
Enhancing genetic algorithms using multi mutations
Ahmad B Hassanat Corresp., 1 , Esra’a Alkafaween 1 , Nedal A Alnawaiseh 2 , Mohammad A Abbadi 1 , Mouhammd
Alkasassbeh 1 , Mahmoud B Alhasanat 3

1 IT, Mutah University, Mutah, Karak, Jordan
2 Department of Public Health & Community Medicine, University, Mutah University, Mutah, Karak, Jordan
3 Department of Civil Engineering, Al-Hussein Bin Talal University, Maan, Maan, Jordan

Corresponding Author: Ahmad B Hassanat
Email address: ahmad.hassanat@gmail.com

Mutation is one of the most important stages of the genetic algorithm because of its
impact on the exploration of global optima, and to overcome premature convergence.
There are many types of mutation, and the problem lies in selection of the appropriate
type, where the decision becomes more difficult and needs more trial and error. This paper
investigates the use of more than one mutation operator to enhance the performance of
genetic algorithms. Novel mutation operators are proposed, in addition to two selection
strategies for the mutation operators, one of which is based on selecting the best mutation
operator and the other randomly selects any operator. Several experiments on some
Travelling Salesman Problems (TSP) were conducted to evaluate the proposed methods,
and these were compared to the well-known exchange mutation and rearrangement
mutation. The results show the importance of some of the proposed methods, in addition
to the significant enhancement of the genetic algorithm’s performance, particularly when
using more than one mutation operator.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

1 Enhancing Genetic Algorithms using Multi Mutations
2 Ahmad B. A. Hassanat1*, Esra’a Alkafaween2, Nedal A. Al-Nawaiseh3, Mohammad A. Abbadi4,
3 Mouhammd Alkasassbeh5, and Mahmoud B. Alhasanat6

4 1,2,4,5 IT Department, Mutah University, Mutah, Karak, Jordan.

5 3 Department of Public Health and Community Medicine, Mutah University, Mutah, Karak, Jordan.

6 6 Department of Civil Engineering, Al-Hussein Bin Talal University, Maan, Maan, Jordan.

7
8 * Corresponding Author:

9 Ahmad B. A. Hassanat

10 Mutah Street, Mutah, Karak, 61711, Jordan

11 Email address: Ahmad.hassanat@gmail.com

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

mailto:Ahmad.hassanat@gmail.com

37 Abstract

38 Mutation is one of the most important stages of the genetic algorithm because of its
39 impact on the exploration of global optima, and in overcoming premature convergence. Since
40 there are many types of mutations the problem lies in selecting the appropriate type. The decision
41 then becomes more difficult and needs more trial and error.
42 This paper investigates the use of more than one mutation operator to enhance the
43 performance of genetic algorithms. New mutation operators are proposed, in addition to two
44 selection strategies for the mutation operators. One is based on selecting the best mutation
45 operator and the other randomly selects any operator.
46 Several experiments were conducted on the Travelling Salesman Problem (TSP) to
47 evaluate the proposed methods. These were compared to the well-known exchange mutation and
48 rearrangement mutation. The results show the importance of some of the proposed methods, in
49 addition to the significant enhancement of the genetic algorithms’ performance, particularly
50 when using more than one mutation operator.
51

52

53 Introduction
54 Genetic algorithms (GA) are adaptive heuristic random search techniques (Singh &
55 Singh, 2014), and are a sub-family of evolutionary algorithms that mimic the theory of evolution
56 and natural selection. The basic principles of genetic algorithm were presented by John Holland
57 in the 1970s (Holland, 1975). The effectiveness of genetic algorithms has been proven by solving
58 many optimization problems (Golberg, 1989), (Whitley, 1994) and (Tsang & Au, 1996).

59 There are many applications of genetic algorithms in various areas, such as image
60 processing (Paulinas & Ušinskas, 2015), software engineering (Srivastava & Kim, 2009),
61 computer networks (Mohammed & Nagib, 2012), robotics (Ayala & dos Santos Coelho, 2012),
62 and speech recognition (Gupta & Wadhwa, 2014).

63 Genetic algorithms are concerned, in general, with how to produce new chromosomes
64 (individuals) that possess certain features through recombination (crossover) and mutation
65 operators. Therefore, individuals with appropriate characteristics have the strongest chance of
66 survival and adaptation, while individuals with inappropriate characteristics are less likely to
67 survive. This simulates Darwin’s theory of evolution by natural selection, colloquially described
68 as survival of the fittest (Zhong, Hu, Gu, & Zhang, 2005), (Mustafa, 2003) and (Eiben & Smith,
69 2003).

70 GAs have a number of alternative solutions which begins with a number of random
71 solutions (initial population). These solutions are encoded according to the current problem,
72 forming a chromosome for each individual (solution). The quality of each individual is then
73 evaluated using a fitness function, after which the current population changes to a new
74 population by applying three basic operators: selection, crossover and mutation. The efficiency

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

75 of a genetic algorithm is based on the appropriate choice of these operators and strategy
76 parameters (Eiben, Michalewicz, Schoenauer, & Smith, 2007) associated with ratios, such as
77 crossover ratio and mutation ratio (Yang, 2002). Many researchers have shown the effect of the
78 two operators—crossover and mutation—on the success of the GA, and where success lies in
79 both, whether crossover is used alone or mutation alone or both, as in (Spears, 1992) and (Deb &
80 Agrawal, 1999).

81 One of the common issues with genetic algorithms is premature convergence (Nicoară,
82 2009) which is directly related to the loss of diversity (Suh & Van Gucht, 1987). Achieving
83 population diversity is a desired goal, as the search space becomes better (diverse) accordingly,
84 and also avoids a suboptimal solution. According to Holland, mutation is considered an
85 important mechanism to maintain diversity (Deb & Deb, 2014). Researchers (Wagner,
86 Affenzeller, Beham, Kronberger, & Winkler, 2010), explored new areas in the search space, thus
87 avoiding the convergence of the local optimum (Korejo, Yang, Brohi, & Khuhro, 2013). The
88 need for mutation is to prevent loss of genetic material where the crossover does not guarantee
89 access to new parts of the search space (Deep & Mebrahtu, 2011). Therefore, random changes in
90 the gene through mutation helps provide variations in the population (Yang, 2002).

