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Abstract 15 

Identification of the majority of organisms present in human-associated microbial 16 
communities is feasible with the advent of high throughput sequencing technology. 17 
However, these data consist of non-negative, highly skewed sequence counts with a large 18 
proportion of zeros. Zero-inflated models are useful for analyzing such data. Moreover, 19 
the non-zero observations may be over-dispersed in relation to the Poisson distribution, 20 
biasing parameter estimates and underestimating standard errors. In such a circumstance, 21 
a zero-inflated negative binomial (ZINB) model better accounts for these characteristics 22 
compared to a zero-inflated Poisson (ZIP). In addition, complex study designs are 23 
possible with repeated measurements or multiple samples collected from the same 24 
subject, thus random effects are introduced to account for the within subject variation. A 25 
zero-inflated negative binomial mixed model contains components to model the 26 
probability of excess zero values and the negative binomial parameters, allowing for 27 
repeated measures using independent random effects between these two components. The 28 
objective of this study is to examine the application of a zero-inflated negative binomial 29 
mixed model to human microbiota sequence data. 30 
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 40 
1. Introduction 41 
 42 
The human microbiota consists of communities of microorganisms that inhabit the 43 
human body. These communities can significantly affect many aspects of human 44 
physiology. For example, in healthy individuals the microbiota provides a wide range of 45 
metabolic functions that humans lack, making their presence advantageous (Gill et al., 46 
2006; Sommer and Backhed, 2013). In addition, altered microbiotas are associated with a 47 
number of chronic inflammatory disorders including autoimmunity and allergic disorders 48 
(Aas, Gessert and Bakken, 2003), obesity and diabetes (Devaraj, Hemarajata and 49 
Versalovic, 2013). One analytic goal of microbiota studies is to compare the bacterial 50 
communities across groups. The human microbiome project endeavors to apply this to 51 
human associated communities in order to identify bacteria that either adversely affect or 52 
promote health (Group et al., 2009). 53 

Bacteria are generally identified using culturing methods, which assume prior knowledge 54 
of the growth condition required for isolation. With the advent of DNA-based sequencing 55 
technology, identification of organisms present in the community can now be performed 56 
in parallel, which results in significant efficiency compared to culture. The process starts 57 
with the collection of human-associated samples for DNA extraction. The DNA is used to 58 
amplify 16S PCR gene sequences that are taxonomically informative, and data is 59 
collected using next generation sequencing technologies. These data are compared to 60 
reference databases to determine organism identity (taxonomic category). The number of 61 
sequences for a single taxon is then counted for each sample for comparison within a 62 
study.  63 

Microbiota sequence data are high-dimensional with added complexity. They consist of 64 
non-negative, highly skewed sequence counts with a large number of zeros. The number 65 
of zeros in the dataset is a result of combining samples with different bacterial 66 
composition (e.g. disease versus controls or different locations in one subject). Samples 67 
collected from different groups can result in unique organisms, and if an organism is 68 
detected in one but not another sample, insertion of a zero count is performed. The 69 
absence of a count for an organism can be due to the fact that the organism simply isn’t 70 
present in the sample (true zeros) or that the organism is present but sufficiently rare such 71 
that it does not appear in the sequence collection (false zeros). In addition, the number of 72 
total sequences varies from sample to sample. This is a result of an inability to specify 73 
exactly the number of sequences to be measured on a sample using currently available 74 
technology. Note the number of sequences for a given sample is not associated with any 75 
biological feature of the sample, and thus should have a random distribution across 76 
samples. A common approach to account for the variation in the total number of 77 
sequences, is the conversion of the sequence counts to relative abundance (taxon 78 
counts/total counts) within a particular sample (Wagner, Robertson and Harris, 2011).  79 

