
A template-based approach to the modification of binding
properties of globular proteins II: Rationale and proposed
approach.

We present a rationale and proposed approach to the modification and development of

bind sites using their respective cognate ligands as template. This is in support of a

plausible “instructive” role for the ligand and therefore its involvement in determination of

the structure and properties of bind sites. We emphasize the relationship between

substrate and active site as an example of the relationship between ligand and bind sites,

respectively. This is based on the assumption that there are shared features between all

ligand:bind site complexes. Therefore, principles that apply to a specific complex can be

applied, in general, to other protein-based complexes. We define ligand-associated

probability bias as the difference between the probability of finding activity-determining

conformations (ADCs) in the presence- and absence of ligands. For cognate ligands, the

given bias is in favor of these ADCs. Thus, bind sites are more likely to assume ADCs when

their cognate ligands are present. We relate such probability bias to structural

reorganization, disorganization, and preorganization events. We then propose a means of

deriving an [apparent] preorganized bind site structure by way of reorganization events

that occur with cognate ligand. Finally, we propose a means of deriving an [actual]

preorganized bind site structure by way of reorganization events that occur with cognate

ligand, albeit during the folding process. The assumption is that the role of the ligand in

derivation of such [actual] preorganized bind site structures is an instructive role, and is in

support of the Haurowitz-Pauling hypothesis.
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Abstract 

 

Ligand-bind site interactions and complementarity 

                                                           
1 Contact information: ivjeffeke@gmail.com 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2161v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016



2 
 

, [𝐏], , [L]

[𝐏]   +   [L] ↔ [𝐏L]

[𝐏L],

Probability of finding a given bind site conformation on a physiologically folded 

peptide2 under equilibrium conditions and in an absence of ligand.  

                                                           
2 Peptides and proteins are applied here as interchangeable terms.  
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Figure 1: Illustration of each formulation for induced fit and conformation selection models. All 
conformations are members of the set of conformations for formulation 1 for conformation 
selection model. Except conformation B, all conformations are members of the set of 
conformations. All conformational transitions are members of the set of conformational 
transitions for formulation 2 for conformation selection model. Except conformational transitions 
from conformation A to conformation B, all other conformational transitions from conformation A 
are members of the set of conformational transitions.  
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Figure 2A: Relationships between bind site ensemble, equilibrium set of conformations, and set of 
conformation energies (CE). At any given moment, each bind site of the ensemble maps to a conformation 
within the equilibrium set of conformations. Two or more bind sites can map to the same conformation, but 
a given bind site can only map to one conformation. In turn, each conformation maps to a single 
conformation energy within the set of conformation energies. Figure 2B: An illustration of relationships 
between bind site ensemble, equilibrium set of conformational transitions, and set of conformational 
transition energies (CTE). Bind sites within ensemble map to conformational transitions within the 
equilibrium set of conformational transitions. In turn, each conformational transition maps to a single CTE 
within the set of CTEs. 

Probability of finding a given bind site conformation on a physiologically folded 

peptide under equilibrium conditions and in the presence of ligand.  
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Figure 3A: Depicts the range of structures of a bind site. At one extreme is a very disorganized 
structure termed the full-extent of disorganization of bind site structure. At the other extreme is 
the most reorganized structure termed the fully-reorganized bind site structure. Figure 3B: 
Illustrates the direction of reorganization and disorganization. For reorganization, the bind site 
structure is organized from the full-extent of the disorganized structure to the fully-reorganized 
bind site structure. Disorganization involves a reversal of the noted direction for reorganization. 
That is, fully-reorganized bind site structure, the bind site is transformed to the full-extent of the 
disorganized structure. 
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Figure 4A: Depicts the range of structures of a preorganized bind site. Compare the full-extent of 
disorganization of bind site structure to that of figure 3. Note that the extent of disorganization is 
less than that of figure 3. In other words, the most disorganized structure has been preorganized 
so as to prevent the extent of disorganization noted for figure 3. Figure 4B: Illustrates the 
direction of reorganization and disorganization. For reorganization, the bind site structure is 
organized from a preorganized structure to the fully-reorganized bind site structure. 
Disorganization involves a reversal of the noted direction for reorganization. That is from the 
reorganized bind site structure to the preorganized structure. 
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  𝑃𝐴𝐵 − 𝑃𝐴𝐵
𝑜 = 0

A view of reorganized and rigidified bind site structures as [apparent] preorganized 

structures.
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 Depicts the range of structures of a bind site. At one extreme is the full-extent of 

disorganization of bind site structure. However, note that although the full-extent of disorganized 
structure was initially identical to that for figure 3 (grey), an [apparent] preorganization results in 
a less disorganized structure. Figure 7B: Illustrates the direction of reorganization and 
disorganization. Reorganization from an [apparent] preorganized structure, as compared to that 
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occurring from full-extent of disorganized structures as in figure 3, would require less free energy 
of reorganization.

A view of [actual] preorganized structures as resulting from reorganization events 

that occur during peptide folding.
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Probability of finding a given bind site conformation at different folded states of 

peptide under equilibrium conditions and in the presence of ligand. 
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Figure 5A 
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Figure 5B 
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Figure 5C 
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Figure 6A 
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Figure 6B 
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Figure 6C 
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