
Structured unit testable templated code for efficient code
review process
Amol S Patwardhan Corresp. 1

1 Department of Mechanical and Industrial Engineering, LSU, Baton Rouge, Louisiana, USA

Corresponding Author: Amol S Patwardhan
Email address: amolpatty@gmail.com

Background: Modern software development teams are distributed across onsite and off-shore locations.
Each team has developers with varying experience levels and English communication skills. In such a
diverse development environment it is important to maintain the software quality, coding standards,
timely delivery of features and bug fixes. It is also important to reduce testing effort, minimize side
effects such as change in functionality, user experience or application performance. Code reviews are
intended to control code quality. Unfortunately, many projects lack enforcement of processes and
standards because of approaching deadlines, live production issues and lack of resource availability.

Objective: This study examines a novel structured, unit testable templated code method to enforce code
review standards with an intent to reduce coding effort, minimize revisions and eliminate functional and
performance side effects on the system. The proposed method would also result in unit-testable code
that can also be easily rolled back and increase team productivity.

Method: The baseline for traditional code review processes using metrics such as code review duration,
bug regression rate, revision count was measured. These metrics were then compared with results from
the proposed code review process that used structured unit testable templated code. The performance
on 2 large enterprise level applications spanning over 2 years and 9 feature and maintenance release
cycles was evaluated.

Results: The structured unit testable templated code method resulted in a decrease in total code review
time, revision count and coding effort. It also decreased the number of live production issues caused by
code churn or side effects of bug fix when compared to traditional code review process.

Conclusion: The study confirmed that the structured unit testable templated code results in improved
code review efficiency. It also increased code quality and provided a robust tool to enforce coding
standards in a cross-continent software maintenance team environment. It also relieved core resources
from code review effort so that they could concentrate more on newer feature development.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

Structured Unit Testable Templated Code for Efficient Code Review Process 1

Amol S Patwardhan 2

Abstract 3

Background: Modern software development teams are distributed across onsite and off-shore 4

locations. Each team has developers with varying experience levels and English communication 5

skills. In such a diverse development environment it is important to maintain the software 6

quality, coding standards, timely delivery of features and bug fixes. It is also important to reduce 7

testing effort, minimize side effects such as change in functionality, user experience or 8

application performance. Code reviews are intended to control code quality. Unfortunately, many 9

projects lack enforcement of processes and standards because of approaching deadlines, live 10

production issues and lack of resource availability. 11

Objective: This study examines a novel structured, unit testable templated code method to 12

enforce code review standards with an intent to reduce coding effort, minimize revisions and 13

eliminate functional and performance side effects on the system. The proposed method would 14

also result in unit-testable code that can also be easily rolled back and increase team productivity. 15

Method: The baseline for traditional code review processes using metrics such as code review 16

duration, bug regression rate, revision count was measured. These metrics were then compared 17

with results from the proposed code review process that used structured unit testable templated 18

code. The performance on 2 large enterprise level applications spanning over 2 years and 9 19

feature and maintenance release cycles was evaluated. 20

Results: The structured unit testable templated code method resulted in a decrease in total code 21

review time, revision count and coding effort. It also decreased the number of live production 22

issues caused by code churn or side effects of bug fix when compared to traditional code review 23

process. 24

Conclusion: The study confirmed that the structured unit testable templated code results in 25

improved code review efficiency. It also increased code quality and provided a robust tool to 26

enforce coding standards in a cross-continent software maintenance team environment. It also 27

relieved core resources from code review effort so that they could concentrate more on newer 28

feature development. 29

1. Introduction 30

Code review is a vital step in the software development process because it ensures code quality 31

at an early stage of release lifecycle and also provides an opportunity to inculcate coding best 32

practices. Code review as a quality control tool has been identified in the 1980s (Ackerman, 33

Fowler & Ebenau, 1984) and (Ackerman, Buchwald & Lewski, 1989). Fagan, 1976 suggested a 34

formal process involving group reviews, meetings for code reviews. Votta, 1993 investigated 35

whether a formal, time consuming and meeting oriented code review is needed. Today software 36

development teams are spread across several onshore (within same country) and offshore 37

(international) locations. The teams often consist of wide range of programming and 38

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

communication skills in terms of experience and culture. In such a diverse setting accountability 39

and ensuring code quality becomes very important. The geographical distribution also makes it 40

harder to implement the formal code review process outlined by Fagan. Researchers (Bacchelli 41