91 Genetic algorithms have evolved from what was prevalent in the era of Holland (Bäck &
92 Schwefel, 1993). Classical mutation (bit-flip mutation) developed by Holland with different
93 encoding problems (e.g. TSP) no longer fits because it is difficult to encode a TSP as a binary
94 string that does not have ordering dependencies (Larrañaga, Kuijpers, Murga, Inza, &
95 Dizdarevic, 1999). Therefore, several types of mutation of various types of encoding have been
96 proposed, including Exchange Mutation (Banzhaf, 1990), Displacement Mutation (T I, 1992),
97 Uniform Mutation and Creep Mutation (Soni & Kumar, 2014), Inversion Mutation (Fogel,
98 1990), etc. The problem lies in our selection of which type(s) to use to solve a specific problem
99 which increases the difficulty in our decision and requiring more trial and error. To overcome

100 this problem, several researchers have developed new types of GA that use more than one
101 mutation operator at the same time (Hong, Wang, Lin, & Lee, 2002), (Hong, Wang, & Chen,
102 2000) and (Hilding & Ward, 2005). This paper contributes to previous work to overcome the
103 problem of determining which mutation to use.

104 The contribution of this paper is two-fold: (1) proposals of new mutation operators for
105 TSP, and (2) investigations into the effect of using more than one of these mutations on the
106 performance of the GA.

107 The rest of this paper presents some of the related previous work and the proposed
108 methods. This paper also discusses the experimental results, which were designed to evaluate the
109 proposed methods. Conclusions and future work are presented at the end of the paper.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

110 Related Work
111 To increase the effectiveness of the algorithm in tackling a problem, researchers have
112 focused on improving the genetic algorithm’s performance to overcome premature convergence.

113 Soni and Kumar studied many types of mutations that solve the problem of a travelling
114 salesman (Soni & Kumar, 2014). Larrañaga et al. presented a review of how to represent
115 travelling salesman problems and the advantages and disadvantages of different crossover and
116 mutation operators (Larrañaga, Kuijpers, Murga, Inza, & Dizdarevic, 1999). Louis and Tang
117 proposed a new mutation called greedy-swap mutation, so that two cities are chosen randomly in
118 the same chromosome, and switching between them if the length of the new tour obtained is
119 shorter than the previous ones (Louis & Tang, 1999).

120 Hong et al. proposed an algorithm called the Dynamic Genetic Algorithm (DGA) to
121 simultaneously apply more than one crossover and mutation operator. This algorithm
122 automatically selects the appropriate crossover and appropriate mutation, and automatically
123 adjusts the crossover and mutation ratios, based on the evaluation results of the respective
124 offspring in the next generation. In comparing this algorithm with the simple genetic algorithm
125 that commonly uses one crossover process and one process of mutation, the results showed the
126 success of the proposed algorithm in performance (Hong, Wang, Lin, & Lee, 2002).

127 Deep and Mebrahtu proposed an Inverted Exchange mutation and Inverted Displacement
128 mutation, which combine inverted mutation with exchange mutation and combines inverted
129 mutation with displacement mutation. The experiment was performed on the TSP problem and
130 the results were compared with several existing operators (Deep & Mebrahtu, 2011).

131 Hong et al. proposed a Dynamic Mutation Genetic Algorithm (DMGA) to simultaneously
132 apply more than one mutation to generate the next generation. The mutation ratio is also
133 dynamically adjusted according to the progress value that depends on the fitness of the
134 individual. This decreases the ratio of mutation if the mutation operator is inappropriate, and vice
135 versa, increases the ratio of mutation if the operator is appropriate (Hong & Wang, 1996) (Hong,
136 Wang, & Chen, 2000). Dynamically adjusting the mutation ratio was studied and used later by
137 several researchers [(Clune, et al., 2008) and (Wang, Wei, Dong, & Zhang, 2015)].

138 Hilding and Ward proposed an Automated Operator Selection (AOS) technique which
139 eliminated the difficulties that appear when choosing crossover or mutation operators for any
140 problem. In this technique, they allowed the genetic algorithm to use more than one crossover
141 and mutation operators; taking advantage of the most effective operators to solve problems. The
142 operators were automatically chosen based on their performance, and thereby reducing the time
143 spent choosing the most suitable operator. The experiments were performed on the 01-knapsack
144 problem. This approach was more effective as compared to the traditional genetic algorithm
145 (Hilding & Ward, 2005).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

146 Dong and Wu proposed a dynamic mutation probability, which calculates the mutation
147 rate by the ratio between the fitness of the individual and the most fit in the population. This ratio
148 helps the algorithm to avoid local optima and also leads to the population’s diversification (Dong
149 & Wu, 2009). Patil and Bhende presented a study of the various mutation-based operators in
150 terms of performance, improvement and quality of solution. A comparison was made between
151 Dynamic Mutation Algorithm, Schema Mutation Genetic Algorithm, Compound Mutation
152 Algorithm, Clustered-based Adaptive Mutation Algorithm, and Hyper Mutation-Based Dynamic
153 Algorithm (Patil & Bhende, 2014).

154 Methods
155 Many researchers have resorted to preventing local convergence in different ways. Since
156 mutation is a key operation in the search process, we found several mutation methods in the
157 literature. The question is: what is the best method to use? To answer this question, and in the
158 hope of avoiding local optima and increasing the diversification of the population, we have
159 proposed and implemented 10 types of mutations to be compared with two of the well-known
160 types, namely, Exchange mutation and Rearrangement mutation (Sallabi & El-Haddad, 2009).

161 In the following we describe each operator. It is important to note that mutation methods
162 described next subsections were designed specifically for the TSP problem. However, they can
163 be customized to fit other problems, such as the knapsack problem with special treatment that
164 goes with the definition of the problem.

165 Worst gene with random gene mutation (WGWRGM)

166 To perform this mutation, we need to search for the ˝worst˝ gene in the chromosome from
167 index 0 to L-1, where L is the length of the chromosome. The worst gene varies depending on
168 the definition of the worst for each problem. The worst gene is the point in a specific
169 chromosome that contributes the maximum to increase the cost of that chromosome (solution).

170 In this method, the worst gene in the TSP’s chromosome is the city with the maximum
171 distance from its left neighbour, while the worst gene in the knapsack problem is the point with
172 the lowest value-to-weight ratio, and so on. The worst gene is defined based on the definition of
173 the problem.

174 After identifying the worst gene for a TSP chromosome, another gene is randomly
175 selected, and then both genes are swapped, as in the Exchange mutation. In the knapsack
176 problem, however, the worst gene is not swapped with a random gene but removed from the
177 solution (converted to zero in the binary string), and another random (zero) gene is converted to
178 one, to hopefully create a better offspring. Figure 1 shows an example of WGWRGM.

179 The worst gene (WG) can be calculated for a minimization problem such as TSP using:
180 (1)𝑊𝐺= argmax

1 ≤ 𝑖< 𝑛
(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶[𝑖],𝐶[𝑖+ 1])

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

181 and for the maximization problem, such as the knapsack problem using:
182 (2)𝑊𝐺= argmin

0≤ 𝑖< 𝑛
(𝑉𝑎𝑙𝑢𝑒(𝐶[𝑖])
𝑤𝑒𝑖𝑔ℎ𝑡(𝐶[𝑖]))

183 where C represents the chromosome, i is the index of a gene within a chromosome, and the
184 distance function for the TSP can be calculated using either Euclidian distance or the distances
185 table between cities. In the case of TSP, searching for the WG starts at index 1, assuming that the
186 route-starting city is located at index 0, while this is not the case for other problems such as the
187 knapsack problem (Equation 2).

