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EEG is a rich source of information regarding brain functioning, and is the most lightweight

and affordable method of brain imaging. However, the pre-processing of EEG data is quite

complicated and most existing tools present the experimenter with a large choice of

methods for analysis, but no framework for method comparison to choose an optimal

approach. Additionally, many tools still require a high degree of manual decision making

for, e.g. the classification of artefacts in channels, epochs or segments. This introduces

excessive subjectivity, is slow, and is not reproducible. Batching and well-designed

automation can help to regularise EEG preprocessing, and thus minimise human effort,

subjectivity, and consequent error. The Computational Testing for Automated

Preprocessing (CTAP) toolbox facilitates: i) batch processing that is easy for experts and

novices alike; ii) testing and comparison of automated methods. CTAP uses the existing

data structure and functions from the well-known EEGLAB tool, based on Matlab, and

produces extensive quality control outputs.
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ABSTRACT

EEG is a rich source of information regarding brain functioning, and is the most lightweight and

affordable method of brain imaging. However, the pre-processing of EEG data is quite complicated

and most existing tools present the experimenter with a large choice of methods for analysis,

but no framework for method comparison to choose an optimal approach. Additionally, many

tools still require a high degree of manual decision making for, e.g. the classification of artefacts

in channels, epochs or segments. This introduces excessive subjectivity, is slow, and is not

reproducible. Batching and well-designed automation can help to regularise EEG preprocessing,

and thus minimise human effort, subjectivity, and consequent error. The Computational Testing for

Automated Preprocessing (CTAP) toolbox facilitates: i) batch processing that is easy for experts

and novices alike; ii) testing and comparison of automated methods. CTAP uses the existing

data structure and functions from the well-known EEGLAB tool, based on Matlab, and produces

extensive quality control outputs.

Keywords: electroencephalography, computation, testing, automation, preprocessing, EEGLAB,

signal processing

INTRODUCTION1

Measurement of human electroencephalography (EEG) is a rich source of information regarding2

certain aspects of brain functioning, and is the most lightweight and affordable method of brain3

imaging. However, among those types of human electrophysiology data recorded from surface4

electrodes (to which EEG is most similar in terms of recording methods, see e.g. Cowley et al.5

(2016) for a review), EEG data is comparatively difficult to pre-process. The qualities which cause6

difficulty for EEG analysis come in two classes: A) number and complexity of operations, and B)7

size and indeterminacy of the data.8

Specifically in class A, normally many operations are required, which is time-consuming9

and therefore costly. Many of these operations require repeated human judgements, leading to10

subjectivity, non-reproducibility of outcomes, and non-uniformity of decisions. Compared to, e.g.,11

counting peaks in an electrocardiogram signal, most variables of interest are relatively complicated12

derivations from the raw signal, implying more room for error in analysis. Related to that, the13

relatively complex ’standard’ EEG processing operations are harder to debug.14

In class B, for most research applications we can see that EEG data is high-bandwidth, systems15

which consist of 256+ channels are available. Due to the inverse problem it is not possible to16

precisely determine a ’ground truth’ for the signal, i.e. a unique relationship to neural sources. The17

signal is also highly variable between individuals, and even between intra-individual recording18

sessions Dandekar et al. (2007).19

Bigdely-Shamlo et al. (2015) emphasise the need for tools to process EEG data in an efficient20

manner, and have pointed out that ”artifact removal and validation of processing approaches remain21

a long-standing open problem for EEG”. While some standards have been suggested Keil et al.22

(2014), there remains a deficit of tools and methods to support standardisation. These issues illustrate23

the need for a software tool that helps to minimise human effort, subjectivity, and consequent error.24

Batching and careful automation can help to regularise and streamline EEG pre-processing, for25

which we present a solution in this paper.26
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Approach27

We present the Computational Testing Automated Preprocessing (CTAP) toolbox, available from28

GitHub 1. CTAP is built on Matlab (r2015a and higher) and EEGLAB v13.4.4b (Delorme and29

