 

communities during sample preparation and analysis. Because samples are amplified 185 

independently, PCR errors are likely to be present in the form of private OTUs observed only in 186 

a single sample, so removal of unshared OTUs may be another effective precaution against 187 

overestimation of diversity due to sequencing error.  188 

 As these examples illustrate, accurate filtering of an OTU table is not straightforward. 189 

The sequence misattribution rate reported by Kircher, Sawyer & Meyer (2012) is vastly different 190 

than the filtering threshold of 0.005% recommended by Bokulich et al. (2013), though their 191 

recommendation was to filter across the entire OTU table. Since many amplicon sequencing 192 

studies report relatively few taxa present above 0.3% per sample, filtering by sample at this 193 

threshold (Kircher threshold) will exclude many valid taxa. The presence of misattributed 194 

sequences may also diminish the efficacy of private OTU removal to eliminate PCR errors, 195 

though dual-indexing of samples should reduce or eliminate sequence misattribution events 196 

(Kircher, Sawyer & Meyer, 2012). Singleton filtering, however applied, is unlikely to be 197 

thorough enough to remove errors that are either replicated during the PCR process or systematic 198 

errors from the sequencing process. For single- or dual-indexed Illumina data, filtering at 0.005% 199 

across the entire table (Bokulich threshold) may represent a viable compromise between 200 

confident assignment of sequences to samples and the stringency that one imposes on filtering 201 

the final table. 202 

In this study, we used simple genomic mock communities and an environmental data set 203 

to describe the effects of parameter adjustments for methods implemented in QIIME 1.9.1 204 

(Caporaso et al., 2010a) on sequence quality filtering, OTU picking, taxonomic assignment, and 205 

OTU table filtering. We focused on QIIME because of its popularity and flexibility for 206 

processing amplicon sequencing data sets. We hypothesized that observed OTU diversity will be 207 

inflated due to the presence of PCR and/or sequencing artifacts, and that such effects will be 208 

observable in simple genomic mock communities under the expectation that one OTU should be 209 

observed per constituent taxon. Using five mock communities consisting of 4-8 taxa each, we 210 

developed a modified protocol for the analysis of 16S community amplicon sequencing data, and 211 

demonstrate the method on an environmental data set. By carefully controlling each of the steps 212 
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that we investigated, we were able to describe mock community compositions more correctly 213 

than with a default workflow. 214 

 215 

Materials and Methods: 216 

 217 

Mock communities 218 

 DNA was extracted from axenic cultures of Pseudomonas aeruginosa (Proteobacteria), 219 

Proteus vulgaris (Proteobacteria), Klebsiella pneumoniae (Proteobacteria), Escherichia coli 220 

(Proteobacteria), Bacillus megaterium (Firmicutes), Lactococcus lactis (Firmicutes), 221 

Staphylococcus aureus (Firmicutes), and Micrococcus luteus (Actinobacteria) using a PowerSoil 222 

DNA Extraction Kit (MoBio Laboratories, Carlsbad, CA). DNA was quantified by PicoGreen 223 

(Life Technologies, Carlsbad, CA) fluorescence, and normalized to approximately 0.75 ng/µL. 224 

Five mock communities containing different ratios of bacterial taxa were constructed from the 225 

extracted DNA. Community 0 contained equal volumes of DNA from each taxon; Community 226 

1a contained 8% M. luteus, 42% B. megaterium, 42% L. lactis, and 8% S. aureus; Community 1b 227 

contained 42% M. luteus, 8% B. megaterium, 8% L. lactis, and 42% S. aureus; Community 2a 228 

contained 8% E. coli, 8% K. pneumoniae, 42% P. vulgaris, and 42% P. aeruginosa; Community 229 

2b contained 42% E. coli, 42% K. pneumoniae, 8% P. vulgaris, and 8% P. aeruginosa. Final 230 

concentrations for each mock community were determined to be ~ 0.75 ng/µL (Table S1). 231 

Expected compositions of mock communities were corrected for genome size and copy number 232 

against the CBS Genome Atlas Database (Hallin & Ussery, 2004). 233 

 234 

Environmental samples 235 

 Environmental samples with an expected environmental contrast were collected from the 236 

Northern Arizona University Pinyon Pine Common Garden near Sunset Crater National 237 

Monument, AZ. During garden installation in October 2009, soil samples were collected from 238 

holes dug to plant seedlings (“pre-tree” treatment). Soil core samples were taken from the same 239 

seedlings in December 2010 (“post-tree” treatment). The top 2 centimeters (cm) of soil were 240 

brushed aside prior to taking cores. A 2.5 cm diameter metal corer was placed 2 cm from the 241 

seedling base and driven to a depth of 10 cm. Samples were kept on ice in the field and stored at 242 

-20 oC until DNA extraction. DNA was extracted from homogenized soil cores using a 243 
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PowerSoil DNA Extraction Kit. Only samples which produced a clean ribosomal PCR product 244 

were included in this study, resulting in unequal sample sizes between pre-tree (n = 13) and post-245 

tree (n = 28) groups. A random number generator was used to select a subset of post-tree samples 246 

(n = 13) for comparisons of data with equal sample sizes. Samples were normalized to c. 1 ng/µL 247 

prior to PCR amplification for library construction. 248 

The environmental samples presented here are meant only to allow a demonstration of 249 

the effects of a mock community-based workflow optimization on real environmental data. 250 

Though we expect the presence of a seedling to create additional niche space which would 251 

increase observed diversity, no background soil control samples were collected in order to 252 

properly test this hypothesis. Nonetheless, the two sets of soil samples can be expected to vary 253 

because of the presence or absence of a seedling and also due to differences in the time of 254 

sampling, both year and season. 255 

 256 

Library construction and sequencing 257 

 Amplicons were produced in a two-step protocol as suggested by Berry et al. (2011). 258 

Briefly, samples were amplified in triplicate PCR reactions for the 16S V4 region using the 259 

universal bacterial/archaeal primers 515F and 806R (Bates et al., 2011). First round reactions 260 

were performed in triplicate in 384 well plates. The 8 µL volumes contained the following: 1 µM 261 

each primer (Eurofins MWG Operon, LLC), 200 µM each dNTP (Phenix Research, Candler, 262 