The zero-inflated negative binomial (ZINB) distribution is a mixture of a binary 80 
distribution that is degenerate at zero and an ordinary count distribution such as negative 81 
binomial. The negative binomial regression can be written as an extension of Poisson 82 
regression and it enables the model to have greater flexibility in modeling the relationship 83 
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between the conditional variance and the conditional mean compared to the Poisson 84 
model. The binary distribution captures the excess number of zeros, which exceed those 85 
predicted by the negative binomial distribution.  86 

Often because of a hierarchical study design or data collection where the observations are 87 
either clustered or outcomes are collected repeatedly from individual subjects, zero-88 
inflated regression models are extended to include random effects. The random-effects 89 
model accounts for the correlation among the repeated measures within a subject.  90 

Few microbiota studies address the additional source of variability attributed to a 91 
repeated measures design, however, more recently, authors have begun to utilize methods 92 
appropriate for this study design (Smith et al., 2012; Wu et al., 2013). In this work, we 93 
apply a generalized mixed model approach to taxa of interest to directly estimate the 94 
within subject correlation in a microbiota study with a repeated measures design. 95 
Moreover, the application of a zero-inflated distribution to microbiota data is novel. 96 
 97 
 98 
2. Method 99 
 100 
2.1 Motivating example 101 
 102 
The dataset is from a study in which pediatric individuals with normal esophageal 103 
mucosa provided samples to capture esophageal microbiota. The different sample types 104 
include the “gold standard” mucosal biopsy and the minimally invasive capsule-based 105 
string collection, the Enterotest™ named Esophageal String Test in that study (EST). 106 
Additionally, an oral string segment and nasal cavity swabs were collected for 107 
comparison. All of the 15 subjects enrolled in this study had normal histological biopsy 108 
findings. Most of the samples had adequate bacterial load for data generation, and only 109 
two nasal swabs did not amplify (i.e., 13 nasal swabs and 15 oral strings, ESTs and 110 
biopsies). Bacterial ribosomal RNA gene amplification products from mucosal biopsies 111 
and from the nasal cavity, oral cavity and EST were produced and sequenced. Additional 112 
details of the study and the data generation process have been previously published 113 
(Fillon et al., 2012). The aim of the study was to compare the esophageal microbiota 114 
identified from biopsies and ESTs, and to show if there are highly similar profiles 115 
between the EST and biopsy samples that were different from samples collected from the 116 
nasal and oral cavity (Fillon et al., 2012).  117 
 118 
2.2 Ethics statement 119 

All human species were collected under approval of the Colorado Multiple Institutional 120 
Review Board (COMIRB). Written informed consent and HIPAA authorization were 121 
obtained from all participants or from parents or legal guardians of participants younger 122 
than 18 years. Assent was obtained from all participants under 18 years. 123 
 124 
2.3 Zero-inflated negative binomial mixed model 125 
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The zero-inflated negative binomial (ZINB) (WH, 1994; Yau, 2003) model assumes there 126 
are two distinct data generation processes, which is determined with the use of a 127 
Bernoulli trial. With probability π, the response of the first process is a zero count, and 128 
with probability of (1-π) the response of the second process is governed by a negative 129 
binomial with mean λ and can also generate zero counts. The overall probability of zero 130 
counts is the combined probability of zeros from the two processes. Thus, a ZINB model 131 
for the response Y can be written as: 132 

P(Y=0) = π + (1-π)(1+kλ)-1/k 133 

P(Y=y) = (1-π)Γ(y+1/k)(kλ)y/[Γ(y+1)Γ(1/k)(1+kλ)y+1/k],  y=1,2,… 134 

Moghimbeigi et al. (Moghimbeigi. A, 2008) developed multi-level ZINB regression for 135 
modeling over-dispersed count data with extra zeros. Let Yij (i=1,2,…m; j=1,2,…ni and136 

∑
=

=
m

i
i nn
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 gives the total number of observations) be the response variable for the i-th 137 

individual subject with j-th repeated measurement, a ZINB mixed model is defined as 138 
follows:  139 

log(λij)=X ij ’β+ui 140 

logit(πij)=Z ij ’γ+vi 141 

where X ij  and Z ij  are vectors of covariates for the negative binomial and the logistic 142 
components, respectively, and β and γ are the corresponding vectors of regression 143 
coefficients. 144 