Makeig, 2004). The main aim of CTAP is to regularise and streamline EEG preprocessing. We30

regularise with a scripted data-processing pipeline that ensures the treatment of each file is the31

same. We streamline by separating the process of building functions from that of exploring and32

tuning the data. These features improve reproducibility, and separate the menial and important tasks,33

respectively.34

In practice, the CTAP toolbox provides functionality for i) batch processing using scripted35

EEGLAB-compatible functions; ii) testing and comparison of automated methods based on extensive36

quality control outputs. In more detail, the core code supports scripted specification of a pipeline37

of diagnostic and artefact correction steps, with robust looping execution of steps and automated38

output of ’quality control’ (QC) logs and imagery (more details provided below in Results). This39

helps to maintain transparency and traceability of all operations performed for every EEG file. After40

specification the pipeline can be adjusted to respond to QC issues.41

Although CTAP works as a batch processing pipeline, it supports seamless integration of manual42

operations. This works such that the user can define a pipeline of operations, insert save points at43

appropriate steps, and work manually on that data before passing it back to the pipe.44

CTAP is focused on leveraging existing methods that are compatible with EEGLAB-structured45

data, and on providing a simple interface to plug in different styles of EEG signal processing. The46

contribution we present is to extend EEGLAB for automated batch processing. This facilitates47

reproducible brain imaging research with the following features:48

• script based automated batch processing (no GUI)49

• time consuming bookkeeping of intermediate analysis files and script execution is automated50

• existing EEGLAB based analysis methods can be easily integrated51

• automated QC output help to spot problems (see section Peeks)52

• includes ready made tools for feature storage and export (see section CTAP outcomes)53

In summary, CTAP lets the user focus on content, instead of time-consuming implementation of54

foundation functionality. In the rest of the paper, we will describe how CTAP toolbox does this, and55

provide a motivating example of its application.56

After we address related work, section Materials & Methods details the architecture and usage of57

CTAP. Section Results then describes the technical details and outcomes of a motivating example58

application. In section Discussion we set out the philosophy and possible uses of CTAP toolbox,59

including development as well as preprocessing; and describe issues and potential directions for60

future work.61

RELATED WORK62

Many methods are available from the literature to facilitate automated preprocessing (for a review63

see, e.g. Barua and Begum (2014)), and the rate of new contributions is also high. For example,64

we conducted a search of the SCOPUS database for articles published after 1999, with ”EEG”65

1https://github.com/bwrc/ctap
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and ”electroencephalography” in the title, abstract, or keywords, plus ”Signal Processing” or66

”Signal Processing, Computer-Assisted” in keywords, and restricted to subject areas ”Neuroscience”,67

”Engineering” or ”Computer Science”. The search returned over 300 hits, growing year-by-year68

from 5 in 2000 up to a mean value of 36 between 2010 and 2015. Non-systematic reviews of the69

software tools available have been made by Agapov et al. (2016); Baillet et al. (2010), and in a70

milestone special issue, Baillet et al. (2011) gathered a large number of the academic contributions71

available at that time. This special issue is quite skewed toward tools for feature extraction, which72

illustrates again the need for better/more up-to-date solutions for the fundamental stages of EEG73

processing.74

Among tools dedicated to EEG processing, EEGLAB (Delorme and Makeig, 2004) stands out75

for popularity and high number of third-party contributors, to the degree that it is considered by76

some to be a de facto standard. However EEGLAB is a graphical user interface (GUI)-based tool,77

which limits the scale at which it can be used.78

Other popular tools focus on a more diverse set of signals, especially including magnetoen-79

cephalography (MEG). Brainstorm Tadel et al. (2011), Fieldtrip (Oostenveld et al., 2011), and80