& Bird, 2013) have identified the challenges to the code review process and the expectations 42

from a successful code review. The researchers reported that many organizations struggle to 43

execute and enforce the code review process primarily because of following reasons:1) Low 44

reviewer participation, 2) Poor knowledge of code context, 3) Pressure to meet deadlines. 45

According to the study the main requirements and expectations of developers and management 46

from efficient and successful code review process are:1) Short execution time, 2) Maintain 47

coding standards, 3) Minimize performance impact, 4) Minimize breaking change, 5) Minimize 48

functional side effects, 6) Optimal usage of reviewer time, 7) Inculcate good coding habits, 8) 49

Knowledge transfer. 50

The software development process is shifting more and more towards agile development and 51

continuous deployment. There is an increasing need for shorter development cycles and quicker 52

code reviews. Moreover, newer flexible architectures and technologies such as real time 53

embedded (Patwardhan, 2006), xml entities based (Patwardhan & Knapp, 2014), (Patwardhan, 54

2016), self-contained plugins (Patwardhan & Vartak, 2016) and Kinect based systems 55

(Patwardhan & Knapp, 2013) are constantly being adopted and implemented. Such systems 56

require in depth knowledge about the system for context aware and rapid code reviews and 57

traditional formal methods can cause delays. Beller et. al, 2014 have examined the modern code 58

review process in open source software projects. The modern code review process has the 59

following characteristics: 1) An informal review process, 2) Increase use of code review tools, 3) 60

Popular among well-known companies. (Laitenberger, 2002), (Johnson, 2006), (Porter, 1996) 61

have examined various code review methods, collaboration processes and software inspection 62

workflows which are meeting based and do not suit well for the modern agile software 63

development. The researchers examined effects of team size, number of reviewers, sessions on 64

code quality. 65

Researchers have developed tools like groupware and scrutiny to improve the code review 66

participation and reduce code review time (Brothers, Sembugamoorthy & Muller, 1990), (Gintell 67

et. al, 1993). Baysal et. al, 2013 have shown that the organizational and personal factors have an 68

influence on the completion time of code review process. Various metrics and factors influencing 69

code review such as code coverage, reviewer participation and expertise have been examined by 70

researchers (Kemerer & Paulk, 2009), (Mantyla & Lassenius, 2009), (McIntosh et. al, 2014), 71

(Sutherland & Venolia, 2009). An extensive research on open source projects and the code 72

review process has been done by researchers (Rigby, German & Storey, 2014), (Rigby et. al 73

2012). 74

As a result, the primary contributions of this paper are: 75

1) Develop a novel coding instrument called structured, unit testable templated code. 76

2) Provide empirical evidence that the proposed method improves code review efficiency 77

and can be used to augment modern code review process. 78

3) Improve reviewer participation. 79

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

Maintenance releases are routine software improvements containing fix for list of high priority 80

bugs. The frequency varies from organization to organization, depending on complexity of the 81

software and the business domain. Hot fixes are used to release extremely urgent and critical 82

issues reported by users in live production environment. Such bug fixes are commonly called 83

code or data patches and are included either in a maintenance releases or as a hot fix. For this 84

research a structured unit testable templated code for the data layer was created. This approach 85

enabled focusing on a specific problem area to test the hypothesis that a structured unit testable 86

templated code can improve the efficiency of the code review process. The same principle can be 87

easily extended to the business or User interface layer. Even though there are many different 88

scripting languages (c#, java, vb, php, python, JavaScript) and structured query languages 89

(MSSQL, MySQL, oracle), the underlying programming constructs (variable declaration, loops, 90

conditional statements, transactions, error handling, object oriented programming concepts) 91

essentially remain the same and as a result the templates can be made available in any 92

programming language. 93

Writing code in the relational database layer using SQL requires a different mindset as compared 94

to writing object oriented code. In the SQL world the programmer has to think in terms of sets 95

and should know how to effectively use joins, indexes and prudently fetch and manipulate data. 96

In contrast writing code in the business and the user interface layer requires application of object 97

oriented programming language principles and involves heavy usage of loops, object instances 98

and control flow. Programmers used to object oriented scripting languages, when assigned with 99

writing SQL scripts struggle to adapt while dealing with data sets and relational data 100

optimization strategies. They have limited understanding about SQL constructs (indexes, 101

transactions, merge, joins) and tend to make a lot of mistakes. This results in higher number of 102

code review iterations and inability to identify system wide implication of the code. 103