NC), 0.01 U/µL Phusion Hot Start II DNA Polymerase (Life Technologies), 1X HF Phusion 263 

Buffer (Life Technologies), 3 mM MgCl2, 6% glycerol, and 1 µL normalized template DNA. 264 

Cycling conditions were: 2 minutes at 95°C followed by 20 cycles of 30 seconds at 95°C, 30 265 

seconds at 55°C, 4 minutes at 60°C. Triplicate reactions for each sample were pooled by 266 

combining 4 µL from each, and 2 µL was used to check for results on a 1% agarose gel. The 267 

remainder was diluted 10-fold and used as template in a second PCR reaction in which 12 base 268 

Golay indexed sequencing tails (Caporaso et al., 2012) were added. Second round reaction 269 

conditions were identical to the first round except only one reaction was conducted per sample 270 

and only 15 total cycles were performed. Indexed PCR products were purified using a 1:1 ratio 271 

of 18% polyethylene glycol and carboxylated magnetic beads as described in Rohland & Reich 272 

(2012), quantified by PicoGreen fluorescence, and an equal mass of each sample was combined 273 

into a final sample pool. The pool was purified and concentrated, and subsequently quantified by 274 
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quantitative PCR against Illumina DNA Standards (Kapa Biosystems, Wilmington, MA). 275 

Sequencing was carried out on a MiSeq Desktop Sequencer (Illumina Inc, San Diego, CA) 276 

running in paired end 2x150 mode. 277 

 278 

Sanger sequencing of mock community members 279 

 The 16S gene for each mock community member was sequenced by the Sanger method 280 

to a minimum depth of 2 in order to provide an accurate sequence for assessing taxonomic 281 

assignment methods. Briefly, PCR products were produced using primers 27F (Lane, 1991) and 282 

806R or 515F and 1492R (Turner et al., 1999). Products were bead-purified with 18% PEG and 283 

used as template in sequencing reactions containing 0.25 µL BigDye Terminator v3.1 (Life 284 

Technologies), 1X BigDye Terminator Sequencing Buffer (Life Technologies), 3 µM primer and 285 

1.5 mM additional MgCl2. Cycling conditions were: 2 minutes at 95°C followed by 60 cycles of 286 

5 seconds at 95°C, 5 seconds at 50°C, 2 minutes at 60°C. Sequencing products were bead-287 

purified with a 3:1 ratio of 25% PEG, resuspended in water, and sequenced on either a 3730xl or 288 

a 3130 Genetic Analyzer (Life Technologies). Chromatograms were processed in Staden 289 

Package v1.7 (Staden, Beal & Bonfield, 2000) and the resulting sequences used to augment the 290 

Greengenes database so that an exact match for each expected OTU would be present during 291 

taxonomy assignment. Taxonomic identity for each sequence was confirmed by comparing 292 

against the non-redundant database at NCBI using the online BLAST tool (Altschul et al., 1990). 293 

Sequences were deposited to GenBank with accession numbers KY007579-KY007586. 294 

 295 

Data processing and statistical analysis 296 

 All bioinformatics were carried out on a Mac Pro (Apple, Inc.) running Ubuntu Linux 297 

14.04 LTS (Canonical Ltd.) or the Monsoon high-performance computing cluster at Northern 298 

Arizona University (https://nau.edu/hpc/) running CentOS 6.6 (The CentOS Project). Figures 299 

were generated in Veusz v1.24 (http://home.gna.org/veusz/) or Geneious v8.1 (Biomatters Ltd.). 300 

As contaminating PhiX Control sequence can complicate sequencing projects (Mukherjee et al., 301 

2015), we calculated the amount of PhiX Control among our demultiplexed data and removed it 302 

prior to sample processing. This task was performed with the akutils phix_filtering 303 

command in akutils v1.2 (Krohn, 2016; https://github.com/alk224/akutils-v1.2) which maps raw 304 
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data against the Enterobacteria phage phiX174 sensu lato complete genome sequence 305 

(NC_001422.1) using Smalt 0.7.6 (http://www.sanger.ac.uk/resources/software/smalt/). 306 

 Overlapping paired end reads were aligned using the akutils join_paired_reads 307 

command in akutils which employs the fastq-join command from ea-utils (Aronesty, 2011). 308 

Demultiplexing and quality filtering of raw, joined data (mean length = 253 bp) was carried out 309 

in QIIME with the split_libraries_fastq.py script using default parameters, or with 310 

more strict requirements of a minimum quality threshold of q20 (q = 19), allowing 0-3 low-311 

quality base calls (r = 1-3), and requiring at least 95% of each read to be high quality (p = 0.95). 312 

Chimeras were removed by the UCHIME method (Edgar et al., 2011) as implemented in vsearch 313 

1.1.1 (Rognes et al., 2016) using either the –uchime_denovo or –uchime_ref option against 314 

the Gold reference database (http://drive5.com/uchime/gold.fa). OTU picking and taxonomy 315 

assignments were performed using the akutils pick_otus command in akutils which calls 316 

standard functions in QIIME. After manual inspection of sequence divergence among congeneric 317 

mock community members, sequences were dereplicated on the first 100 bases using the 318 

prefix_suffix OTU picker in QIIME. OTU picking was performed with multiple similarity or 319 

distance thresholds using common OTU picking algorithms (CD-HIT, UCLUST and BLAST at 320 

97%, 95%, 92%, 90%, 85%, and Swarm at d1, d2, d3, d4, d5). BLAST was used only for closed 321 

reference analysis, UCLUST for open reference analysis, and CD-HIT and Swarm for de novo 322 

analyses. Taxonomy was assigned using BLAST, RDP, and UCLUST options with default 323 

settings available in QIIME 1.9.1 (UCLUST option in QIIME actually uses the USEARCH 324 

algorithm for database matching steps). Reference-based OTU picking steps and taxonomic 325 

assignments were conducted against the Greengenes 97% database (McDonald et al., 2012) 326 

which had been formatted to include only the V4 region using the akutils 327 

format_database command in akutils. Sequence alignments and phylogenetic trees were 328 

produced using the akutils align_and_tree command in akutils which aligns sequences 329 

using PyNAST (Caporaso et al., 2010b) and generates phylogenies with FastTree (Price, Dehal 330 