EMEGS (ElectroMagnetic EncaphaloGraphy Software) Peyk et al. (2011) are all open source tools81

for EEG and MEG data analysis. Like EEGLAB, these tools are all free and open source, but82

based on the commercial platform Matlab (Natick, MA), which can be a limitation in some contexts83

due to high licence cost. Brainstorm in particular, but also the others, have originated with an84

emphasis on cortical source estimation techniques and their integration with anatomical data. More85

recently, Bigdely-Shamlo et al. (2015) released the PREP pipeline for Matlab, which also uses the86

EEGLAB data structure but is aimed only at experiment-induced artefacts and not those deriving87

from subject-activity such as, e.g. blinks.88

The most notable commercial tool is Brainanalyzer (Brain Products GmbH, Munich, Germany),89

a graphical programming interface with a large number of features. NeuroPype is a commercial90

Python-based graphical programming environment for biosignal processing. It is only available as a91

closed beta and, to the authors’ knowledge, has not been documented in a peer reviewed publication.92

Tools which are completely free and open source are fewer in number and have received much93

less supplemental input from third parties. Python tools include MNE-Python for processing MEG94

and EEG data (Gramfort et al., 2013), and PyEEG (Bao et al., 2011), a module for EEG feature95

extraction. MNE, like Brainstorm and Fieldtrip, is primarily aimed at integrating EEG and MEG96

data. Several packages exist for the R computing environment, e.g. Tremblay and Newman (2015),97

however these do not seem to be intended as general-purpose tools.98

We have chosen to extend EEGLAB because it has received many contributions to the core99

functionality, and is thus compatible with a good portion of the methods of EEG processing from100

the literature. Some compatible tools from the creators of EEGLAB at the Swartz Centre for101

Computational Neuroscience (SCCN) are detailed in Delorme et al. (2011), including tools for102

forward head modelling, estimating source connectivity, and online signal processing. Other key103

third-party preprocessing contributions to EEGLAB include SASICA (Chaumon et al., 2015),104

FASTER (Nolan et al., 2010), and ADJUST (Mognon et al., 2011), all semi-automated solutions for105

selection of artefactual data. The latter two are featured in CTAP as options for detecting bad data.106

This integration of existing solutions illustrates the key difference of CTAP: it aims to extend an107

existing rich ecosystem of EEG-specific methods, by meeting a clear need within that ecosystem.108
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Figure 1. Relationship of the time domain data constructs dealt with in CTAP.

MATERIALS & METHODS109

The core activity of CTAP is preprocessing EEG data by cleaning artefacts, i.e. detection and either110

correction or removal of ’bad’ data, that is not likely to be attributable to neural sources. CTAP111

is able to operate on three different temporal granularities: channel, epoch and segment. Channel112

operations affect the entire time series at one spatial location. Epoch operations are performed113

on one or several epochs produced by EEGLAB epoching function. Finally, segments are fixed114

time-windows around specfic events which can be extracted from both channel and epoch levels, see115

Figure 1. An example of a typical segment could be a blink artefact with a window wide enough to116

include the entire blink waveform. Further functionality is provided for independent component117

analysis (ICA)-based methods. Artefact-detection methods based on some flavour of ICA algorithm118

have been shown to outperform temporal approaches Delorme et al. (2007). It was also shown that119

independent components (ICs) are valid representations of neural sources (Delorme et al., 2012).120

CTAP can thus help to combine the existing methods for EEG signal processing.121

Outline of usage122

Figure 2 shows the core components of CTAP. The colored boxes represent entities that the user123

has to specify in order to use CTAP. These are:124

• what analysis functions to apply and in which order (analysis-pipe)125

• parameters for the analysis functions (parameters)126

• which EEG measurements/files to process (what-to-analyze)127

Typically the analysis is run by calling a single script that defines all of the above and passes128

these on to a function that performs all requested analysis steps on all specified measurements. In129

the following, we describe in more detail how the configurations are made, how the pipe is executed,130

what outputs it provides and what options the user has to control the pipe. The complete details of131

all these aspects of CTAP are provided in the wiki pages of the GitHub repository, which will be132

referenced below as ’the wiki’ 2.133

Configuration134

Let us assume that the main analysis script is stored in a file called runctap projectX.m. First135

of all, this file specifies which analysis steps are performed in which order. An example of an136

analysis step is e.g. filtering or bad channel detection. Analysis steps can further be grouped into137

sets of steps referred to as step sets. An intermediate save is done after each step set, providing138