Additionally, a lot of poorly written code also stems from low code reviewer participation and 104

engagement from senior programmers. Programmers are either busy with on-going feature 105

development and seldom engage in detailed, intellectual discussion about the code or tend to 106

focus on formatting issues and syntactical errors that are obvious and easy to find. 107

2. Experimental Design 108

The baseline for traditional code review processes using metrics such as code review duration, 109

bug regression rate, revision count was measured. These metrics were then compared with 110

results from the proposed code review process that used structured unit testable templated code. 111

The performance on 2 large enterprise level applications spanning over 2 years and 9 feature and 112

maintenance release cycles was evaluated. 113

The first enterprise level application (internal code P1) was a web application built using 114

ASP.NET C#, .NET Framework 4.0 and used MS SQL as the database. The architecture adopted 115

for the product was 3-Tier architecture, implemented using web forms (presentation layer), 116

business controllers in the processing layer and data access controllers in the data layer. The 117

software development team was based in south east region of United States (2 Architects, 3 118

senior developers and 4 junior-mid level developers) and the support teams were located in 119

offshore locations such as Mexico (1 team lead, 2 senior and 3 junior developers), East Europe (1 120

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

team lead, 3 senior and 5 junior developers) and Chile (1 team lead and 3 developers). The code 121

was maintained using team foundation system (TFS 2010). 122

The second enterprise level application was a web application built on micro-services 123

architecture. The application was developed using ASP.NET C#, .NET Framework, MVC, WCF 124

services and jQuery on the client side. The software development team was based in west coast 125

United States (1 Architects, 5 team leads, 11 mid-junior level developers) and offshore support 126

team in Mexico (1 team lead, 5 senior and 2 junior developers) and offshore support team in 127

India (1 team lead, 5 developers). The code was maintained using TFS 2010. Thus the 128

experiments were conducted on projects with two completely different architectures (P1 used 3-129

Tier and P2 used micro-services). 130

 131

Fig. 1. Code review process workflow and structured unit testable code template block diagram. 132

The metric for the releases prior to using template were taken from two releases of each project 133

and will be referred as pre-template releases. The internal pre-template release codes for project 134

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

P1 were 5.4 and 5.6 and the internal pre-template release codes for project P2 were 5.8 and 6. 135

The readings obtained for the pre-template releases established the baseline for the experiment. 136

The development teams were provided a structured unit testable templates and a guide 137

explaining the process. After the teams had understood and adopted the templates in the code 138

review process for a total of 5 releases across two projects, the metrics were obtained again and 139

compared with the baseline readings. Querying for the various metrics (revision history, 140

comments counts, duration of review) was done using TFS. The releases that used the structured 141

unit testable templated code were internally named release 7.13, 7.14 for project P1 and 7.15, 142

7.16, 7.17 for project P2. 143

For the purpose of this study SQL templates were used. The structure of the template is provided 144

in the reference material. Figure 1 shows the code review process followed by the participating 145

development teams and the structure of code template. 146

3. Results 147

Revisions is the iterations between reviewer and coder to make code corrections based on 148

feedback. Lower number of revisions indicates quicker turn-around time and increased diligence 149

from the programmer prior to submission of code for review. The number of revisions needed to 150

ensure code-quality and adherence to standard was measure for the pre and post template 151

releases. 152

 153

Fig. 2. Average revision count per release 154

Compared to the pre-template releases (5.4-6), the average revision count decreased for the post-155

template releases (7.13-7.17). The number of revisions needed prior to the templates was at least 156

1 or above, whereas post-template revision count was less than 1 (since the submitted code was 157

correct and required no revisions because of conformance to the template). 158

The number of comments during a code review was measured for the pre and post template 159

releases. The average comments for pre-templates was above 3 comments per requested code 160

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

review. The average comments for post-template was below 3 comments per requested code 161

reviews. 162

 163

Fig. 3. Average code review comments per release 164

The decrease did not mean reduced reviewer participation and was actually an improvement in 165

process efficiency. The templates resulted in higher adherence to coding standards and reduction 166

in revisions. This resulted in decrease in comments per code review. 167

The number of bugs (software defects) regressed in pre-template releases was compared to the 168

post-template defects in the quality assurance (QA) environment. 169

 170

Fig. 4. Average bugs regressed per release in QA. 171

The QA bug regression count was higher than 0.1 for the pre-template release and lower than 0.1 172

for the post-template release. This indicated an improvement in code quality. 173