& Arkin, 2009). Diversity analyses were conducted using the akutils core_diversity 331 

command in akutils. 332 

 In order to facilitate assessment of optimal workflow steps, we first sought to establish a 333 

method of filtering the final OTU tables by eliminating OTUs resulting from mixed clusters. To 334 
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this end, we processed the mock and environmental data sets through a default QIIME workflow 335 

(see below) to assess taxonomic components, and compared methods for filtering OTU tables to 336 

remove contaminating taxa from the mock data. An ideal filtering method should remove 337 

erroneous OTUs that arise either from sequencing error or cluster mixing. Table filtering was 338 

carried out using either the Kircher threshold (0.3% by sample; Kircher, Sawyer & Meyer, 339 

2012), the Bokulich threshold (0.005% by table; Bokulich et al., 2013), singletons removed by 340 

table (mc2), or singletons removed by sample (n2). Private OTUs were assumed to be errors and 341 

were also removed in the n2 tables. Filtered OTU tables were grouped according to filtering 342 

method, and differences in the amount of OTUs classified as contaminating taxa was assessed by 343 

one-way ANOVA. Tukey’s HSD test was used to determine which groups were statistically 344 

distinct. 345 

 An optimal workflow was chosen by assessing diversity estimates and taxonomic 346 

identities assigned to mock community data. The optimal OTU picking algorithm was 347 

determined as the method that yielded the correct diversity result over the broadest range of 348 

similarity or distance thresholds. Taxonomic accuracy was determined by seeding the 349 

Greengenes database with the expected sequences from the mock community constituent taxa 350 

prior to analysis, and inspecting the results. OTU tables from the optimal workflow across the 351 

accurate range of similarity thresholds were filtered at each of the four thresholds described 352 

above. Our “default QIIME workflow” was identical to the optimal workflow with the following 353 

changes: the split_libraries_fastq.py command was performed with default settings; 354 

OTU picking was performed with the pick_open_reference_otus.py command; 355 

taxonomic assignment was performed with UCLUST; OTU tables were filtered with the 356 

Bokulich threshold. Results from the optimal workflow were compared to the result obtained 357 

from our default workflow. Environmental data was then processed using the best workflow 358 

determined from this process and compared to the default result. 359 

 Diversity analyses for mock community data were calculated on OTU tables that had 360 

been rarefied to 10,000 reads, or 5,000 reads for environmental data. Comparison of observed 361 

mock community composition to the a priori expectation (Table S1) was conducted with 362 

Spearman’s rank correlation using species-level assignments. Comparison of observed OTU 363 

diversity between environmental sample groupings was performed with nonparametric t-tests. A 364 
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random subset of post-tree samples from the environmental data (n = 13) was selected to 365 

determine if unequal sample sizes were contributing to observed OTU diversity. Distance 366 

matrices were calculated from environmental data for weighted UniFrac distance (Lozupone & 367 

Knight, 2005). Tests of differences of total beta diversity were carried out on distance matrices 368 

using PERMANOVA (Anderson, 2001), and differences in multivariate dispersion were detected 369 

with PERMDISP (Anderson, Ellingsen & McArdle, 2006). 370 

 Representative sequences for the optimized mock community result were extracted from 371 

the output data. When multiple OTU definition sequences represented the same taxonomic 372 

identity, they were aligned with Mafft v7.123b (Katoh & Standley, 2013) using the L-INS-i 373 

setting. The lower abundance OTU for each multi-OTU taxon was assumed to be erroneous and 374 

base differences compared to the major OTU were characterized. Trinucleotide motifs preceding 375 

each base difference and terminal truncation position were tabulated. Because 2x150 sequencing 376 

data does not fully overlap for 515F-806R amplicons (mean length = 253 bp), terminal base and 377 

preceding trimers were considered in the context of the second read. Environmental data 378 

processed through the optimal workflow was also investigated for terminal truncation positions 379 

and preceding trinucleotide motifs. Because we have no reliable reference sequence for many 380 

environmental OTUs, we investigated only OTUs that shared a taxonomic designation with at 381 

least one other OTU, and had been truncated by more than 3 bases during quality filtering. For 382 

mock and environmental data, motif and terminal base representations were tested against the 383 

assumption of random occurrence with Chi-square tests. 384 

 We attempted to determine actual sequencing error rates for data used in either the 385 

default QIIME workflow or our optimized workflow. Mock community reads were 386 

demultiplexed in QIIME with split_libraries_fastq.py under default or strict quality 387 

filtering, utilizing the --store_demultiplexed_fastq option. Demultiplexed fastq files 388 

were imported into Geneious and aligned against the Sanger sequencing data for each mock 389 

community member, requiring a 95% similarity in order to exclude contaminant sequences from 390 

the alignments. The resulting alignments were exported in SAM format and SAM “NM” flags 391 

were calculated in SAMtools v1.19 (Li et al., 2009). The sam-stats command in ea-utils was 392 

used to calculate mismatch rates (“snp rate” field). 393 

 394 
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Results: 395 

 The sequencing run clustered at 1119 k/mm2 (+/- 70) and resulted in 17.96 million total 396 

reads passing filter, an overall error rate of 0.36%, and 91% of reads exceeded q30. PhiX 397 

Sequencing Control v3 sequences (Illumina, Inc.) constituted 8.31% of the total run (percent 398 

aligned). Once demultiplexed, mock community data contained 4.35% PhiX (103,070/2,371,510 399 

reads) while the environmental data contained 4.10% PhiX (259,366/6,332,586 reads). Mock 400 

community data demultiplexed under default parameters were determined to have an average 401 

error rate of 0.3661% while stringent quality filtering yielded an improved error rate of 0.0990%. 402 

Actual error rates varied for each taxon (Table S2). Denovo chimera detection found zero 403 

chimeric reads, while reference-based detection consistently identified chimeras at a rate of 404 

about 1% for each data set. As the more conservative option, we chose to utilize reference-based 405 

chimera detection for the remainder of this study. Sample metadata is available in Table S11. 406 

Raw sequencing data for samples used in this study are publicly available in the NCBI Sequence 407 