2https://github.com/bwrc/ctap/wiki
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analysis pipeparameters input files

runctap()

* list datasets

* load config

* defines analyis pipe

* starts pipe

cfg()

* set parameters

cfg_ctap_functions()

* check parameters

* fill-in parameters

* sanity checks

ctap_pipeline_looper()

* executes the pipe

* handles errors

* loads and stores data

EEGout = ctapeeg_some step(EEGin)

* actual implementation

* standaloneCTAP_some step()

* wrapper to enable pipe building

ctapeeg_some step()

CTAP_some step()

...

EEGout = any_analysis_step(EEGin)

* actual implementation

* standalone

any_analysis_step()

Measurement config (MC)

* autogenerated or

user defined

* documents source data

Figure 2. An overview of the core logic of CTAP. ’parameters’, ’analysis pipe’ and ’input files’

illustrate the parts user must specify. White boxes represent Matlab functions, with the

function-name on top and bulleted notes below. The functions which require user attention, cfg()

and runctap(), have bold borders and can be freely named by the user. For good practice, these

two functions take the name of the analysis pipe they implement, e.g. runctap mypipe() .

a possibility run the whole pipe in smaller chunks. Below is a sample definition of a very small139

analysis pipe with two step sets:140

i = 1; %stepSet 1141

stepSet(i).funH = { @CTAP_load_data,...142

@CTAP_load_chanlocs,...143

@CTAP_tidy_chanlocs,...144
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@CTAP_reref_data,...145

@CTAP_blink2event};146

stepSet(i).id = [num2str(i) ’_load_WCST’];147

stepSet(i).srcID = ’’;148

149

i = i+1; %stepSet 2150

stepSet(i).funH = { @CTAP_filter_data};151

stepSet(i).id = [num2str(i) ’_filter’];152

stepSet(i).srcID = ’’;153

The core function for pipe processing is designed to use functions named CTAP *(), as these154

are defined to have a fixed interface. They take two arguments: data (EEG) and configuration struct155

(Cfg); and they return the same after any operations. Some CTAP *() perform all operations156

(e.g. call EEGLAB functions) directly, while others call a corresponding ctapeeg () function157

that actually implements the task. Hence CTAP *() functions can be regarded as wrappers that158

facilitate batch processing (uniform interface) and also implement e.g. the plotting of quality control159

figures. Since they are quite simple, new CTAP *() functions can easily be added by the user to160

include new analysis steps, according to the provided CTAP template function(). Users can161

also call the ctapeeg () functions directly as part of their own custom scripts, since these are162

meant to be used like e.g. any EEGLAB analysis function.163

Once the analysis functions have been defined the next step is to define parameters for the whole164

pipe, and for each analysis function. Default parameters are provided for most cases, but it is optimal165

to fine tune the behaviour. Like before, parameter information is passed to CTAP using a struct.166

It is usually practical to store the struct in a separete m-file, lets say ctapcfg projectX.m. A167

typical minimal contents of this file might be:168

function [Cfg, FP] = cfg_minimal(dataRoot, branchID)169

170

%% Analysis output (data, quality control) storage location171

Cfg.env.paths.analysisRoot = fullfile(dataRoot,’ctap’,branchID);172

173

%% Channel specifications174

Cfg.eeg.chanlocs = fullfile(dataRoot,’channel_locations_acticap_32.ced’);175

Cfg.eeg.reference = {’TP10’ ’TP9’}; % EEG reference channels to use176

177

%% Configure analysis functions178

179

% Load data180

FP.load_data = struct(’type’, ’neurone’);181

182

% Amplitude thresholding from continuous data (bad segments)183

FP.detect_bad_segments = struct(’amplitudeTh’, [-100, 100]); %in muV184

The third requirement to run the pipe is input data. In CTAP the input data are specified185

using a table-like structure called measurement config that lists all available measurements, the186

corresponding raw EEG files etc. The reason for using a dedicated data structure is that it allows187

for an easy selection of what should be analysed and it also helps to document the project. The188

7/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2140v1 | CC BY 4.0 Open Access | rec: 17 Jun 2016, publ: 17 Jun 2016



measurement config structure can be either created manually, or it can be auto-generated based189

on a list of files or a directory (for details see the wiki). The former allows for full control and190

enforces project documentation whereas the latter is intended for effortless one-off analyses. Both191

spreadsheet and SQLite formats are supported.192

In the last required step before pipeline execution, the configuration struct and the parameter193

struct are checked, finalised and integrated by cfg ctap functions().194

Pipe execution195

Once all the prequisites listed above have been specified, the pipe is run using CTAP pipeline looper().196

This function takes care of loading the correct (initial or intermediate) data set, applying the specified197

functions from each step set, and intermediate saving of the data. The looper manages error handling198

such that it is robust to crashing (unless in Debug mode), and will simply skip the remaining steps199

for a crashed file. Other settings determine how to handle crashed files at later runs of the pipe (see200

Documentation).201

Analysis results are saved into the Cfg.env.paths.analysisRoot directory. A typical202

structure of this directory is shown in Figure 3.203

Figure 3. Typical directory tree.

First five directories contain intermediate results; their names are taken from the step set IDs204

as defined by the user. Directory export contains exported feature data (txt, csv or SQLite205

format), features computed EEG features in Matlab format, logs log files from each run, and206

quality control contains quality control plots. The quality control plots reflect the analysis207

steps chosen by the user.208

Apart from running the complete pipe at once the user has many options to run just a subset209

of the pipe, analyse only certain measurements, or otherwise adjust usage. Table 1 gives some210

examples.211

CTAP outcomes212

Visual evaluation CTAP automatically produces plots that help the user to answer questions such213

as: what has been done, what the data looks like, and was an analysis step successful or not. A full214

8/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2140v1 | CC BY 4.0 Open Access | rec: 17 Jun 2016, publ: 17 Jun 2016



Table 1. Some advanced ways to use the pipe.

Usage Op-

tions

Possible Reasons How

Subset step

sets

investigate a bug; recompute

only intermediate results

set run sets to subset index, e.g.

Cfg.pipe.runSets = 3:5

Run test step

set

test new feature before includ-

ing in pipe

add step set with id ’test’, then

set Cfg.pipe.runSets =

’test’

’Rewire’ the

pipe

test an alternative ordering of

existing steps or temporarily

change the input of some step

set the .srcID of a given step set

equal to the id of another

Measurement

configuration

filter

run pipe for: subset of test

subjects, or: measurements

classes with separate config-

urations, e.g. pilots

use function struct filter()

Run in debug

mode

develop new method in CTAP set CTAP pipeline looper pa-

rameter ’debug’, true

Overwrite ob-

solete results

update part of pipe: write new

step set output over existing

files

set CTAP pipeline looper pa-

rameter ’overwrite’, true

Write files

from failed

step sets

check partial outcome of step

set

set CTAP pipeline looper pa-

rameter ’trackfail’, true

Turn off inter-

mediate saves

extract numerical/visual ana-

lytics without producing up-

dated files

set stepSet(x).save

= false; set

stepSet(x+1).srcID =

stepSet(x-1).id

list of features can be found in the wiki documentation. Selected visualizations are described in215

more detail in Section Results. Examples include:216

• blinks: detection quality, blink ERP217

• bad segments: snippets of raw EEG showing detections218

• EEG amplitudes: amplitude histograms, peeks219

• filtering: PSD comparison220

• ICA: IC scalpmap contact sheets, zoom-ins of bad components221

Quantitative evaluation Every major pipe operation writes a record to the main log file. Data222

rejections, including channels, epochs, ICs or segments, are summarised here and also tabulated223
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in a separate ’rejections’ log. Values are given for how much data was marked as bad, and what224

percentage of the total was bad. If more than 10% of data is marked bad by a single detection, a225

warning is given in the main log.226

In addition, useful statistics of each channel are logged at every call to CTAP peek data(),227

based on the output of the EEGLAB function signalstat(). Datapoints include trimmed and228

untrimmed versions of mean, median, standard deviation as well as skewness, kurtosis and normality229

testing.230

Feature export Extracted EEG features are stored internally as Matlab structs that fully document231

all aspects of the data. These can be used to do statistical analysis inside Matlab. However, often232

users like to do feature processing in some other environment such as R or similar. For this, CTAP233

provides export functionality that transforms the EEG feature mat files into txt/csv text files, and/or234

an SQLite database. For small projects (for example, up to 10 subjects and 16 channels) txt/csv235

export is feasible but for larger datasets SQLite is more practical.236

Data formats CTAP uses a number of custom data formats for configuration and data export237

purposes. Examples include the measurement config file for storing information related to available238

raw EEG files, measurement structure specifications and internal feature storage format used for239

storing features prior to export. All these are documented in detail in the wiki pages. However, as240

demonstrated by the motivating example (section Results), a basic analysis using CTAP does not241

require any knowledge of these.242

RESULTS243

We describe a motivating example that can also be used as a starting point for one’s own analysis244

pipe.245

Data. We use synthetically generated data with blink, myogenic (EMG), and channel variance246

artefacts to demonstrate the usage and output of CTAP. The example is part the repository (see247

function runctap manuscript.m) and the details of the synthetic data generation process are248

documented in the wiki3.249

Pipeline. In the following sections, we show some example output of CTAP applied to the250

synthetic dataset, based on the analysis-pipe step sets shown below. The analysis steps marked251

red are next discussed in more detail. For each step, we will first step through the data processing252

outcomes, then illustrate the QC output generated.253

stepSet(1).funH = { @CTAP_load_data,...

@CTAP_load_chanlocs,...

@CTAP_tidy_chanlocs,...

@CTAP_reref_data,...

@CTAP_blink2event,...

@CTAP_peek_data};

stepSet(2).funH = { @CTAP_filter_data,...

@CTAP_select_evdata,...

@CTAP_run_ica};

3https://github.com/bwrc/ctap/wiki/syndata-generation
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stepSet(3).funH = { @CTAP_detect_bad_comps,...

@CTAP_reject_data,...

@CTAP_peek_data};

stepSet(4).funH = { @CTAP_detect_bad_channels,...

@CTAP_reject_data,...

@CTAP_detect_bad_segments,...

@CTAP_reject_data,...

@CTAP_interp_chan,...

@CTAP_peek_data};

stepSet(5).funH = { @CTAP_compute_psd,...

@CTAP_extract_bandpowers,...

@CTAP_extract_PSDindices};

Blinks254

Detection The function CTAP blink2event() creates a set of new events with latencies and255

durations matched to detected blinks.256

The current blink detection implementation is based on the EOGERT algorithm by Toivanen257

et al. (2015) 4. The algorithm finds all local peaks in the data, constructs a criterion measure and258

classifies peaks into blinks and non-blinks based on this measure.259

Blinks can either be rejected or corrected using a method combining blink template matching260

and Empirical Mode Decomposition (EMD) based on high-pass filtering of ICs by Lindsen and261

Bhattacharya (2010). Thus, in this pipe the blink events are used by CTAP detect bad comps()262

and CTAP reject data() to detect and correct the blinks.263

Visualization The EOGERT detection process visualizes the classification result for QC purposes,264

as shown in Figure 4. