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The potential of soils to naturally suppress inherent plant pathogens is an important

ecosystem function. Usually, pathogen infection assays are used for estimating the

suppressive potential of soils. In natural soils, however, co-occurring pathogens might

simultaneously infect plants complicating the estimation of a focal pathogen's infection

rate as a measure of soil suppressiveness. Here, we present a method in R correcting for

these unwanted effects by developing a two pathogen mono-molecular infection model.

We fit the two pathogen mono-molecular infection model to data by using an integrative

approach combining a numerical simulation of the model with an iterative maximum

likelihood fit. We show that in presence of co-occurring pathogens uncorrected data

critically under- respectively overestimate soil suppressiveness measures. In contrast, our

new approach enables to precisely estimate soil suppressiveness measures such as plant

infection rate and plant resistance time. Our method allows a correction of measured

infection parameters that is necessary in case different pathogens are present. We

propose our method to be particularly useful for exploring soil suppressiveness of natural

soils from different sites (e.g., in biodiversity experiments).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2156v1 | CC BY 4.0 Open Access | rec: 24 Jun 2016, publ: 24 Jun 2016



Assessing Plant Pathogen Infection Rates1

in Natural Soils using R2

Björn C. Rall1,2,3,4 and Ellen Latz1,2,5
3

1German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 041034

Leipzig, Germany5

2Institute of Ecology, Friedrich Schiller University Jena6

3Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW)7

4Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)8

5Department of Animal Ecology, J.F. Blumenbach Institute of Zoology and9

Anthropology, Georg-August-Universität Göttingen10

ABSTRACT11

The potential of soils to naturally suppress inherent plant pathogens is an important ecosystem function.

Usually, pathogen infection assays are used for estimating the suppressive potential of soils. In natural

soils, however, co-occurring pathogens might simultaneously infect plants complicating the estimation of

a focal pathogen’s infection rate as a measure of soil suppressiveness. Here, we present a method in R

correcting for these unwanted effects by developing a two pathogen mono-molecular infection model. We

fit the two pathogen mono-molecular infection model to data by using an integrative approach combining

a numerical simulation of the model with an iterative maximum likelihood fit. We show that in presence of

co-occurring pathogens uncorrected data critically under- respectively overestimate soil suppressiveness

measures. In contrast, our new approach enables to precisely estimate soil suppressiveness measures

such as plant infection rate and plant resistance time. Our method allows a correction of measured

infection parameters that is necessary in case different pathogens are present. We propose our method

to be particularly useful for exploring soil suppressiveness of natural soils from different sites (e.g., in

biodiversity experiments).
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INTRODUCTION27

Pathogen infection assays are a standard method for estimating plant resistance to pathogens, induced28

systemic resistance in plants, the effect of artificial or natural plant protectants (e.g. plant beneficial29

bacteria), and a soil’s suppressive potential. Such bioassays compose of a soil or substrate inoculated with30

a pathogen and a pathogen sensitive plant, and data is collected at just a single point in time (Maurhofer31

et al., 1994; Pierson and Weller, 1994; Postma et al., 2008) or at multiple points in time (e.g. Postma et al.,32

2008; Hanse et al., 2011; Latz et al., 2012, 2016). Remarkably, in the latter case often only one single33

point in time is chosen for evaluation (e.g. Postma et al., 2008; Hanse et al., 2011; Latz et al., 2012), or34

the increase from one to the next point in time is evaluated (Kushalappa and Ludwig, 1982). However,35

disease progression is more precisely described by classical growth curve models (Neher and Campbell,36

1992). Out of the plethora of growth models (Paine et al., 2012), the mono-molecular model has often37

been used to describe bioassays with soil-borne pathogens (Stanghellini et al., 2004; Wilson et al., 2008).38

The mono-molecular infection model describes the disease progression (the change of infections over39

time) with an initial linear increase of infections (the infection rate), followed by a saturation (given by40

the maximum number of infectable plants, also known as carrying capacity or asymptotic growth).41

The infection rate was suggested to be the most important parameter for determining pathogenicity42