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

 174

Fig. 5. Average bugs regressed per release in UAT. 175

The number of bugs (software defects) regressed in pre-template releases was compared to the 176

post-template defects in the user acceptance testing (UAT) environment. The UAT bug 177

regression count was above 0.1 for the pre-template release and below 0.1 for the post-template 178

release. This indicated an improvement in code quality and reliability on code sign off from the 179

QA environment. 180

 181

Fig. 6. Average development duration time in days per release. 182

Development time for fixing a bug decreased below 2.5 days for the post-template releases. This 183

indicated that the structured approach towards code development improved coding efficiency. 184

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

 185

Fig. 7. Verification duration in days per release. 186

The code review process involves verification whether the fix executes properly and solves the 187

problem. The average verification duration for the pre-template releases was above 2 days and 188

decreased below 2 days for the post-template releases. This indicated an improvement in 189

verification process. The structured unit testable code allowed the reviewers to look at the 190

execution results within the submitted files and verify quickly without having to spend time on 191

recreating the issue or setting up the pre-conditions for the issue. 192

 193

Fig. 8. Average coding standard violations per release 194

The coding standard violations count stayed above an average 1.5 per release for pre and post-195

template releases. An explanation for this could be that the improvement in the code review 196

process because of the templates allowed the reviewers to focus more on the code quality 197

resulting in a higher coding standard violation count. The pre-template releases had 2 releases 198

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

with a high level of coding standard violations but the overall coding standard violation count 199

did not fall below a specific threshold because of the new structured unit testable templates. 200

 201

Fig. 9. Average production bug regression count per release 202

The number of fix reported to have failed in production decreased in the post-template releases 203

with releases 7.13, 7.14 and 7.16 reporting 0 failures in productions for the fixed bugs. This 204

indicated high robustness of the released software quality and an improvement in code review 205

process. 206

 207

Fig. 10. Average rollback effort in days per release 208

Sometimes a feature or a fix for a software defect has to be rolled back for reasons such as failed 209

test, missed delivery deadline and removal from the release, changes in regulatory requirements 210

and other unanticipated reasons. The code fix released should support roll backs with minimum 211

steps and complexity. The above metrics are across all three (QA, UAT and Production) 212

environments. The number of days taken for rolling back a fix did not show a clear threshold 213

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

difference between pre and post template release. This can be explained by the fact that although 214

the templates provided a structured way to roll back the changes there were challenges in terms 215

of coordination with deployment team, production support team and lack of understanding about 216

the data and code among the non-development resources. 217

 218

Fig. 11. Average lines of code per release. 219

The pre-template releases showed average lines of code ranging from 21 to 9 which indicated an 220

un-restrained coding style. On the contrary the average lines of code for post-template was above 221

10 lines but did not go above 16. This showed that the structured templates enforced a consistent 222

coding style. 223

 224

Fig. 12. Side effect bug count per release. 225

Sometimes a code change causes undesired side effects in user experience, functionality or 226

regression of previous bug fix and features. The quality assurance team searched in existing list 227

of bugs and associated (linked items in TFS) such issues with the current bug being tested. The 228

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

average number of side effect bugs for the pre-template releases decreased during the post-229

template release below 0.75. This indicated an improvement in code quality and code review 230

process. 231

4. Conclusion 232

The structured unit testable templated code provided a guided approach towards a reliable and 233

efficient code review process. The structured templated code gave the programmers clarity in 234

terms of the layout of their code and instead focus on the logic for bug fix and feature 235

development. The process allowed the reviewers to focus on the context, actual issue, code logic 236

without having to spend too much time in unit testing, verifying the fix, recreating the issue or 237

setting up the environment. 238

Overall the templates improved the code quality and code review process efficiency. It also 239

proved to be an effective tool to enforce code review process and standards across teams located 240

in different continents and having varying level of coding skills and English language speaking 241

skills. 242

As a future scope the templates need to be implemented and tested against a wider variety of 243

programming languages and organizations of various size and maturity. It would be interesting to 244

see how the templates work in a start-up or a development shop implementing a new software 245

product as opposed to mature software products (projects P1 and P2 were well into their 7th and 246

10th year development cycle) that are mostly in the maintenance phase. 247

5. Reference 248

A. F. Ackerman, P. J. Fowler, and Robert G. Ebenau, "Software inspections and the industrial 249

production of software," in Proc. of a symposium on Software validation: inspection testing-250

verification-alternatives, 1984, pp. 13-40. 251

A. F. Ackerman, L.S. Buchwald, and F.H. Lewski, "Software inspections: An Effective 252

Verification Process," IEEE Software, 1989. 253

M. E. Fagan, "Design and code inspections to reduce errors in program development," IBM 254

Systems Journal, 1976. 255

L.G. Votta, “Does every inspection need a meeting?” ACM SIGSOFT Software Engineering 256