Read Archive (study accession SRP091609; BioProject PRJNA348617). 408 

Under default QIIME assessment, the mock community data showed substantial OTU 409 

inflation; where there should have been just 8 OTUs, there were 127 (Table S3). When the 410 

environmental data set was processed through the same workflow, 73 OTUs were classified at 411 

the family level as Sphingomonadaceae. Together, these OTUs made up 5.3% of environmental 412 

sequences, and Sphingomonadaceae was the most abundant classification observed at the family 413 

level (Table S4). Three OTUs representing about 0.13% of the mock community data set were 414 

also classified as Sphingomonadaceae, a designation which should be absent from the mock data. 415 

This result led us to surmise that sequences from the environmental data set were contaminating 416 

the mock communities during sequencing. Such sample cross-talk presumably arises from the 417 

cluster mixing effect described by Kircher, Sawyer & Meyer (2012) where the index read from a 418 

flowcell cluster is spuriously attributed to a neighboring cluster. The mock data also contained 3 419 

OTUs classified as Planococcaceae (<0.03%) and 1 OTU classified as Methylobacteriaceae 420 

(<0.01%), again corresponding with OTUs observed within the environmental data. 421 

Sphingomonadaceae sequences were observed across all five mock communities, whereas 422 

Planococcaceae was only associated with communities 0, 1a, and 1b, suggesting that cluster-423 

mixing events may occur non-randomly. Methylobacteriaceae was present as just a single read 424 
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among community 1b. Three mock community OTUs were observed at low levels in 425 

communities from which they should be absent, indicating additional cluster-mixing within the 426 

mock community data. 427 

As the most prevalent non-target taxon observed among the mock community data, we 428 

sought to establish a method for filtering OTU tables that would eliminate the presence of 429 

Sphingomonadaceae reads. OTU tables generated for the mock communities by each of the OTU 430 

picking, taxonomy assignment and table filtering methods were compared for the presence of 431 

Sphingomonadaceae contaminants. Considering filtering method (mc2, n2, Kircher threshold, or 432 

Bokulich threshold) as the predictive variable, we found strong differences among them in 433 

removing non-target OTUs (F3,239 = 89.301, p < 0.0001). The least severe filtering method (mc2) 434 

retained the most Sphingomonadaceae OTUs (2.50 +/- 1.21) followed by n2 (2.45 +/- 1.21), and 435 

Bokulich threshold (1.85 +/- 0.86). Only the Kircher threshold completely removed 436 

Sphingomonadaceae contamination from the mock community OTU tables effectively (Tukey’s 437 

HSD, p < 0.05). 438 

 Default quality filtering and OTU picking in QIIME resulted in overestimation of mock 439 

community diversity regardless of how the final OTU table was filtered (Figure 1a-d; Figure S1: 440 

Default mock community rarefactions). Diversity estimates were inflated up to 35 times when 441 

singletons were removed by table, compared to nearly 3.5 times when filtering with the Kircher 442 

threshold. Despite the reduction of OTU inflation by an order of magnitude, these results indicate 443 

that revisions to initial processing steps may yield improved results. We therefore sought to 444 

establish an optimized workflow that would produce the correct number of OTUs for an input of 445 

known constituents. Using data that had been filtered according to strict standards during the 446 

split_libraries_fastq.py step in QIIME (q = 19, r = 0, p = 0.95), a correct result was 447 

achieved for each of the OTU picking algorithms tested. However, each algorithm differed in 448 

which similarity threshold was required for the optimal result (Table 1). Closed reference OTU 449 

picking with BLAST overestimated diversity above a similarity threshold of 92%. Open 450 

reference OTU picking with UCLUST overestimated diversity at every threshold except 95% 451 

similarity. De novo OTU picking using CD-HIT at thresholds below 92% and Swarm resolutions 452 

below d4 underestimated diversity. Swarm yielded the correct result over the broadest range of 453 

tested distance thresholds (d1-d4), and offers other attractive features that made it stand out 454 
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among the tested OTU pickers (e.g., de novo picking, multi-threaded analysis). Thus, Swarm was 455 

chosen as the optimal OTU picking method for the remainder of the study. We chose d4 distance 456 

as the optimal threshold as it was the most conservative setting to yield a correct result. 457 

 Taxonomic accuracy for Swarm-picked OTUs (d4) was assessed for the different 458 

taxonomy assigners using default parameters in QIIME 1.9.1. To control for reference database 459 

bias, we added representative sequences from each of the correct OTUs to our Greengenes 460 

reference with a unique identifier. We observed that BLAST returned the representative 461 

sequence 100% of the time, while RDP and UCLUST never found the exact match (Table 2). 462 

Even though RDP and UCLUST did not find optimal sequences, assignments were correct, 463 

though less specific in taxonomic depth. BLAST yielded similar results when the representative 464 

sequences were not present in the database (Table 2). While BLAST offers the advantage of 465 

obtaining the best sequence match when available in the database, RDP and UCLUST both offer 466 

an advantage in substantially reducing computational time while providing reasonable accuracy 467 

for most applications. For the analysis presented here, we chose BLAST as the optimal 468 

taxonomy assigner for its superior accuracy. 469 

 A perfect result for analysis of our mock communities requires stringent quality filtering 470 

of the raw data. Default quality filtering in QIIME 1.9.1 was established according to Bokulich et 471 

al. (2013). This imposes a minimum Phred quality score of 4 (q = 3), truncates sequences after 472 

three bases are observed below this threshold (r = 3), and retains truncated reads that represent a 473 

minimum of 75% of the original sequence length (p = 0.75). In contrast, we performed strict 474 

quality filtering using q = 19, r = 0, and p = 0.95. This more stringent filtering protocol ensures 475 

that data used for analysis are of much higher quality with approximately uniform read lengths. 476 

An important consequence of such stringency is that much of the raw data is discarded. Of the 477 

2,373,247 raw mock community sequences, default quality filtering retained 2,020,542 reads 478 

(85.1%), whereas stringent parameters retained just 657,544 reads (27.7%). Holding constant q = 479 

19 and p = 0.95, we found that increasing r during quality filtering had a profound effect on the 480 

amount of data retained (Figure 2a). Allowing r = 1 resulted in an increase of data retention from 481 

approximately 27% (r = 0) to over 56%. When r = 2 and r = 3, increases in data retention 482 

showed diminishing returns, with 70% and 75% of the data retained, respectively. However, we 483 

also found that allowing r > 0 will generally cause an inaccurate estimate of the number of 484 
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OTUs, depending on the criteria used for OTU picking (Figure 2b). With the d1 resolution, 485 

increasing r will create a proportional inflation in the number of OTUs determined by Swarm. At 486 

d2 resolution, allowing r = 1 still correctly described our simple mock community whereas 487 

allowing r = 2 or r = 3 caused diversity to be overestimated. At resolutions d3 and d4, allowing r 488 

> 0 caused underestimates of diversity. This suggests that the best result is obtained with the 489 

most stringent quality filter, which we selected for our optimal workflow (q = 19). Similar results 490 

using more data may be possible by allowing a small amount of errors (e.g., r = 1) and picking 491 

OTUs with a more conservative similarity or distance threshold (e.g., Swarm at d2 resolution). 492 

 The Kircher threshold was effective at removing contaminating OTUs in our mock 493 

community data thus yielding a near-perfect result (Figure 3). However, we anticipated that such 494 

filtering could be too stringent for environmental analysis given the low per-sample OTU 495 

frequencies commonly reported (e.g., Sogin et al., 2006). We compared the expected mock 496 

community results to those observed with either default settings, or optimized settings for quality 497 

filtering, OTU picking and taxonomy assignment, using each of the final OTU table filtering 498 

methods we tested. For all comparisons, Spearman’s rank correlation yielded significant p-values 499 

(<0.001), so we present only correlation values and 95% confidence intervals (CI) here. When 500 

comparing the default analysis to the expected outcome, Spearman’s r showed a negative 501 

correlation (r = −0.3494; CI = [−0.4280, −0.2655]). Optimized results exhibited strong positive 502 

correlations regardless of filtering threshold used. Lower values for Spearman’s r occured when 503 

diversity was overestimated and when contaminants were present. Correlation with the expected 504 

outcome improved as filtering stringency increased with every filtering method producing a 505 

dramatic improvement over the default workflow (mc2: r = 0.8075, CI = [0.7663, 0.8420]; n2: r 506 

= 0.8702, CI = [0.8344, 0.8987]; Bokulich threshold: r = 0.9135, CI = [0.8841, 0.9357]; Kircher 507 

threshold: r = 0.9646, CI = [0.9495, 0.9752]). The Bokulich threshold was chosen as our optimal 508 

OTU table filtering method because it yielded the best correlation without being overly strict. 509 

Output for the environmental data using either the default or optimized workflow was 510 

examined for basic diversity statistics. Default analysis identified 2508 OTUs classified into 388 511 

taxonomic assignments (OTUs per taxon: mean = 6.46, median = 2; Figure S3: Default 512 

environmental rarefactions). The optimized analysis identified 1533 OTUs classified into 328 513 

taxonomic assignments (OTUs per taxon: mean = 4.67, median = 2; Figure S4: Optimized 514 
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environmental rarefactions). By treatment, OTU diversity was reduced about twofold when 515 

assessed via the optimized workflow and compared to the default results (Figure 4a-4b). In the 516 

default analysis, pre-tree soils hosted 978.30 +/- 128.42 OTUs while post-tree soils had 1138.35 517 

+/- 86.34 OTUs (nonparametric T-test = 4.578, p < 0.001). In the optimized analysis, pre-tree 518 

soils contained 543.28 +/- 79.32 compared to 674.95 +/- 50.21 OTUs in post-tree soils 519 

(nonparametric T-test = 6.277, p < 0.001). Differences in beta diversity were observed between 520 

treatments for each workflow using weighted UniFrac distance matrices (Figure 4c-4d; default 521 

PERMANOVA = 8.181, p < 0.001; optimized PERMANOVA = 9.355, p < 0.001). We also 522 

noticed an increase in multivariate dispersion in the optimized workflow, though the differences 523 

were not found to be significant in either case (default PERMDISP = 1.086, p = 0.294; optimized 524 

PERMDISP = 2.160, p = 0.158). When data was processed with equivalent sample sizes, the 525 

same patterns were observed for both alpha diversity (pre-tree = 545.76 +/- 78.84, post-tree = 526 

679.00 +/- 47.86; nonparametric T-test = 5.004, p < 0.001) and beta diversity (PERMANOVA = 527 

6.585, p < 0.001), though statistical power was slightly reduced, and multivariate dispersion 528 

increased (PERMDISP = 3.248, p = 0.071), consistent with a reduction in sample size. 529 

Of the 17 OTUs observed in the optimized mock result, the nine extra OTUs therein were 530 

composed of three contaminants and six spurious OTUs representing sequence variants of the 531 

target taxa. All extra OTUs were present at low levels ranging from 0.003% to 0.17% per sample 532 

(Table S5). That sequence counts of contaminant OTUs were observed in all samples, but only 533 

for select taxa, strongly suggests that cluster mixing events occur non-randomly during Illumina 534 

sequencing. Species-level mock community observations from the optimized workflow describe 535 

the eight constituent taxa at approximately the correct proportions. However, six of the eight taxa 536 

were represented by two OTUs each. The main OTU for each taxon was present as 6.30% to 537 

19.09% of the total community while the rates of lower frequency OTUs ranged from 0.01% to 538 

0.05%. Manual inspection of conspecific OTU sequence alignments revealed multiple 539 

substitution and indel positions within the first 100 bases which prevented these sequences from 540 

dereplicating into the correct sequence during our workflow (Table S6). Additionally, these 541 

sequence variants were shorter than the main constituent sequence by at least seven bases, 542 

indicating that they derive from inherently lower quality reads. Inspection of trinucleotide motifs 543 

preceding each substitution or indel position did not reveal any pattern relating to the observed 544 
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errors (Table S7). Consistent with the results of Schirmer et al. (2015), we observed a higher rate 545 

of errors among A or C bases than G or T (error ratio = 1.67). Since A and C or G and T bases 546 

share fluorescence excitation wavelengths during Illumina 4-channel sequencing-by-synthesis 547 

(SBS), this result suggests that some of the errors we observed were indeed the result of 548 

systematic errors during sequencing, although this study was not designed to distinguish between 549 

such errors and those generated during PCR. Examining the terminal trinucleotide motif 550 

immediately preceding truncation positions (Table S8) we observed “TTT” 83% of the time (Χ2
63 551 