(Raaijmakers et al., 2009). However, when estimating a soil’s suppressive potential, the time until43

infections occur (resistance time) might be even more important since pathogen inhibition occurs largely44

during pathogen growth. Actually, only a few experimental setups allow the investigation of both, infection45

rate and resistance time. To measure an infection rate it is necessary to use a system with multiple plant46
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Figure 1. Two different possible setups for infection treatments. The circular setup with a centered

pathogen surrounded by plants (a) may lead to a steep linear infection scenario as all plants are probably

infected by the source pathogen at more or less the same time. Only the linear spatial assembly (b) allows

for a consecutive infection of plants resulting in a linear increase that can be modeled by the

mono-molecular infection model.

individuals (Figure 1) where plants can be infected one after another (i.e. measuring a time-series).47

In such experiments, the pathogen inoculant can be applied in different ways: (i) equally distributed48

application, i.e. homogeneously mixed in the soil or growth-substrate, or (ii) single point application49

(where pathogen spread can be assessed; Figure 1). If a pathogen is homogeneously distributed in the50

plant growth substrate, it is possible to measure the number of infected plants over time. The measured51

infection rate, however, would not represent the infection rate per se but rather the resistance variance of52

the plant community to the pathogen. The same problem occurs if a pathogen is applied to one location in53

the substrate and plants are planted at equal distances around the inoculum (Figure 1A). Linear spatial54

designs (Figure 1B) have the potential to estimate the correct infection rate in addition to the resistance55

time, whereas the further mentioned approaches solely allow to estimate the resistance time. Hence, it is56

important to keep in mind that the design determines the hypothesis that can be tested. Another difficulty57

in performing pathogen infection assays occurs if natural field soils are used as substrate (e.g. Mendes58

et al., 2011; Latz et al., 2012, 2016). Here, in addition to the applied pathogen, other unknown pathogens59

may already exist in the soil and may increase infection in the plants. To cope with this problem, control60

treatments may be used to reveal the occurrence of natural soil inhabiting pathogens. If controls show61

infections, (i) these infections might be ignored if they are evaluated as statistically not relevant (Fig. 2A),62

(ii) the treatments where the corresponding controls showed infections may be excluded from further63

analyses (Fig. 2B), (iii) the treatments may be linearly corrected by simply subtracting the total amount64

of infectable plants by the infections that occurred in the control (Fig. 2C). The third approach may65

lead to erroneous results in non-linear analyses as shown for functional response models (McCoy et al.,66

2012). However, none of these approaches are desirable as they may lead to a bias in single infection rate67

measures (due to ignoring or wrongly correcting infections of a naturally occurring pathogen) and the68

loss of data (exclusion of treatments where the corresponding control was infected).69

Here, we present an alternative approach that incorporates infections caused by any additional70

pathogens in the system by using a two pathogen mono-molecular infection model inspired by the71

competition model for logistic growth (Lotka, 1925; Volterra, 1926). This two pathogen mono-molecular72

model is an ordinary differential equation system with two equations. Systems with two equations are73

hardly analytically integrable to a single equation describing the progress of infections over time, therewith74

preventing the use of standard linear or non-linear fitting algorithms. To overcome this limitation, we75

applied a numerical integration routine (Soetaert et al., 2010) combined with a maximum likelihood76

optimizer (Bolker and Team, 2016) to fit our model to data. Our method allows for the use of natural soils77

(i) already contaminated with naturally occurring pathogens, and (ii) from different origins and habitats,78

while allowing for accurate evaluation of pathogenicity and plant resistance patterns in the field.79
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Figure 2. Known practices to deal with infections observed in control treatments. Number of infected

plants at each time-point in a single, independent pot. Grey dots: control pots (without having added the

pathogen); black dots: treatment pots (with having added the pathogen). (a) Infected controls are ignored

and treatment data remains uncorrected. (b) In case the control pot showed an infection the respective

treatment data is excluded (red crosses). (c) The treatment data is ”corrected” by subtracting the number

of infections in the control from the number of infections in the treatment (red dots, note that may lead to

some negative infections).