188 The previous equations are used for the chromosome, and the worst gene of this
189 chromosome that exhibits the maximum distance is used for the mutation operation.

190
191 Figure 1. Example of WGWRGM

192 Example 1. Example of applying WGWRGM to a specific chromosome of a particular TSP

193 Suppose that the chromosome chosen for mutation is:

194 CHR1: ABEDCA, as depicted in Figure 2(a).

195

196 Figure 2. Example of applying WGWRGM to a specific chromosome of a particular TSP

197 To apply WGWRGM:

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

198 Step 1: Find the worst gene in the parent. According to Figure 2, the worst gene is (D).
199 Step 2: Suppose that the city which has been selected at random is (C).
200 Step 3: Apply the Exchange mutation in this chromosome by swapping the positions of
201 the two cities (see Figure 2(b)). The output offspring becomes: ABECDA.

202 Worst gene with worst gene mutation (WGWWGM)
203 Although this type is similar to the WGWRGM, the difference is searching for the two
204 worst genes then exchange positions of both the selected genes with each other. Finding both
205 worst genes is similar to finding the two maximum value algorithm, if the problem being dealt
206 with is a minimization problem. For the maximization problem, the algorithm of finding the two
207 minimum values can be used. The definition of the worst gene concept is different from one
208 problem to another. For example, the two worst genes in the knapsack problem can be found by
209 applying Equation (2) twice. Instead of swapping, both become zeros and two random (zeros)
210 genes become ones. Figure (3) shows a TSP example of the WGWWGM.

211
212 Figure 3. Example of WGWWGM

213 Worst left and right gene with random gene mutation (WLRGWRGM)
214 This method is also similar to the WGWRGM but the difference is that the worst gene is
215 the one with the maximum total distance between that gene and both of its neighbours—the left
216 and the right neighbours. Considering both distances (left and right) might be more informative
217 than considering only one distance from left or right.
218 The worst gene (WLRgene) can be calculated for the TSP using:

219 (3)𝑊𝐿𝑅𝑔𝑒𝑛𝑒= argmax
1 ≤ 𝑖< 𝑛 - 2

(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶[𝑖],𝐶[𝑖 - 1]) + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶[𝑖],𝐶[𝑖+ 1]))

220 and if it is a maximization problem using:

221 (4)𝑊𝐿𝑅𝑔𝑒𝑛𝑒= argmin
1 ≤ 𝑖< 𝑛 - 2

(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶[𝑖],𝐶[𝑖 - 1]) + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶[𝑖],𝐶[𝑖+ 1]))

222 Equation (3) can be used for minimization problems, and Equation (4) for maximization
223 problems, e.g. finding the maximum route in TSP. The extreme genes, the first and last ones in a
224 chromosome, can be handled in a circular way, i.e. the left of the first gene is the last gene.

225 The worst gene for minimization problems is the one that the sum of the distances with
226 its left and right neighbours is the maximum among all genes within a chromosome; and vice

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

227 versa for Maximization problems. In this mutation, the position of the worst gene is altered with
228 the position of another gene chosen randomly.

229 This mutation is not defined for the knapsack problem, as the distance is not defined for
230 such a problem.

231 Example 2. Example of applying WLRGWRGM to a specific chromosome of a particular TSP

232 Figure 4(a) represents the chromosome chosen for mutation, which is:

233 Chromosome: ABEHFDCA.

234 According to Figure 4 (a), the WLRgene is city D because the total distance from city D to
235 city F and from city D to city C is the maximum distance (4.5 cm). If randomly choosing city H to
236 swap with the WLRgene, the output offspring after applying WLRGWRGM mutation is
237 ABEDFHCA (see Figure 4(b)).

238

239 Figure 4. Example of applying WLRGWRGM on a specific chromosome of particular TSP

240 As can be seen from Figure 4, the new offspring does not provide a better solution which
241 is true for many mutations. Due to randomness, there is no guarantee for better offspring all the
242 time.

243 Worst gene with nearest neighbour mutation (WGWNNM)
244 This method uses the idea of the nearest neighbour cities; a knowledge-based method which
245 provides an heuristic search process for mutation. Basically, the worst gene is swapped with one
246 of the neighbours of its nearest city.
247 The WGWNNM is performed as follows:
248 Step 1: Search for the gene (city) in a tour characterized by the worst with its left and
249 right neighbours (WLRgene) as in WLRGWRGM mutation. This city is called the worst
250 city.
251 Step 2: Find the nearest city to the worst city (from the graph) and call it Ncity. Then
252 search for the index of that city in the chromosome and call it Ni.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

253 We need to replace the worst city with another one around the Ncity other than the Ncity
254 itself. The term around is defined by a predefined range, centred at the Ncity. To give the
255 algorithm some kind of randomness, the algorithm arbitrarily used (Ni ± 5) as a range
256 around the index of the Ncity. The out-of-range problem with the extreme points is solved
257 by dealing with the chromosome as a circular structure.

258 Step 3: Select a random index within the range. The city at that index is called random
259 city.
260 Step 4: Swap between the worst city and the random city.

261 Example 3. Example of applying WGWNNM to a specific chromosome of a particular TSP

262 Suppose that the chromosome chosen for mutation is:

263 Chromosome: ABFDECHA, as depicted in Figure 5(a).

264
265 Figure 5. Example of applying WGWNNM to a specific chromosome of particular TSP

266 By applying WGWNNM:

267 Step 1: Find the WLRgene in the chromosome. According to the graph, the worst city is F
268 (6.7 cm).
269 Step 2: Find the nearest city to the worst city, which is E according to the distance table.
270 This city is called Ncity.
271 Step 3: Search for a city around Ncity at random in the range ± 5. Suppose we choose city
272 C.
273 Step 4: Apply the Exchange mutation in this chromosome by swapping the position of the
274 two cities F and C (see Figure 5(b)). The output offspring is
275 ABCDEFHA.

276 This mutation cannot be defined for the knapsack problem, as the nearest neighbour
277 approach is not defined for such a problem.

278

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

279 Worst gene with the worst around the nearest neighbour mutation
280 (WGWWNNM)
281 This mutation is similar to the WGWNNM but the only difference is in the selection of
282 the swapped city. The swapped city is not randomly selected around the nearest city as in
283 WGWNNM, but rather is chosen based on its distance from the nearest city. By considering the
284 furthest city from the nearest city to be swapped with the worst city, this brings nearest cities
285 together, and sends furthest cities far away.
286 This mutation will hopefully provide better offspring. However, there is no guarantee, as
287 the swapped furthest city might be allocated in a place neighbouring very far away cities, which
288 creates a new offspring with longer TSP route.
289 The WGWWNNM is also cannot be defined for the knapsack problem, as the distance is
290 not defined for such a problem neither the nearest neighbour approach.