Notes, vol. 18, pp. 107--114, 1993. 257

A. Bacchelli, C. Bird, “Expectations, Outcomes, and Challenges of Modern Code Review.” In: 258

Proceedings of the 35th Int’l Conference on Software Engineering (ICSE), pp 712–721, 2013. 259

A. S. Patwardhan, “An Architecture for Adaptive Real Time Communication with Embedded 260

Devices,” LSU, 2006. 261

A. S. Patwardhan, and R. S. Patwardhan, “XML Entity Architecture for Efficient Software 262

Integration”, International Journal for Research in Applied Science and Engineering Technology 263

(IJRASET), vol. 4, no. 6, June 2016. 264

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

A. S. Patwardhan and G. M. Knapp, “Affect Intensity Estimation Using Multiple Modalities,” 265

Florida Artificial Intelligence Research Society Conference, May. 2014. 266

A. S. Patwardhan, R. S. Patwardhan, and S. S. Vartak, “Self-Contained Cross-Cutting Pipeline 267

Software Architecture,” International Research Journal of Engineering and Technology (IRJET), 268

vol. 3, no. 5, May. 2016. 269

A. S. Patwardhan and G. M. Knapp, “Multimodal Affect Analysis for Product Feedback 270

Assessment,” IIE Annual Conference. Proceedings. Institute of Industrial Engineers-Publisher, 271

2013. 272

M. Beller, A. Bacchelli, A. Zaidman, E. Juergens, “Modern Code Reviews in Open-Source 273

Projects: Which Problems Do They Fix?” In: Proceedings of the 11th Working Conference on 274

Mining Software Repositories (MSR), pp 202–211, 2014. 275

O. Laitenberger, “A Survey of Software Inspection Technologies,” in Handbook on Software 276

Engineering and Knowledge Engineering., 2002, pp. 517-555. 277

J. P. Johnson, “Collaboration, Peer Review, and Open Source Software,” Information Economics 278

and Policy, vol. 18, pp. 477497, 2006. 279

A. Porter, H. Siy, and L. Votta, “A review of software inspections,” Advances in Computers, vol. 280

42, pp. 39--76, 1996. 281

L. Brothers, V. Sembugamoorthy, and M. Muller, "ICICLE: groupware for code inspection," in 282

Conference on Computer Supported Cooperative Work, 1990, pp. 169--181. 283

John Gintell et al., “Scrutiny: A Collaborative Inspection and Review System,” in Proceedings of 284

the 4th European Software Engineering Conference, 1993, pp. 344--360. 285

O. Baysal, O. Kononenko, R. Holmes, M. W. Godfrey, “The Influence of Non-Technical Factors 286

on Code Review.” In: Proceedings of the 20th Working Conference on Reverse Engineering 287

(WCRE), pp 122–131, 2013. 288

C. F. Kemerer, M. C. Paulk, “The Impact of Design and Code Reviews on Software Quality: An 289

Empirical Study Based on PSP Data.” Trans Softw Eng (TSE) 35(4):534–550, 2009. 290

M. V. Mantyla, C. Lassenius, “What Types of Defects Are Really Discovered in Code Reviews.” 291

Trans Softw Eng (TSE) 35(3):430–448, 2009. 292

S. McIntosh, Y. Kamei, B. Adams, A. E. Hassan, “The Impact of Code Review Coverage and 293

Code Review Participation on Software Quality: A Case Study of the QT, VTK, and ITK 294

Projects.” In: Proceedings of the 11th Working Conference on Mining Software Repositories 295

(MSR), pp 192–201, 2014. 296

A. Sutherland and G. Venolia, “Can peer code reviews be exploited for later information needs?” 297

in Proceedings of ICSE, may 2009. 298

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

P.C Rigby, D. M. German, M. A. Storey, “Open Source Software Peer Review Practices: A Case 299

Study of the Apache Server.” In: Proceedings of the 30th Int’l Conference on Software 300

Engineering (ICSE), pp 541–550, 2014. 301

P. C. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German, “Open Source Peer Review – 302

Lessons and Recommendations for,” IEEE Software, 2012. 303

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2163v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016