METHODS80

Simulations81

We solved the differential equation systems (eqn. (2) & (3)) using the lsoda()-function (version82

1.13; references: Soetaert and Herman, 2008; Soetaert et al., 2010) in R (R Core Team, 2016). The83

time-series length was set to 30 days with a temporal resolution of 0.01 days. Imax was fixed to 1084

plants. We simulated two different scenarios; scenario 1: the natural pathogen has lower infection85

rates (0.001 ≤ rcontrol ≤ 0.1; 0.1 ≤ rtreatment ≤ 0.5) and occurs earlier in the time series as the treatment86

pathogen (1 ≤ t0control
≤ 5; 5 ≤ t0treatment ≤ 10); and scenario 2: the natural pathogen has comparable87

infection rates(0.01 ≤ rcontrol ≤ 0.1; 0.01 ≤ rtreatment ≤ 0.1) to the experimentally added pathogen and88

occurs later in the time series (5 ≤ t0control
≤ 10; 1 ≤ t0treatment ≤ 5). We draw all infection rates, r, and time89

of first infections, t0, from uniform distributions.90

After simulating the time series, we sampled randomly four data-points for each full time-point (i.e.91

t = 1,2, . . . ,30) assuming a binomial distribution with a size of Imax and a probability of the simulated92

number of infections at time t divided by Imax resulting in 120 independent data points for each simulated93

infection assay. Additionally simulated one or four consecutive time series resulting in 30 data points94

of one experimental unit (temporal autocorrelated) and 120 of four experimental units (each time series95

contains 30 temporal autocorrelated data points). We repeated this simulation of data 1100 times for each96

scenario. We excluded model fits for both, the one-pathogen model and the two-pathogen model, if the97

fitting of one or the other failed and used the first 1000 results of the cleaned data set.98

Statistical analyses99

We analyzed the simulated data using an iterative maximum likelihood algorithm (function mle2() from100

the package bbmle version 1.0.18; references: Bolker, 2008; Bolker and Team, 2016) to fit equations (2)101

& (3) to the data using R (R version 3.3.0; reference: R Core Team, 2016). See the supplemental manual102

for an in-depth description of the methodology.103

We saved all results for the one-pathogen model fitting and the two-pathogen model fitting for each104

scenario and each setting (independent, one time series and four time series). Subsequently, we analyzed105

the log10-ratio of the fitted parameters to the initially simulated values. The starting values for infection106

rates where set to 50% of the simulated value and for resistance time to 75% of the simulated value. In107

scenario 2, the starting values for infection rates where set to 50% of the simulated value and for resistance108

time to 0.5 days of the simulated value.109
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Additional Files110

Additional file 1 — MainSources.zip111

This compressed folder contains the sub-folders ”data”, ”script” and ”source”. The folder ”data” contains112

the data to reproduce figure 4, ”data scenario01.csv” & ”data scenario02.csv” shown in figure 4. The113

folder ”script” contains the script files ”scenario01.r” to ”scenario06.r” that allow for reproducing the114

data shown in figure 4. The folder ”source” contains the R-source files ”infections.models.r” and115

”infection.nll.r” that are required to run the script files.116

Additional file 2 — manual-assessing-plant.pdf117

This document includes an in-depth description on how to apply the method presented in this study in R.118

Including how to create regression lines, trouble shooting, how to use the functions if there are different119

Imax, and an in-depth description of the source files.120

Additional file 3 — ManualSources.zip121

This compressed folder includes all necessary data, scripts and source files to reproduce the statistics and122

plots from the manual.123

RESULTS AND DISCUSSION124

The Model125

The mono-molecular infection model (Raaijmakers et al., 2009; Paine et al., 2012) describes the increase

of infections in a (plant) community over time, dIdt−1, by:

dI

dt
= r (Imax − I) (1)

with r [time-1] being the infection rate and Imax [Infected (Plants) Area-1] being the maximum number126

of potentially infectable plants.127

The infection of the first plant is not necessarily instantaneous, but depends on the resistance of the

soil and the plants to the pathogen, leading to a lag phase at the beginning of the experiment. To account

for this mechanism, we extend the mono-molecular infection model by the resistance time, t0:

dI

dt
=

{

0 if t < t0

r (Imax − I) if t ≥ t0.
(2)

Below t0 new infections are zero whilst above, the occurrence of new infections follows the mono-128

molecular infection model. We will refer to this model as one-pathogen model (Fig. 3A, B).129