= 271.333, p < 0.0001). Additionally, the correct base at the truncation position was “G” 83% of 552 

the time (Χ2
3 = 11.33, p = 0.0101). An example alignment for the two OTUs representing B. 553 

megaterium is presented in Figure 5a, illustrating the “TTT” motif preceding a “G” truncation 554 

position (reverse complimented). 555 

Truncation positions and preceding trimers were also characterized for environmental 556 

data, resulting in 34 “suspect” OTUs (Table S9). Of these, 27 OTUs had been truncated at a “G” 557 

position (79.41%; Χ2
3 = 54.235, p < 0.0001), and just 10 possible trimers were represented 558 

preceding the truncation position. The motifs “TTT” and “TTC” were substantially 559 

overrepresented, being observed 14 (41.18%) and 7 (20.59%) times, respectively (Χ2
63 = 560 

474.235, p < 0.0001). An example alignment for 5 OTUs classified to the family level as 561 

Sphingomonadaceae is presented in Figure 5b, and includes one such suspect OTU with a “TTT” 562 

motif preceding a “G” truncation position (reverse complemented). 563 

 564 

Discussion: 565 

 Our results show that amplicon sequencing data from Illumina MiSeq instruments 566 

requires stringent quality filtering in order to provide the most accurate estimates of diversity. 567 

Kunin et al. (2010) found that diversity was grossly overestimated for their mock community 568 

data until a quality threshold of q27 was implemented. Similarly, Nelson et al. (2014) observed 569 

high overestimation of mock community diversity (25-125 times expected) unless the data was 570 

carefully controlled. Our optimal workflow still overestimated the OTU diversity of our simple 571 

mock communities by a factor of about two. While this is still an overestimation, it is an 572 

improvement over results obtained by default processing. Our optimized protocol yielded a 573 

reasonable characterization of taxonomic content for mock communities (Table S5) and 574 
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environmental data (Table S10) alike, though it is important to recognize that mock community 575 

results may not always generalize well to environmental samples. 576 

 Some authors have suggested that excessive OTU diversity may be at least partially 577 

explained by the presence of unfiltered chimeric reads (Edgar, 2013), ribosomal paralogs (Pei et 578 

al., 2010), or laboratory contaminants (Nelson et al., 2014). It seems worth noting that the level 579 

of chimeric reads in our data was very low compared to rates observed by others (e.g., Schloss, 580 

Gevers & Westcott, 2011; Edgar, 2013). We speculate this is due the use of a high-fidelity 581 

polymerase and low cycling conditions during library construction, consistent with the results of 582 

Gohl et al. (2016). As chimeras are thought to form primarily when incomplete products from 583 

the previous cycle act as primers during the extension step (Haas et al., 2011), we made use of an 584 

extra-long, low temperature extension of 4 minutes at 60 oC in an attempt to minimize this effect. 585 

We tested the cycling conditions by amplifying serial dilutions of 16S products by qPCR (data 586 

not shown) and found it yielded an efficiency of about 1, lending further support to the 587 

possibility that our data is virtually chimera-free. Intragenomic ribosomal diversity is also an 588 

unlikely explanation for OTU inflation in our mock community results. While structural changes 589 

are often associated with diversity of the ribosomal operon (Lim, Furuta & Kobayashi, 2012), 590 

these should have little impact on the sequence diversity of the 16S V4 region. In fact, Sun et al. 591 

(2013) found that the V4-V5 region suffers from lower rates of intragenomic diversity compared 592 

to other variable regions of the 16S rRNA gene. Using a quality cut-off of q20 across a 253 nt 593 

sequence, paralogous sequences may remain, though we did not observe any such sequences at a 594 

rate high enough to be considered as potential paralogs. Further, the observed proportion of each 595 

constituent was quite close to expected proportions after accounting for genome size and 16S 596 

rRNA gene copy numbers (Figure 3). All contaminants that we observed in the mock community 597 

data could be directly attributed to taxa present in the environmental data set. 598 

Schirmer et al. (2015) observed that error rates reported by Illumina MiSeq sequencers, 599 

according to the PhiX Control v3, do not accurately reflect those of amplicon sequences. Their 600 

conclusion that actual error rates were higher than those indicated by q-scores reported by the 601 

MiSeq has important implications for the use of Illumina sequencing in estimating microbial 602 

diversity. It is possible that newer imaging strategies (e.g., 2-channel SBS chemistry used by 603 

Illumina NextSeq and MiniSeq instruments) will provide improved parity between the estimated 604 
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and actual error rates, but this will require careful testing. Interestingly, when we attempted to 605 

determine actual error rates through alignment of mock community sequences (demultiplexed 606 

under default settings) to their expected result, we observed a very close correlation compared to 607 

the error reported by PhiX Control (0.36% vs. 0.37%). This result was not consistent across 608 

different mock community constituent taxa, suggesting that error rates can be taxon-specific 609 

(Table S2). We further note that data filtered under our strict filtering conditions, which 610 

stipulated a minimum per-base quality of q20, yielded an average mismatch rate of just 0.099% 611 

(q30), indicating that most of our data is of exceptional quality following quality filtering. 612 

Of the non-target OTUs present in our optimized mock community result, one third were 613 

contaminants arising from cluster mixing events during sequencing and two thirds were sequence 614 

variants of the constituent OTUs which may have arisen during PCR, sequencing, or a 615 

combination of the two. Cluster mixing can be controlled by dual-indexing of samples (Kircher, 616 

Sawyer & Meyer, 2012), but errors arising during PCR or sequencing represent systematic errors 617 

inherent to the procedure of amplicon sequencing which are difficult, if not impossible, to 618 

completely eliminate irrespective of indexing strategy. Even though dual-indexing offers a clear 619 

advantage over single indexing with regard to sample attribution, single-indexed protocols (e.g., 620 

Caporaso et al., 2012) remain popular and widely used. Single-indexed data still yields valuable 621 

information and should not be discounted, as long as researchers are aware of the limitations. 622 

Dual-indexed designs should be encouraged for new research projects (e.g., Kozich et al., 2013; 623 

Fadrosh et al., 2014). 624 

We echo the recommendation by others (e.g., Bokulich et al., 2013; Schirmer et al., 625 

2015) to include control mock community samples to guide data analysis. PhiX Control v3 is 626 

still needed to improve sequence diversity for the purpose of cluster map generation 627 