291 Worst gene inserted beside nearest neighbour mutation (WGIBNNM)
292 This type of mutation is similar to the WGWNNM, after finding the indices of the worst
293 city and its nearest city. The worst city is moved to be a neighbour to its nearest city, and the rest
294 of the cities are then shifted either left or right depending on the locations of the worst city and
295 its nearest city.

296 In other words, if the worst city was found to the right of its nearest city, the worst city is
297 moved to the left of its nearest city, and the other cities are shifted to the right of the location of
298 the worst city. If the worst city was found to the left of its nearest neighbour, the worst city is
299 moved to the location prior to the location of its nearest city, and the rest of the cities between
300 this location and the previous location of the worst city are shifted to the right of that location,
301 and vice versa.

302 Example 4. Example of applying WGIBNNM to a specific chromosome of a particular TSP

303 Suppose that the chromosome chosen for mutation is:

304 Chromosome: ABFDECHA, as depicted in Figure 5(a).

305 By applying WGIBNNM:

306 Step 1: Find the WLRgene in the chromosome. According to the graph, the worst city is F
307 (6.7 cm).
308 Step 2: Find the nearest city to the worst city, which is E according to the distance table.
309 This city is called Ncity.
310 Step 3: Now F is moved prior to E, and (A and B) are shifted right to get a new
311 chromosome ABD FECHA.

312

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

313 Random gene inserted beside nearest neighbour mutation (RGIBNNM)
314 This mutation is almost the same as the WGIBNNM, except that the worst city is selected
315 randomly, i.e. the worst city concept here is not defined, it is just a random city, and is not based
316 on its negative contribution to the fitness of the chromosome. We propose the RGIBNNM to
317 enhance the performance of the WGIBNNM by enforcing some randomness to increase diversity
318 in the search space.

319 The RGIBNNM is also cannot be defined for the knapsack problem, as the distance is not
320 defined for such a problem neither the nearest neighbour approach.

321 Swap worst gene locally mutation (SWGLM)This mutation is based on finding the worst gene
322 using WLRGWRGM, then it swaps related genes locally, either the left neighbours are swapped,
323 or the worst gene is swapped with its right neighbour. The best resulting offspring decides which
324 genes will be swapped. This mutation is summarized as follows:

325 Step 1: Search for the worst gene, the same as for WLRGWRGM.
326 Step 2: Swap the left neighbour of the worst gene with its left neighbour, and calculate
327 the fitness (C1) of the new offspring (F1).
328 Step 3: Swap the worst gene with its right neighbour, and calculate the fitness (C2) of the
329 new offspring (F2).
330 Step 4: If C1 > C2, then return F2 as the legitimate offspring and delete F1, otherwise
331 return F1 as the legitimate offspring and delete F2 (see Figure 6).

332

333

334 Figure 6. Example of SWGLM

335 Example 5. Example of applying SWGLM to a specific chromosome of a particular TSP

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

336 Suppose that the chromosome chosen for mutation is:

337 Chromosome: ABFEHDCA, as depicted in Figure 7(a).

338 To apply SWGLM:

339 Step 1: Find the worst gene in the chromosome. According to the graph, the worst city is
340 E (6.2 cm).
341 Step 2: Swap the two left neighbours of E, which are B and F. The first offspring become
342 AFBEHDCA, and the cost of this offspring is C1 (15 cm) (see Figure
343 7(b)).
344 Step 3: Swap between worst city E and its right neighbour H. The second offspring
345 become ABFHEDCA. The cost of this offspring is C2 (10.2 cm) (see
346 Figure7(c)).
347 Step 4: Compare the cost (C1, C2) and the least among them is the output offspring.
348 Based on the graph the output offspring is ABFHEDCA (Figure 7(b)).

349

350 Figure 7. Example of applying SWGLM to a specific chromosome of particular TSP

351 Insert best random gene before worst gene mutation (IBRGBWGM)
352 This method is based on finding the worst gene, as in WGWRGM, which is the city with the
353 maximum distance from its left neighbour. Choose a random number of cities, insert the one
354 with the minimum distance to both the worst city and its left neighbour between them.
355 This mutation is summarized as follows:
356 Step 1: Search for the city that is characterized by the worst city as in WGWRGM and
357 find the index of its previous city.
358 Step 2: Select a certain number of random cities. In this work we chose five random cities
359 arbitrarily excluding the worst city and its previous neighbour (PN).
360 Step 3: For each random city calculate the distance to the worst city (D1) and the distance
361 to PN (D2).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

362 Step 4: Find the best city from the random cites, which is the one with the minimum
363 distance (D1+D2).
364 Step 5: Move the best city and insert it between the worst city and PN.
365 Step 6: Shift cities which are located between the old and the new location of the best city
366 to legitimize the chromosome.

367 Example 6. Example of applying IBRGBWGM to a specific chromosome of a particular TSP

368 Figure 8(a) represents the chromosome chosen for mutation, which is:

369 Chromosome: ABEDCA.

370 According to Figure 8(a), the worst gene is city E because the distance to its left equals
371 four centimetres. According to the graph, the best city is C—distance (C, E) + distance (C, B) is
372 the minimum. The output offspring after applying the IBRGBWGM mutation is
373 ABCEDA (see Figure 8(b)).

374
375 Figure 8. Example of applying IBRGBWGM to a specific chromosome of particular TSP

376 Insert best random gene before random gene mutation (IBRGBRGM)
377 Sometimes the worst gene is located in the best possible location, thus swapping it with
378 another gene might yield weak offspring. Therefore, it is important to have another mutation
379 which does not depend on finding the worst gene but instead uses a random gene. This mutation
380 is similar to IBRGBWGM, however, the difference is that the worst city is not chosen based on
381 any distance but is instead chosen randomly to impose some diversity among the new offspring.
382 Another important motivation for proposing IBRGBRGM is the computation time. As
383 with finding the worst gene, enforce a linear computation time along the chromosome—O(n)
384 where n is the length of the chromosome. Finding the nearest neighbour approach also exhibits
385 O(n) time complexity, while choosing a random gene takes only O(1). Finding the nearest gene
386 from a constant (k) number of randomly selected genes takes O(k), which is approximate to O(1)
387 when n (number of the cities in a TSP instance) is very large.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

388 Multi Mutation Operators Algorithms
389 A traditional genetic algorithm normally uses just one mutation operator. We propose
390 using more than one mutation operator. Those different mutations are supposed to lead to
391 different directions in the search space, thus increasing diversity in the population, and therefore
392 improving the performance of the genetic algorithm. To do this we opted for two selection
393 approaches: the best mutation, and a randomly chosen mutation.

394 Select the best mutation algorithm (SBM)
395 This algorithm simultaneously applies multiple mutation operators to the same
396 chromosome. To prevent duplication, it only considers the best offspring that is not found in the
397 population to add to the population.
398 In this work, we defined 10 mutations to apply. The SBM implements the entire
399 aforementioned methods—WGWRGM, WGWWGM, WLRGWRGM, WGWNNM,
400 WGWWNNM, WGIBNNM, RGIBNNM, SWGLM, IBRGBWGM and IBRGBRGM—one after
401 the other with each mutation producing one offspring. The best offspring that does not already
402 exist in the population is added. In TSP the best offspring is the one with the minimum TSP
403 route.
404 Using such a diverse collection of mutations anticipates that such processes encourage
405 diversity in the population, thus avoids convergence to local optima and provides better final
406 solutions.

407 Select any mutation algorithm (SAM)
408 This algorithm tries to apply a mutation each time, which is selected from a collection of
409 operators. The selection strategy is random. Each operator has the same probability to be chosen.
410 The algorithm randomly chooses one of the aforementioned mutations each time it is called by
411 the GA. Therefore, in each generation different mutations are chosen. This means that there is a
412 different direction of the search space which is what we are aiming for; increasing diversity and
413 attempting to enhance the performance of the genetic algorithm.

414 Experiment and Discussion
415 To evaluate the proposed methods, we conducted two sets of experiments on different
416 TSP problems. The aim of the first set of experiments was to examine convergence to a
417 minimum value of each method separately. The second set of experiments was designed to
418 examine the efficiency of the SBM and SAM algorithms and compare their performance with the
419 proposed mutation operators—WGWRGM, WGWWGM, WLRGWRGM, WGWNNM,
420 WGWWNNM, WGIBNNM, RGIBNNM, SWGLM, IBRGBWGM and IBRGBRGM—using the
421 TSPLIB, a collection of travelling salesman problem datasets maintained by Gerhard Reinelt at
422 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. The results of these experiments were
423 compared with two existing mutations: Exchange mutation (Banzhaf, 1990), and Rearrangement
424 mutation (Sallabi & El-Haddad, 2009).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

425 In the first set of experiments, the mutation operators were tested using three test data
426 taken from TSPLIB (Reinelt & Gerhard, 1996), including berlin52, ch130 and a280, each
427 consisting of 52, 130, and 280 cities respectively.
428 The genetic algorithm parameters used are as follows:
429 Population size = 100.
430 The probability of crossover = 0%.
431 Mutation’s probability = 100%.
432 The selection strategy is based on keeping the best k solutions, whether they are
433 old parents or offspring resulted from the mutation and crossover operators, where
434 k is the constant size of the population.
435 The termination criterion is based on a fixed number of generations reached. In
436 our experiments the maximum number of generations = 1,600.
437 The chromosome used is a string of random sequence of cities numbers, thus, the
438 chromosome length is associated with the problem size n (the number of cities for
439 each TSP problem).
440
441 The GA was applied 10 times using each of the proposed mutation, the average of the
442 best solutions from the 10 runs, for each generation, for each method, for each TSP instance was
443 recorded, starting from generation 1 up to generation 1,600.
444 Results from the first test indicate that the best performance was recorded by the SBM,
445 followed by the SAM. This compared well with the rest of the mutations because it showed good
446 convergence to a minimum value.
447 The efficiency of each of the 14 mutations (10 proposed, 2 from the literature, and 2
448 selection strategies) is shown in Figures 9-11. A closer look at these figures reveals that the SBM
449 and SAM algorithms outperform all other methods in the speed of convergence.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

450

451 100 200 400 600 800 1600
0

5000

10000

15000

20000

25000

30000

Exchange
WGWRGM
WGWWGM
Rearrangment
WLRGWRGM
WGWNNM
WGWWNNM
WGIBNNM
RGIBNNM
SWGLM
IBRGBWGM
IBRGBRGM
SBM
SAM
Optimal of berlin52

berlin52

452 Figure 9. Mutation’s convergence to the minimum value, TSP (berlin52)

453 As seen in Figure 9, the results indicate the efficiency of the SBM and SAM algorithms,
454 where the speed of convergence of a near optimal solution with the progress of the generations is
455 faster than the use of a certain type of mutation alone. The Exchange mutation followed by
456 RGIBNNM also showed the extent of their influence on the quality of the solution.
457 One result in Figure 10 indicates that the SBM algorithm showed faster convergence to
458 the minimum value followed by SAM, and these algorithms showed better performance than the
459 remaining mutations. At the level of mutation alone, the WLRGWRGM mutation followed by
460 WGWRGM showed a better performance than the other mutations.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

461

462 100 200 400 600 800 1600
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Exchange
WGWRGM
WGWWGM
Rearrangment
WLRGWRGM
WGWNNM
WGWWNNM
WGIBNNM
RGIBNNM
SWGLM
IBRGBWGM
IBRGBRGM
SBM
SAM
Optimal of ch130

ch130

463 Figure 10. Mutation’s convergence to the minimum value, TSP (ch130)

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

464

465
100 200 400 600 800 1600

0

5000

10000

15000

20000

25000

30000

35000

Exchange
WGWRGM
WGWWGM
Rearrangment
WLRGWRGM
WGWNNM
WGWWNNM
WGIBNNM
RGIBNNM
SWGLM
IBRGBWGM
IBRGBRGM
SBM
SAM
Optimal of a280

a280

466 Figure 11. Mutation’s convergence to the minimum value, TSP(a280)

467 As can be seen from Figure 11, the best performance was recorded by the SBM
468 algorithm. This showed faster convergence to the minimum value than any other mutation,
469 followed by the SAM algorithm. At the level of mutations alone, RGIBNNM, followed by
470 WLRGWRGM and WGWNNM in addition to WGWRGM mutations showed a better
471 performance than the rest of the mutations. Because of the slow convergence of the SWGLM and
472 WGWWGM mutations, they achieved the worst result.
473 The reason behind the good performance of the SBM is that it tries several mutations and
474 chooses the best among them; however, this comes at the cost of time consumed. Although the
475 SBM outperformed the SAM, SAM is still better than SBM in terms of time spent because SBM
476 tries all mutations available and chooses the best, while SAM selects any one randomly.
477 Moreover, the difference between the two results is sometimes not significant. The good
478 performance of the SAM is due to using a different mutation each time, and this leads to an
479 increase in the diversity of the solutions, and thus enhances the overall performance of the GA.
480 The second set of experiments attempted to measure the effectiveness of the SBM and
481 SAM in converging to an optimal solution. These methods and all the proposed operators, in
482 addition to the Exchange mutation and Rearrangement mutation, were tested using 13 TSP