In experiments using natural soils, natural occurring pathogens may be responsible for additional

infections during the experimental trial. To correct for those infections, we extend the one-pathogen

model to a two-species mono-molecular infection model, inspired by the two-species competition growth

model (Lotka, 1925; Volterra, 1926):

dIp

dt
=

{

0 if t < t0p

rp (Imax − (Ip + Ic)) if t ≥ t0p ,

dIc

dt
=

{

0 if t < t0c

rc (Imax − (Ip + Ic)) if t ≥ t0c ,

(3)

where Ip is the number of infected plants due to the pathogen, Ic is the number of infected plants in130

the control; rp and rc are the infection rates of the pathogen and the control treatment, respectively; and131

t0p and t0c are the resistance times of the pathogen and the control treatment, respectively. We will refer to132

this model as two-pathogen model.133

Below, we will give two examples of different model-parameter combinations, based on two different134

biological examples that might lead to two different misleading fitting results if the one-pathogen model135

is used in case of contaminated pots.136
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Figure 3. Different model configurations. (a) The one-pathogen model with 2 different settings of

parameter values (light red line: r = 0.01 & t0 = 1; blue line: r = 0.1 & t0 = 8). (b) The two-pathogen

model (black line) incorporates the parameter values of (a) and lies slightly above the one-pathogen

model (blue line in (a)); hypothetically, using a one-pathogen model to fit the black line will result in a

different parameter estimation (dashed orange line). (c) The one-pathogen model with 2 different settings

of parameter values (light red line: r = 0.05 & t0 = 8; blue line: r = 0.05 & t0 = 2). (d) The

two-pathogen model (black line) incorporates the parameter values of (c) and lies only above the

one-pathogen model (blue line in (c)) at a late stage of the experiment, hypothetically using a

one-pathogen model to fit may result in the orange model fit.
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First, we assume a high infection rate r, and an experimental pot showing a high resistance time,137

t0. This will result in a first half of the experiment without any infections while in the second half of138

the experiment the plants will become infected rapidly (Fig. 3A, blue line). We interpret in this case139

an experimentally added pathogen (treatment pathogen) being inoculated in a defined distance to the140

seedlings, a soil showing high suppressivess and/or highly resistant plants (high resistance time), but the141

pathogen being highly abundant and able to infect plants rapidly after the first infection (high infection142

rate). However, this scenario presumes sterile soil previous to having added a treatment pathogen, whereas143

natural soils might be contaminated by already naturally occurring pathogens. A contaminated control pot144

without an experimentally added pathogen may then show early infections followed by a shallow increase145

of infections over time (Fig. 3A, light red line). The combined progression of the infections over time in146

a contaminated treatment pot is more complex than that of assuming only a treatment pathogen being147

present, with showing a shallow increase of infections at low densities and a steep increase of infections148

in the second half of the experiment (Fig. 3B, black line). Applying the one-pathogen model to estimate149

the resistance time and infection rate would lead to a misleading fit (Fig. 3B, dashed orange line).150

Second, we assume the plants having a rather small resistance time, t0, and the pathogen being less151

aggressive (low infection rate,r; Fig. 3C, blue line. Here, we assume a perfectly sterile experiment for152

both, the treatment and the control. In this example, the control treatments should not show any infections153

over time. However, pathogens could also disperse into the experimental pots during the experimental154

trial, leading to late infections of the control (Fig. 3C, red line). This might be the case when experimental155

pots can not be isolated from the environment, e.g. partially open mesocosms, resulting in more than the156

treatment pathogen being responsible for infections (Fig. 3D, black line vs . Fig. 3C, blue line). Applying157

here the one-pathogen model to estimate the infection parameters may lead to the correct estimation of the158

resistance time but to a underestimation of the infection rate of the treatment pathogen (Fig. 3D, dashed159

orange line).160

In both scenarios, the use of the one-pathogen model would lead to misleading parameter estimations.161

To overcome this issue the two-pathogen model should be fitted to the data.162

Statistical model evaluation163

Independent data164

We tested our model framework by simulating two separate scenarios (subsequently called scenario 1165

and scenario 2). In scenario 1, naturally occurring pathogens infect seedlings earlier than the treatment166

pathogen, but the naturally occurring pathogens are less infectious (i.e. a lower infection rate, r; Fig.167

3A,B). In scenario 2, the naturally occurring pathogens infect the seedlings later than the treatment168

pathogen but are similar infectious (Fig. 3C,D). We simulated 1000 data sets where each simulated data169

point represents an independent measure (i.e. the end point of a single time series) for each scenario and170

fitted (i) the one-pathogen model to each data set (equation (2)) and (ii) the two-pathogen model (equation171

(3)) to each data set. We compared the fitted parameter values (i.e. the infection rate, r, and the time of172

first infection, t0) by taking the log-ratio. See methods for a detailed description of the procedure.173