An offset, the natural logarithm of the total sequence counts, log(Totalij), was added into 145 
the linear predictor function for the negative binomial component to account for the 146 
variable number of sequences per sample inherent in microbiota sequence data. That is, 147 
log (E(Yij)) = X’ ij+ ui+log(Totalij). This can be simplified to show that log (E(Yij)/Totalij) 148 
= X’ ij  + ui. The left side of this equation is, therefore, modeling the log of the relative 149 
abundance as the outcome, assuming the total sequence count is considered a fixed value 150 
rather than a random variable. Note that the parameter πij is not affected by the total 151 
sequence count.   152 

Here, ui and vi are the random intercepts and they are assumed to be independent and 153 
follow the bivariate normal distribution as  154 






































2

2

0

0
,

0

0
~

v

u

i

i BVN
v

u

σ

σ
. 155 

For simplicity, we assume the independence of the two random effects. Although this is 156 
not a necessary assumption, it is commonly used in the previous literature regarding 157 
ZIP/ZINB with random effects (Hur K, 2002; Yau and Lee, 2001). Besides, the process 158 
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that generates the false zeros (dependent on sequencing depth) is independent of the 159 
process that generates the sequence counts.  160 

A ZINB mixed model was applied to each taxa individually to compare the esophageal 161 
microbiota to the other three sample types from the motivating dataset. The expected 162 
relative abundances are estimated by calculating the overall mean E(Y) = (1-π)λ = 163 
exp(X’ β)/[exp(Z’ γ)+1]. Point estimates and p-values for the difference between sample 164 
types were calculated using linear contrasts of the regression parameters. One hundred 165 
and eighty-seven different taxa were identified. Four of these taxa, Gemella, Leptotrichia, 166 
Aggregatibacter and Streptobacillus, were used as examples to represent the range of the 167 
proportion of zero counts. All analyses were performed via the NLMIXED procedure 168 
using SAS 9.3 software (SAS Institute Inc.: Cary, NC, 201 1) . All 169 
corresponding code is included in the Appendix. 170 
 171 
 172 
3. Results 173 

The ZINB mixed model fit was graphically inspected and reasonable describes the 174 
empirical data distribution for the four example taxa (Figure 1). The model fit for 175 
Aggregatibacter resulted in a non-positive definite Hessian matrix; the parameter 176 
estimates for this organism is therefore not presented. The parameter estimates for the 177 
remaining three organisms are given in Table 1. The expected relative abundance in the 178 
biopsy samples for Gemella and Leptotrichia is around 1%, whereas Streptobacillus is 179 
close to 0. In the EST samples, the relative abundance for Streptobacillus is slightly 180 
larger at 0.3% and significantly smaller for Leptotrichia (0.9% versus 0.3%, p-value = 181 
0.05). Leptotrichia also differed between EST and oral samples (p-value = 0.05), and 182 
between nasal and oral samples (p-value = 0.04) but not between EST and nasal (p-value 183 
= 0.68). No other differences were observed across sample types. 184 

The sigmas in Table 1 correspond to the estimated standard deviations for the normally 185 
distributed random subject effects. The variances of the random effect for the zero-186 
inflated part of the model, vi, was significant, indicating that the probability of a false 187 
zero count was different among the subjects. The random effect variance for the count 188 
distribution, ui, was also significant, meaning that some subjects had higher sequence 189 
counts than others. Also, as a sensitivity analysis, a model that included correlation 190 
between the random effects was estimated. This correlation was not significant, thus 191 
providing evidence that the two processes (false zeros and the count process) are 192 
independent. 193 