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

483 instances taken from the TSPLIB. They include a280, att48, berlin52, bier127, ch130, eil51,
484 kroA100, pr76, pr144, u159, rat783, brd14051, and usa13509.
485 The genetic algorithm parameters that were selected were the same as in the first test;
486 however, the recorded results were the average of the solutions at the last generation (1,600)
487 after executing the algorithm 10 times (see Table 1).
488 Table 1. Results of 13 TSP instances obtained by 14 mutation operators after 1,600
489 generations

Mutation a280 att48 berlin52 bier127 ch130 eil51 kroA100 pr76 pr144 u159 rat783 brd14051 usa13509

Exchange 11860 41749.4 9338.4 217739 13923 514.8 44815 169713 219250 133616 83155 36964078 1878070618

Rearrangement 17810 73119 15381 377025 29671 802.1 78546 272815 373603 208038 116095 35411256 1788855536

WGWRGM 10325 42221.8 10529 252213 13084 503.1 42259 168850 190946 122144 71748 41534181 2117784066

WGWWGM 28734 93108 20994 528898 35817 1050 119607 420047 660178 339365 165796 39752677 2035635792

WLRGWRGM 10043 43225.6 10714 262604 12606 524 44158 167912 200323 116924 68705 33441004 1681692076

WGWNNM 10233 46517.3 11075 338476 15172 589.9 50393 199048 234684 129658 58338 32788677 1613016352

WGWWNNM 24139 89746.5 19625 543930 34178 1073 107043 408988 557415 301068 143057 39139603 2065593522

WGIBNNM 16300 62576 14314 446290 19781 657.7 67283 234865 310768 199013 104155 30505628 1549822430

RGIBNNM 8000.2 49855 10193 225990 14777 551 47938 194527 213205 116383 56263 34597287 1735470678

SWGLM 30212 120925 23689 559770 39487 1275 139929 467464 696683 386194 166447 41361128 2126239629

IBRGBWGM 15416 66912.4 13009 328296 16987 659.7 66358 228258 321485 180738 101146 36218274 1853569535

IBRGBRGM 13562 45749.6 11378 256321 14465 583.4 48408 214855 261076 164734 68005 36058022 1822032402

SBM 5316.1 37575.8 8782.9 190978 9958.4 459.1 35063 147595 137256 78225 34777 27638514 1377597129

SAM 7830.7 38612.8 8875.3 201895 10262 469.9 33145 147369 142124 88452 59216 34314633 1708749204

Optimal 2579 10628 7542 118282 6110 426 21282 108159 58537 42080 8806 469385 19982859

490
491 Table 2. Ranks of mutation operators after 1,600 generations

Mutation a280 att48 berlin52 bier127 ch130 eil51 kroA100 pr76 pr144 u159 rat783 brd14051 usa13509 Average

Exchange 8 4 4 4 6 5 6 6 7 8 9 11 11 7

Rearrangement 12 12 12 11 12 12 12 12 12 12 12 13 12 12

WGWRGM 7 5 6 6 5 4 4 5 4 6 8 8 8 6

WGWWGM 14 14 14 13 14 13 14 14 14 14 14 15 14 14

WLRGWRGM 5 6 7 8 4 6 5 4 5 5 7 5 5 6

WGWNNM 6 8 8 10 9 9 9 8 8 7 4 4 4 7

WGWWNNM 13 13 13 14 13 14 13 13 13 13 13 12 13 13

WGIBNNM 11 10 11 12 11 10 11 11 10 11 11 3 3 10

RGIBNNM 4 9 5 5 8 7 7 7 6 4 3 7 7 6

SWGLM 15 15 15 15 15 15 15 15 15 15 15 14 15 15

IBRGBWGM 10 11 10 9 10 11 10 10 11 10 10 10 10 10

IBRGBRGM 9 7 9 7 7 8 8 9 9 9 6 9 9 8

SBM 2 2 2 2 2 2 3 3 2 2 2 2 2 2

SAM 3 3 3 3 3 3 2 2 3 3 5 6 6 3

Optimal 1 1 1 1 1 1 1 1 1 1 1 1 1 1

492
493 As can be seen in Table 1, results indicate the efficiency of the SBM algorithm in most of
494 the problems, such as a280, rat87, berlin52, bier127, ch130, att48, pr144, u159, and eil51. It

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

495 converges to the optimal faster than the exchange method, and the rest of the test data (instances)
496 were outperformed by the SAM algorithm, such as pr76 and kroA100.
497 Considering methods that use one mutation only, the WGWRGM, WLRGWRGM and
498 RGIBNNM performed better than other methods (see Table 2). The WGWRGM mutation was
499 the best in three problems, eil51, kroA100 and pr144, and the RGIBNNM mutation was the best
500 in three problems, a280, rat783 and u159. WLRGWRGM also showed convergence in the rest of
501 the instances better than other methods. This method was the best in two problems. The
502 Exchange mutation was the best in three problems, att48, berlin52 and bier127.
503 In these experiments, SWGLM showed weak performance, followed by WGWWGM
504 which showed slow convergence to a minimum value. However, the importance of these
505 operators has emerged in the diversity of the population, where both helped to achieve new areas
506 for searching to be used by SAM and SBM.
507 The good performance of SBM was expected and not surprising, because SBM uses a
508 number of mutations and chooses the best among them. Figure 12 shows the average selection
509 probability for each mutation.
510

511

1.73 1.37 2.07 0.02 1.51

6.71 0.54

17.25

36.76

29.98

1.08 0.98

Exchange
WGWRGM
WGWWGM
Rearrangment
WLRGWRGM
WGWNNM
WGWWNNM
WGIBNNM
RGIBNNM
SWGLM
IBRGBWGM
IBRGBRGM

512 Figure 12. The average selection probabilities for mutations used (all numbers are in
513 percent).

514 As can be seen from Figure 12, the most selected mutation is the RGIBNNM, with an
515 average probability of 36.76%. This is not surprising as this mutation performed, on average,

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

516 better than most of the other methods (see Tables 1 and 2). Moreover, the least selected
517 mutations were Rearrangement and WGWWNNM with 0.02% and 0.54% respectively. This was
518 also not surprising as both mutations performed the weakest comparing to the other mutations.
519 What is surprising is to have the SWGLM—the mutation of the weakest performance—selected
520 by SBM with a probability of 29.98% ranked second. Perhaps the SWGLM contributes well to
521 diversity, which increases the performance of the SBM.
522 It is interesting to note that the gap between SBM and SAM decreases as the number of
523 generation increases (see Figures 9, 10 and 11), and sometimes the difference is not significant
524 as in Figures 9 and 10 at generation 1,600. This shows that SAM is better than SMB in terms of
525 time and accuracy if we used large number of generations. But if we want to use a small number
526 of generations, SBM would be a better choice, as it converges to better solutions faster. Table 3
527 shows the average time consumed for each method for each TSP instance using single 3.06Ghz
528 Pentium 4 CPU.
529
530 Table 3. Average time (in milliseconds) consumed by each mutation after 1,600 generations