Using the one-pathogen model leads to a systematic underestimation of infection rates, r, (Fig. 4A,174

lower row) whereas the two-pathogen model performs well (Fig. 4A, upper row). Also, the resistance175

times, t0, are underestimated by the one-pathogen model (Fig. 4B, lower row) whereas the two-pathogen176

model predicts the resistance time very precisely (Fig. 4B, upper row).177

The underestimation of both the resistance times and the infection rates nicely reflect our assumptions178

when fitting the one-pathogen model to the treatment (Fig. 3C). The real increase in infection is179

rather strong, and coupled to a late first occurrence of infections (Fig. 5A, gray dashed line). But180

the one-pathogen model estimates a mixed increase of both, the infections caused by the control and the181

treatment pathogens. This means that the resistance time is driven by the control pathogen leading to182

an underestimation of infection rates (Fig. 5A, orange dashed line). The two-pathogen model, however,183

resolves the strong non-linear interactions between the model paraemters and leads to a infection curve184

with the correct infection rates and resistance times (Fig. 5A, blue line) that lies slightly beneath the total185

infection (Fig. 5A, black line).186

In the second scenario (higher resistance time for the control pathogen with similar infection rates187

for both) the one-pathogen model overestimates the infection rates systematically (Fig. 4C, lower row).188

Surprisingly, also the resistance times are overestimated (Fig. 4D, lower row) contrasting our expectations.189

In contrast, the two-pathogen model predicts the simulated parameter values precisely and outperforms190
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Figure 4. Results of the model evaluation of the one pathogen model versus the two pathogen model.

The results of scenario 1 (a & b) and scenario 2 (c & d) for infections rate, rp, (a & c) and resistance time,

t0p (b & d). The log10-ratio of the parameter fit to the real parameter used for simulating is given on the

x-axis. If zero, the fit is perfectly reflecting the simulation, if larger than zero, the fit overestimates the

real value, if smaller, the fit underestimates the real value.
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Figure 5. Mechanics of fitted results. (a) The two-pathogen model shows a steep increase (dashed gray

line) in infections (black line) when the treatment pathogen enters the system (blue line). The controls,

however, lead to infections earlier (red line) leading to a decreased increase in infections using a

one-pathogen model for fitting to contaminated data (dashed orange line). (b) The infection rates are

overestimate by using a one-pathogen model (orange line) to a treatment with two pathogens (black line).

The real treatment infections must be lower (dashed cyan line) as only a part of the infections are caused

by the treatment pathogen (blue line), the rest is caused by the control pathogen (red line). (c) The

resistance time is mainly inferred by the fit using knowledge on the correct infection rates (dashed cyan

line), if the infection rate is overestimated due to additional late occurring control infections (black dot)

the resistance time is also overestimated (dashed orange line).

the one-pathogen model dramatically (Fig. 4C,D, upper rows). The overestimation of the infection rates191

by the one-pathogen model can be explained by an additional boost of infections later in the experiment192

(Fig. 5B, black line) by additional infections of the control pathogen (Fig. 5B, red line) additionally to the193

infections of the treatment pathogen (Fig. 5B, blue line). This additional infections lead to an increase in194

estimated infection rates (Fig. 5B, orange line) compared to the prediction of the isolated infections of the195

treatment pathogen (Fig. 5B, cyan line). Interestingly, the resistance times are also overestimated. This is196

a rather small effect and may caused by the fact that, if the correct resistance time lies between two time197

steps (e.g. t0 = 2.1), the next full time step (e.g. t0 = 3) may show the first infection and the third time198

step the second infection we expect a rather linear increase from zero to two from time step 2 to 4 (Fig.199

5C, cyan line). If a control pathogen also causes an infection at the third time step, the fitting algorithm200

will estimate a steeper increase to the cost of a higher estimates resistance time (that must still be below 3201

in this example, Fig. 5C, orange line).202

Consecutive time-series data203

For the above described model comparison we used data that consisted of independent measures. This204

means each data point was derived from a single experimental pot that has been destructively sampled. If205

applying this approach to an experiment running 30 days with a resolution of one measurement per day and206

4 replicates the total amount of pots that must be maintained is 120 (as in our above described analyses).207

Applying an additional gradient (e.g. biodiversity) would lead to a not feasible amount of experimental208

units. To avoid such a laborious approach, most studies measure consecutive time series where data for209

each temporal replicate originates from the same experimental unit. To test if our model approach is also210

able to fit such data adequately we simulated: (1) data of a single time series resulting in 30 measures211

from one experimental pot; (2) data of four time series resulting in 120 measures from four experimental212

pots. We only applied the two-pathogen model to the simulated data. Subsequently, we compared the213

deviations of the model fits to the original simulated parameter values and we cross-compared the quality214

of the fits using independent data (120 measures from 120 experimental pots).215

Fitting the model to data from a single time series in scenario 1 (Fig. 6A,B, topmost rows, naturally216

occurring pathogens infect the plants earlier but less strong) leads to a slight overestimation of infection217

rates but in average correctly estimated resistance times. Using data from four consecutive time series (Fig.218

6A,B, middle rows) results in a very precise fit that is not distinguishable from the fit using independent219

data (Fig. 6A,B, lowermost rows). In scenario 2 (Fig. 6C,D, topmost rows, naturally occurring pathogens220
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Figure 6. Results of the model evaluation comparing independent measures and consecutive time-series

data. The results of scenario 1 (a & b) and scenario 2 (c & d) for infections rate, rp, (a & c) and resistance

time, t0p (b & d). The log10-ratio of the parameter fit to the real parameter used for simulating is given on

the x-axis. If zero, the fit is perfectly reflecting the simulation, if larger than zero, the fit overestimates the

real value, if smaller, the fit underestimates the real value.
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infect the plants later but equally strong) both, the infection rate and the resistance time, are systematically221

overestimated. Using data from four time series to estimate the parameter values statistically increases the222

preciseness of the fit dramatically and the results do not differ significantly from the expected simulated223

values (Fig. 6C,D, middle rows) and are only marginally worse than the results from the fit using224

independent data (Fig. 6C,D, lowermost rows). The systematic overestimation of infection rates in both,225

scenario 1 and scenario 2, might be reasoned by the fact that in consecutive time series the number of226

infected plants can only increase opposing the independent measures where infection can also decrease as227

they are results from independent time series (e.g. Fig. 2A).228

General discussion229

In both scenarios, the two-pathogen model outclasses the one-pathogen model in predicting both, re-230

sistance time and infection rates. Moreover, our approach allows to use data from just a few (in our231

case: four) consecutive time series reducing the number of pots to be maintained dramatically (in our232

example 4 versus 120 pots). This reduction of experimental units also allows to investigate the suppres-233

sive potential of soils in dependence of other independent variables such as biodiversity, environmental234

changes (e.g. a nutrient or temperature gradient), diversity and abundance of plant beneficial bacteria or235

pesticides (see reference (Latz et al., 2016) as an example). To provide a relatively simple entry into our236

statistical method, we provide the R-code to reproduce all data and statistics presented above. Moreover237

we provide an in-depth manual as additional online file (see section additional files below for further238

information). Our model approach should be easily extendable to other kinds of growth or infection239

models (find other growth models in reference Paine et al., 2012) to e.g. describe pathogen dispersion240

in larger plant communities or to include more than one treatment pathogen to estimate the competition241

ability of different pathogens when used together. The statistical method presented here is also superior to242

classical analytic approaches such as the linearization of the growth model (Neher and Campbell, 1992),243

the estimation of infection rates by analyzing the initial increase in infections (Kushalappa and Ludwig,244

1982), or the arbitrary selection of a single point in time (Maurhofer et al., 1994; Pierson and Weller,245

1994; Postma et al., 2008; Hanse et al., 2011; Latz et al., 2012) as it allows (1) to analyze the complete246

disease progression over time and (2) it allows to correct for naturally occurring pathogens.247

CONCLUSIONS248

Keystone plants as well as diverse plant communities have shown to increase the pathogen suppressive249

potential of soils, an effect that would vanish if soils would be sterilized. However, if standard approaches250

or the one-pathogen infection model is applied, a sterile soil is required to prevent infections by non-251

treatment pathogens and non-sterile soils consequently prevent the correct estimation of the pathogen252

suppressive potential of natural soils. This problem can be overcome by using the two-pathogen model253

presented in this study as it allows for the correct estimation of infection rates and resistance times using254

natural soils. Our method will thus enable to estimate the natural suppressive potential of soils allowing255

to investigate how e.g. keystone plants or specifically mixed plant communities naturally contribute to a256

soil resistance against pathogens.257
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