Examination of the full dataset (187 taxa) yielded estimates for 86 taxa where the mixed 194 
ZINB models successfully converged. However, the final Hessian matrix was not 195 
positive definite for 64 of the models. For those models that could not be estimated, the 196 
majority of the taxa had a large percentage of zero counts with either extremely small or 197 
large non-zero counts. Comparisons across the sample types were similarly performed as 198 
described above across all taxa. Manhattan plots, commonly used in genetic studies, were 199 
used here to display the magnitude of the p-values for each comparison ordered by 200 
taxonomy line, and color-coded by phylum. Organisms close together, within a phylum, 201 
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denote closer phylogenetic relationship. As shown in the Manhattan plots (Figure 2), few 202 
differences were observed in microbiota composition between from ESTs and biopsies. 203 
These results support the use of the EST to sample the microbiota as compared to the 204 
“gold standard”, the mucosal biopsy. Microbiota captured in the nasal cavity samples 205 
revealed differences from EST and oral samples. These results suggest that each 206 
microenvironment harbors specific taxa that distinguish the nasal and oral sites from EST 207 
and biopsy.  208 
 209 
 210 
4. Discussion 211 

The distributions of the microbial sequence counts are highly skewed, non-negative and 212 
have a large proportion of zeros, for which commonly used statistical approaches may not 213 
be appropriate. The large proportion of zeros is intrinsic to the creation of the dataset 214 
rather than the data generating process itself, where the dataset contains sequence counts 215 
for organisms that were observed in at least one sample, if a particular organism was not 216 
observed in a sample it is given a zero value. Therefore, when comparing sequence 217 
counts across groups with diverse communities, a large numbers of zero counts are 218 
expected. Our working hypothesis is two underlying processes explain the absence of a 219 
count for an organism (true and false zeros). 220 

In this paper, the ZINB mixed model was described. This model is useful for analysis of 221 
over-dispersed count data with an excess of zeros and repeated measures. This model 222 
based approach can additionally be easily extended to include potential confounders as 223 
covariates and to test association with continuous variables. The application of the ZINB 224 
to the three selected organisms from the microbiota data demonstrated the usefulness of 225 
this approach when applied to organisms of interest. However, given the complexity of 226 
the model, we are not able to easily apply it to all organisms and it requires adaption and 227 
guidelines for high-dimensional applications. The majority of models that did not 228 
converge were due to an inability to estimate the relatively large number of parameters 229 
with the available data. It is more likely that this model will address more focused 230 
questions related to a small subset of organisms of clinical interest.   231 

To assess the effects of misspecification of random effect distributions in the two parts of 232 
ZINB regression model, other distributional assumptions apart from normality could be 233 
considered in future research. In our study, we separately fit the models to the organisms 234 
identified thus ignoring potential correlation among organisms. We are interested in 235 
extending the modeling to pairs of organisms multivariately or implementation of a 236 
multi-level (two-fold random effects) zero-inflated model. 237 
 238 
 239 
5. Summery 240 
 241 
We have illustrated the novel application of a ZINB model with random effects to a 242 
microbiota dataset with a repeated measures design. The range of distributions present for 243 
the individual taxa in a microbiota dataset additionally provides insight into when the use 244 
of a zero-inflated approach is appropriate.  245 
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Table 1   Parameter estimates (standard errors) from ZINB regression model with 246 
random effects for three organisms selected from the motivating dataset. 247 
 248 

  Gemella Leptotrichia Streptobacillus 
Intercept β0 -4.68 (0.25) -4.48 (0.27) -4.98 (0.62) 

String β1 0.15 (0.33) -1.29 (0.38) 1.15 (0.58) 

Nasal β2 -0.03 (0.40) -0.89 (0.43) -3.86 (1.02) 

Oral β3 0.50 (0.33) 0.002 (0.35) -0.74 (0.81) 

Var (u) σu -0.39 (0.18) -0.30 (0.40) 0.66 (0.49) 

ZI intercept γ0 -17.17 (1540.76) -1.24 (0.70) 3.87 (2.09) 