Mutation a280 att48 berlin52 bier127 ch130 eil51 kroA100 pr76 pr144 u159 rat783 brd14051 usa13509
Exchange 19843 14172 14008 15934 16562 13724 15825 14476 16749 17049 40598 514352 544840
WGWRGM 31481 21060 18984 21799 18424 15103 20179 20029 22077 25978 56772 666619 713398
WGWWGM 26840 18510 17732 19676 19662 14981 17647 14879 17573 21644 49813 630079 666275
Rearrangement 33122 15552 18872 20245 20756 18369 21096 17188 23967 22321 69531 1130893 1060503
WLRGWRGM 30126 17603 17969 22654 22736 17173 21103 19669 22784 22478 61324 1026570 741261
WGWNNM 37008 19360 16800 17980 30933 18177 21804 23597 28001 23240 78486 845265 809090
WGWWNNM 28452 17347 14415 17544 18470 13645 16967 15142 20581 20589 53550 792461 784913
WGIBNNM 28668 16937 13844 17994 20854 13900 18434 19831 21182 24417 65065 1005676 897441
RGIBNNM 24139 16860 17442 21564 20274 14448 19486 16354 20062 22487 44072 642389 498415
SWGLM 28409 17343 14772 17208 21388 16581 17434 18373 22412 23081 57737 800739 774224
IBRGBWGM 27982 17350 13944 16224 18153 13586 17234 15132 18850 24867 52849 668979 601137
IBRGBRGM 27633 19907 15241 15457 16195 13266 14912 17308 18921 15980 38180 613229 465612
SBM 100975 30443 29452 53541 58931 30706 48506 40462 65555 66766 260287 8430944 7957288
SAM 27337 16214 15003 16746 18462 16975 19389 16155 20636 21133 58314 1048040 1445483
SBM/SAM 4 2 2 3 3 2 3 3 3 3 4 8 6

531
532 As can be seen from Table 3, the consumed time by the individual mutations, the first 12
533 mutations, is not significantly different. However, we find that the IBRGBRGM and the
534 Exchange mutations consumed slightly less time than the others. This is because they do not
535 need to do any special treatments to the mutated chromosome, such as finding the worst gene,
536 which justifies the increase in the time consumed by the other mutations.
537 In addition, it is expected that SBM would consume more time than the others. Compared
538 to the SAM, the SBM consumes at least double the time consumed by the SAM (see the last row
539 in Table 3). This triggers the question: do the results of the SMB justify its high consumption of
540 time? The answer depends mainly on the TSP instance itself, as can be seen from Table 3. The
541 larger the number of instances the higher the time consumed by the SBM, and vice versa. Having
542 the SBM converge faster than any other method for a better solution, with little time consumed
543 when applied in small TSP instances makes the SBM a better choice. In the case of large TSP
544 instances (greater than 200 instances), we do not recommend the use of SBM but instead

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

545 recommend the use of SAM, as the results of SBM are not significantly better than the SAM, and
546 the consumed time is much higher.
547 Although the aim of this paper is not to find the optimal solution for TSP instances, the
548 solutions of the proposed algorithms were close to optimal solutions in some cases, and none
549 could achieve an optimal solution. Perhaps using crossover operators and increasing the number
550 of generations would enhance the solutions of the proposed methods. This shows the importance
551 of using appropriate parameters along with mutation (such as population size, crossover ratio,
552 number of generations, etc.), due to the effective impact of their convergence to an optimal or
553 near optimal solution. It is, therefore, hard to compare our finding to state-of-the-art GA, as we
554 just investigated the power of the proposed mutations.

555 Conclusion
556 We have proposed several mutation methods—WGWRGM, WGWWGM,
557 WLRGWRGM, WGWNNM, WGWWNNM, WGIBNNM, RGIBNNM, SWGLM,
558 IBRGBWGM and IBRGBRGM—to enhance the performance of GA while searching for near
559 optimal solutions for the TSP, in addition to proposing two selection approaches—SBM and
560 SAM. Several experiments were conducted to evaluate those methods on several TSP problems,
561 which showed the efficiency of some of the proposed methods over the well-known Exchange
562 mutation and Rearrangement mutations. Some of the proposed mutations can be used for other
563 problems with some modifications and not only oriented to the TSP problem, such as the
564 knapsack problem. Here the concept of the worst gene is defined by its value-over-weight ratio,
565 except for those which uses the distance and the nearest neighbour approaches.
566 The results of the experiments conducted for this study also suggest that using more than
567 one mutation method in the GA is preferable, because it allows the GA to avoid local optima; the
568 proposed SBM and SAM strategies enhance the performance of the GA. This approach, using
569 more than one mutation for GA, is supported (Hong, Wang, Lin, & Lee, 2002), (Hong, Wang, &
570 Chen, 2000) and (Hong & Wang, 1996).
571 For the use of each mutation alone, some mutations showed better performance than
572 others, and this does not mean that the rest of the mutations had been proven to fail. Even those
573 with the weakest performance can be effective in dealing with other problems because every
574 problem has a different search space. In this work, we found them effective in SBM and SAM,
575 where they encouraged diversity and hence increased the efficiency of both algorithms.
576 Our future work will include the development of some types of new crossovers, using the
577 same approaches, i.e. trying more than one crossover each time to support the proposed
578 approaches and attempting to further enhance the performance of GA. Additionally we will
579 apply the proposed methods to different problems using different benchmark data.
580

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

581 Acknowledgements
582 The first author made part of his contribution to the work presented in this paper while he
583 was a Visiting Research Fellow at the Sarajevo School of Science and Technology
584 (www.ssst.edu.ba). He thanks the University for hosting his visit and for all the support and
585 assistance afforded to him during the visit.
586
587 References
588 Ayala, H. V., & dos Santos Coelho, L. (2012). Tuning of PID controller based on a multiobjective genetic
589 algorithm applied to a robotic manipulator. Expert Systems with Applications, 39(10), 8968-8974.

590 Bäck, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for parameter optimization.
591 Evolutionary computation, 1(1), 1-23.

592 Banzhaf, W. (1990). The “molecular” traveling salesman. Biological Cybernetics, 64(1), 7-14.

593 Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F., & Sanju, R. (2008). Natural Selection Fails to
594 Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes. 4(9).

595 Deb, K., & Agrawal, S. (1999). Understanding interactions among genetic algorithm parameters.
596 Foundations of Genetic Algorithms, 265-286.

597 Deb, K., & Deb, D. (2014). Analysing mutation schemes for real-parameter genetic algorithms.
598 International Journal of Artificial Intelligence and Soft Computing, 4(1), 1-28.

599 Deep, K., & Mebrahtu, H. (2011). Combined mutation operators of genetic algorithm for the travelling
600 salesman problem. International Journal of Combinatorial Optimization Problems and
601 Informatics, 2(3), 1-23.

602 Dong, M., & Wu, Y. (2009). Dynamic Crossover and Mutation Genetic Algorithm Based on Expansion
603 Sampling. In Artificial Intelligence and Computational Intelligence, 141-149.

604 Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer Science & Business
605 Media.

606 Eiben, A. E., Michalewicz, Z., Schoenauer, M., & Smith, J. E. (2007). Parameter control in evolutionary
607 algorithms. In Parameter setting in evolutionary algorithms, 19-46.

608 Fogel, D. A. (1990). A parallel processing approach to a multiple travelling salesman problem using
609 evolutionary programming. Proceedings of the Fourth annual Symposium on Parallel
610 Processing, (pp. 318–326).

611 Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley.

612 Gupta, H., & Wadhwa, D. S. (2014). Speech feature extraction and recognition using genetic algorithm.
613 International Journal of Emerging, 4(1).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

614 Hilding, F., & Ward, K. (2005). Automated Crossover and Mutation Operator Selection on Genetic
615 Algorithms. Proceedings of the 9th International Conference on Knowledge-Based and
616 Intelligent Information and Engineering Systems, (pp. 903-909). Melbourne.

617 Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with
618 applications to biology, control, and artificial intelligence. Cambridge, MA: MIT Press.

619 Hong, T. P., & Wang, H. S. (1996). A Dynamic Mutation Genetic Algorithm. Systems, Man, and
620 Cybernetics, 1996., IEEE International Conference. 3, pp. 2000-2005. IEEE.

621 Hong, T. P., Wang, H. S., & Chen, W. C. (2000). Simultaneously applying multiple mutation operators in
622 genetic algorithms. Journal of heuristics, 6(4), 439-455.

623 Hong, T. P., Wang, H. S., Lin, W. Y., & Lee, W. Y. (2002). Evolution of appropriate crossover and
624 mutation operators in a genetic process. Applied Intelligence, 16(1), 7-17.

625 Korejo, I., Yang, S., Brohi, K., & Khuhro, Z. U. (2013). Multi-Population Methods with Adaptive
626 Mutation for Multi-Modal Optimization Problems. International Journal on Soft Computing,
627 Artificial Intelligence and Applications (IJSCAI), 2(2).

628 Larrañaga, P., Kuijpers, C. M., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the
629 travelling salesman problem: A review of representations and operators. Artificial Intelligence
630 Review, 13(2), 129-170.

631 Louis, S. J., & Tang, R. (1999). Interactive genetic algorithms for the traveling salesman problem.
632 Genetic and Evolutionary Computation Conf.(ICGA-99), 1, pp. 1043-1048.

633 Mohammed, A. A., & Nagib, G. (2012). Optimal Routing In Ad-Hoc Network Using Genetic Algorithm.
634 International Journal of Advanced Networking and Applications, 3(05), 1323-1328.

635 Mustafa, W. (2003). Optimization of Production Systems Using Genetic Algorithms. International
636 Journal of Computational Intelligence and Applications, 3(3), 233-248.

637 Nicoară, E. S. (2009). Mechanisms to avoid the premature convergence of genetic algorithms. Petroleum–
638 Gas University of Ploieşti Bulletin, Math.–Info.–Phys, 87-96.

639 Patil, S., & Bhende, M. (2014). Comparison and Analysis of Different Mutation Strategies to improve the
640 Performance of Genetic Algorithm. (IJCSIT) International Journal of Computer Science and
641 Information Technologies, 5(3), 4669-4673.

642 Paulinas, M., & Ušinskas, A. (2015). A survey of genetic algorithms applications for image enhancement
643 and segmentation. Information Technology and control, 36(3).

644 Reinelt, & Gerhard. (1996). TSPLIB. University of Heidelberg. Retrieved 9 17, 2015, from TSBLIB:
645 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

646 Sallabi, O. M., & El-Haddad, Y. (2009). An improved genetic algorithm to solve the traveling salesman
647 problem. World Academy of Science, Engineering and Technology, 52(3), 471-474.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

648 Singh, A., & Singh, R. (2014). Exploring Travelling Salesman Problem using Genetic Algorithm.
649 International Journal of Engineering Research & Technology (IJERT), 3(2).

650 Soni, N., & Kumar, T. (2014). Study of Various Mutation Operators in Genetic Algorithms. (IJCSIT)
651 International Journal of Computer Science and Information Technologies, 5(3), 4519-4521.

652 Spears, W. M. (1992). Crossover or mutation. Foundations of genetic algorithms, 2, 221-237.

653 Srivastava, P. R., & Kim, T. H. (2009). Application of genetic algorithm in software testing. International
654 Journal of software Engineering and its Applications, 3(4), 87-96.

655 Suh, J. Y., & Van Gucht, D. (1987). Incorporating heuristic Information into Genetic Search. Proceedings
656 of the Second International Conference on Genetic Algorithms, (pp. 100-107).

657 T I, M. Z. (1992). Genetic Algorithms+ data Structures= Evolutionary Programs. Berlin: Springer.

658 Tsang, P. W., & Au, A. T. (1996). A genetic algorithm for projective invariant object recognition.
659 TENCON'96. Proceedings., 1996 IEEE TENCON. Digital Signal Processing Applications. 1, pp.
660 58-63. IEEE.

661 Wagner, S., Affenzeller, M., Beham, A., Kronberger, G. K., & Winkler, S. M. (2010). Mutation effects in
662 genetic algorithms with offspring selection applied to combinatorial optimization problems. In
663 Proceeding of 22nd European modeling and simulation symposium EMSS.

664 Wang, B., Wei, X., Dong, J., & Zhang, Q. (2015). Correction: Improved Lower Bounds of DNA Tags
665 Based on a Modified Genetic Algorithm. 10(6).

666 Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.

667 Yang, S. (2002). Adaptive non-uniform mutation based on statistics for genetic algorithms. Proceedings
668 of the 2002 Genetic and Evolutionary Computation,GECCO’02, Part II, (pp. 490–495). Berlin.

669 Zhong, J., Hu, X., Gu, M., & Zhang, J. (2005). Comparison of performance between different selection
670 strategies on simple genetic algorithms. Computational Intelligence for Modelling, Control and
671 Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and
672 Internet Commerce, International Conference. 2, pp. 1115-1121. IEEE.

673

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2187v1 | CC BY 4.0 Open Access | rec: 30 Jun 2016, publ: 30 Jun 2016