(https://goo.gl/NpauDN), but an alternative reference sequence could be used with onboard mock 628 

communities to more directly estimate error profiles for community amplicon sequencing data. 629 

PhiX sequence itself likely contributes little, if at all, to inflation of diversity estimates, and is 630 

easily quantified and removed. Though such an effect is direct evidence of cluster mixing, the 631 

rate of PhiX infiltration is likely much higher than the rate of sample mixing because PhiX 632 

Control is unindexed, producing no fluorescent signal during indexing cycles. Spurious OTUs 633 
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defined from contaminating PhiX sequence may be more prevalent amid sequence data which 634 

was accompanied by higher concentrations of PhiX Control v3 during sequencing. 635 

Although this study was not designed for careful investigation of errors generated during 636 

amplicon sequencing projects, we were able to observe that certain bases and motifs were more 637 

frequently associated with low-quality base calls than should be expected by chance. The 638 

presence of a “TTT” or “TTC” motif immediately preceding a “G” position near the end of a 639 

sequence (near the start of the second read) was most frequently associated with an erroneous or 640 

suspect OTU (Table S8). Indeed, mock community diversity was inflated on account of this 641 

effect, but determining the source of such error requires more careful investigation than is 642 

possible here, given that this study derives from a single MiSeq run with limited taxonomic 643 

diversity. In addition to the terminal truncation observations, we note that all other observed 644 

errors in the mock community sequences occurred within the first 100 bp of sequence, specific to 645 

the non-overlapping region of the first sequencing read (Figure 5a). It is likely that the errors we 646 

observed here would have occurred less frequently had we used fully-overlapping reads for this 647 

study. Importantly, the motif-specific patterns we observed were consistent between the mock 648 

and environmental data sets (Figure 5; Table S8; Table S9). 649 

Estimates of alpha diversity are more sensitive than beta diversity calculations to the 650 

effects of cluster mixing and systematic errors. Increasing the number of allowed low-quality 651 

reads (r parameter in split_libraries_fastq.py) increases the amount of data available 652 

for processing, but also changes observed diversity. For this reason, we suggest that alpha 653 

diversity estimates should be performed only with data that has been stringently filtered for 654 

quality. Because errors in amplicon sequencing data may follow sequence-specific patterns 655 

(Schirmer et al., 2015; this study), spurious OTUs may provide artificial support to the statistical 656 

separation of experimental treatments. Alternatively, spurious OTUs arising from taxa which are 657 

not differentially represented among treatments could provide artificial noise, making it more 658 

difficult to detect real differences. In either scenario, careful quality filtering can diminish such 659 

effects. 660 

Our results suggest that alpha diversity can be overestimated if sequencing error rates are 661 

not carefully controlled. Here we observed this effect with a QIIME-based workflow, although 662 

QIIME is just one of a variety of tools used in data analysis for such work. Because errors may 663 
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arise systematically during PCR or sequencing implies that a similar effect is likely to be 664 

observed regardless of which analysis pipeline is used to assess the data. We made use of a high-665 

fidelity polymerase (Phusion Hot Start II) in contrast to many studies which continue to utilize 666 

Taq polymerase, with which PCR-derived errors will be more prevalent. Lower fidelity will 667 

promote more PCR-derived errors, and those generated during early cycles will be highly 668 

perpetuated, an effect which would be more problematic under high-cycling conditions. This 669 

effect was recently demonstrated by Gohl et al. (2016), who also showed that PCR-chimeras are 670 

virtually absent from protocols utilizing low-cycling conditions. Because errors may follow 671 

sequence-specific patterns, some diversity estimates may be particularly inflated for certain taxa, 672 

which can further affect studies using taxonomic content to predict community function (e.g. 673 

Langille et al., 2013). The use of phylogenetic metrics (e.g., phylogenetic diversity for alpha 674 

diversity, UniFrac for beta diversity) during data analysis will likely diminish the effects of 675 

complications associated with systematically-inflated OTU diversity. Though the quality-676 

filtering recommendations outlined by Bokulich et al., (2013) have subsequently provided 677 

valuable guidance to numerous researchers, newer quality-filtering methods promise 678 

improvements in accuracy and read retention (e.g., Puente-Sánchez, Aguirre & Parro, 2016). 679 

Careful consideration of the results presented here and elsewhere (Kunin et al., 2010; Schirmer et 680 

al., 2015) will improve upon our collective interpretation of microbial diversity across 681 

environments. 682 

 683 

Conclusions: 684 

 In this study, we observed that each of the various workflow components tested (quality 685 

filtering, OTU picking, taxonomic assignment, and OTU table filtering) affect the outcome of an 686 

amplicon sequencing project. Though high quality output can be achieved through a variety of 687 

means, in this study the optimal result was achieved with a specific set of steps. We outline them 688 

here as a general recommendation for processing community amplicon data generated on MiSeq 689 

instruments through QIIME 1.9.1 (Caporaso et al., 2010a). Analysis parameters can and should 690 

be adjusted as necessary for individual data sets. The optimal workflow as performed in this 691 

study was as follows (optimized steps in bold): 692 

 693 

1. Remove PhiX Control v3 contamination with Smalt 694 
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2. Align read pairs with fastq-join 695 

3. Strict quality filter in QIIME (q = 19, r = 0, p = 0.95) 696 

4. Chimera filtering with vsearch 697 

5. Sequence dereplication with prefix/suffix OTU picker 698 

6. Pick OTUs with Swarm (d4 resolution, adjust as necessary) 699 

7. Assign taxonomy with BLAST (default settings) 700 

8. Filter output table at the Bokulich threshold 701 

 702 

Our results were consistent with the hypothesis that mock community diversity would be 703 

inflated due to the presence of PCR or sequencing errors in the data. By imposing more rigorous 704 

quality filtering of raw sequencing data, much of this error is removed. The effects of remaining 705 

errors can be minimized by utilizing a conservative similarity or distance threshold during OTU 706 

picking. By characterizing mock communities at multiple thresholds, one can identify a 707 

sufficiently conservative similarity or distance value (d4 in our case) which should offer 708 

improved confidence when measuring environmental diversity. If mock communities are 709 

unavailable, we advocate the use of a workflow based upon the above optimization. For studies 710 

utilizing an alternative locus, we suggest adjusting the clustering threshold based on the length of 711 

the amplicon (e.g., more conservative clustering for longer amplicons) until mock communities 712 

can be employed to determine a more informed threshold. 713 
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Table 1: Mock community OTU picking results. Comparison of OTU picking methods using 969 

mock communities with eight total taxa. Cell values represent the number of OTUs returned for a 970 

given algorithm and similarity or distance threshold. Correct results are emphasized with bold 971 

text. 972 

 97%/d1 95%/d2 92%/d3 90%/d4 85%/d5 

BLAST 9 9 8 8 8 

CD-HIT 8 8 8 5 5 

UCLUST 11 8 9 9 11 

Swarm 8 8 8 8 5 
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Table 2: Mock community taxonomic assignment results. Comparison of taxonomic assignment methods using mock communities 992 

with eight total taxa. Representative sequences were added to Greengenes to test each of the assigners for the ability to return the 993 

optimal sequence from a database search. Resulting taxonomic assignments for each method are listed with method-specific 994 

confidence values indicated in parentheses (BLAST: e-value, RDP: bootstrap confidence, and UCLUST: p-value). An asterisk (*) 995 

indicates an exact match against the correct representative sequence. The final column shows results with BLAST when the 996 

representative sequences are excluded from the database. 997 

OTU ID 
Expected 

result 
BLAST RDP UCLUST 

BLAST 
(Greengenes only) 

denovo 0 Escherichia coli  
*Escherichia coli (1e-
139) 

Escherichia coli 
(0.860) 

Enterobacteriaceae 
(1.00) 

Enterobacteriaceae 
(1e-139) 

denovo 1 
Staphylococcus 
aureus 

*Staphylococcus 
aureus (6e-135) 

Staphylococcus 
(0.980) 

Staphylococcus 
epidermidis (0.67) 

Staphylococcus (6e-
135) 

denovo 2 
Bacillus 
megaterium 

*Bacillus megaterium 
(2e-137) 

Bacillus cereus 
(0.720) 

Bacillus (0.67) 
Bacillus cereus (2e-
137) 

denovo 3 
Klebsiella 
pneumoniae 

*Klebsiella 
pneumoniae (1e-
139) 

Enterobacteriaceae 
(1.000) 

Enterobacteriaceae 
(0.67) 

Enterobacteriaceae 
(1e-139) 

denovo 4 Proteus vulgaris 
*Proteus vulgaris 
(1e-139) 

Proteus (0.960) Proteus (0.67) Proteus (2e-137) 

denovo 5 
Lactococcus 
lactis 

*Lactococcus lactis 
(1e-136) 

Lactococcus (0.640) Lactococcus (1.00) 
Lactococcus (1e-
136) 

denovo 6 Micrococcus *Micrococcus luteus Micrococcus (0.900) Micrococcus (0.67) Micrococcus (2e-
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luteus (2e-137) 137) 

denovo 7 
Pseudomonas 
aeruginosa 

*Pseudomonas 
aeruginosa (1e-139) 

Pseudomonas 
(0.520) 

Pseudomonadaceae 
(0.67) 

Pseudomonas (1e-
139) 

Matches  8/8 (100%) 0/8 (0%) 0/8 (0%) 0/8 (0%) 

998 
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Figure 1: Alpha diversities of mock communities by default analysis. Alpha diversity 999 

comparisons for mock communities using default analysis settings and rarefied to 10,000 1000 

sequences per sample. Mean values are represented by an “x” while median values are 1001 

represented by a straight line. Each plot depicts a different OTU table filtering method: (a) 1002 

singletons removed across the entire table (mc2), (b) private alleles and singletons removed per 1003 

sample (n2), (c) OTUs removed that do not exceed 0.005% of the total data (Bokulich), and (d) 1004 

OTUs removed that do not exceed 0.3% per sample (Kircher). In every case, diversity estimates 1005 

are inflated (expected values are Community 0: 8 OTUs; Communities 1a, 1b, 2a, 2b: 4 OTUs 1006 

each). 1007 

 1008 

 1009 
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Figure 2: Effect of allowed low-quality reads on data retention and observed OTU diversity. The 1010 

effect of adjusting (a) the r parameter (allowed low quality reads), in the split_libraries_fastq.py 1011 

command in QIIME, on the percent of raw reads retained after data processing (Swarm d4 only), 1012 

and (b) the observed number of OTUs in the mock community data compared to expected values 1013 

(expressed as percent of total) across Swarm resolutions d1-d4. 1014 

 1015 
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 1019 
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Figure 3: Observed versus expected mock community compositions. Observed mock community 1030 

compositions (Obs) plotted against expected values (Exp) for each separate community. Data 1031 

presented here are for the optimized analysis using the Kircher threshold for OTU table filtering, 1032 

and yielded a strong positive correlation to the expected result (Spearman’s r = 0.9646, CI = 1033 

[0.9495, 0.9752]). 1034 
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Figure 4: Diversity analyses for environmental data rarefied to 5000 reads per sample. Alpha 1044 

diversity as assessed by default (a) or optimized (b) workflow. Beta diversity assessed by default 1045 

(c) or optimized (d) workflow (white squares: pre-tree; black circles: post-tree). All data show 1046 

the same trends with strong statistical support (see text). Optimization has a strong effect on the 1047 

interpretation of alpha diversity results while results are similar between workflows for beta 1048 

diversity analyses 1049 

 1050 
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Figure 5: Mafft alignments illustrating typical truncation of low-frequency OTUs for mock and 1052 

environmental sequences. Mafft alignments for (a) two OTUs constituting mock community 1053 

member Bacillus megaterium, and (b) five environmental OTUs classified to the family level as 1054 

Sphingomonadaceae. Sequences are labelled with de novo OTU designations from the optimized 1055 

workflow, and base positions are indicated above the sequence alignments. Highlighted bases 1056 

indicate differences from the alignment consensus (not shown) and are colored according to 1057 

identity. Overlapping and non-overlapping regions of the first and second reads are indicated 1058 

above the alignments. Pink and blue positions indicate a “TTT” trimer preceding a “G” 1059 

truncation position respectively. In each case, the bottom sequence represents a low-frequency 1060 

OTU which was truncated during quality filtering. 1061 
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