ZI string γ1 -4.75 (16061) -1.34 (2.20) -1.87 (1.69) 

ZI nasal γ2 16.03 (1540.66) 1.23 (0.92) -7.92 (6.35) 

ZI oral γ3 -4.29 (12174) 0.27 (0.94) -2.28 (1.93) 

Var (v) σv 0.39 (61.12) 2.15E-9 (0.69) 3.10 (1.73) 

Over-dispersion k 0.58 (0.16) 0.36 (0.28) 0.22 (0.67) 
  249 
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Figure 1 Empirical and fitted ZINB distributions of the human microbiota sequence data for each of four organisms. 250 

  

  

 251 
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Figure 2 Manhattan plots for the comparisons across all taxa. The y-axis displays the negative log of the p-value; hence higher 252 
values indicate increased statistical significance. The reference lines in gray are included to designate the usual critical values. The 253 
Manhattan plot is ordered by taxonomy line and the colors correspond to different phyla. For the models that did not converge, the p-254 
values were set to 1.00. 255 

  

  

 256 
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Appendix 315 

 316 

SAS code 317 
%macro ZINB; 318 
/* start values */  319 
proc countreg data=rui.seqdata; 320 
where seq=&j; 321 
model seq_count=string nasal oral/dist=zinb offset= ltotal; 322 
zeromodel seq_count ~ string nasal oral/link=logist ic; 323 
ods output ParameterEstimates=pe; 324 
run; 325 
 326 
proc sql; 327 
select estimate as b0 into: b0 328 
 from pe where Parameter= 'Intercept' ; 329 
select estimate as b1 into: b1 330 
 from pe where Parameter= 'string' ; 331 
select estimate as b2 into: b2 332 
 from pe where Parameter= 'nasal' ; 333 
select estimate as b3 into: b3 334 
 from pe where Parameter= 'oral' ; 335 
select estimate as c0 into: c0 336 
 from pe where Parameter= 'Inf_Intercept' ; 337 
select estimate as c1 into: c1 338 
 from pe where Parameter= 'Inf_string' ; 339 
select estimate as c2 into: c2 340 
 from pe where Parameter= 'Inf_nasal' ; 341 
select estimate as c3 into: c3 342 
 from pe where Parameter= 'Inf_oral' ; 343 
select estimate as k into: k 344 
 from pe where Parameter= '_Alpha' ; 345 
quit; 346 
 347 
/* independent random effects */  348 
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proc nlmixed data=rui.seqdata tech=newrap; 349 
where seq=&j; 350 
parms b0=& b0.  b1=& b1.  b2=& b2.  b3=& b3.  c0=& c0.  c1=& c1.  351 
c2=&c2.  c3=& c3.  k=& k.  su= 1 sv= 1; 352 
eta = b0 + b1*string + b2*nasal + b3*oral + ltotal + ui; 353 
lambda = exp(eta); 354 
eta_p = c0 + c1*string + c2*nasal + c3*oral + vi; 355 
p0 = 1/( 1+exp(-eta_p)); 356 
 357 
/* define ZINB log likelihood */  358 
if seq_count= 0 then ll = log( p0 + ( 1-359 
p0)/( 1+k*lambda)**( 1/k) ); 360 
else ll = log(( 1-p0)) + seq_count*log(k*lambda) - 361 
(seq_count+( 1/k))*log( 1+k*lambda) + lgamma(seq_count+( 1/k)) 362 
- lgamma( 1/k) - lgamma(seq_count+ 1); 363 
model seq_count ~ general(ll); 364 
random ui vi  ~ normal ([ 0, 0], [su*su, 0, sv*sv]) 365 
subject=Subject; 366 
run; 367 
%mend; 368 
 369 
%macro driver (); 370 
%do j= 1 %to 187; 371 
%ZINB; 372 
%end; 373 
%mend; 374 

 375 

 376 
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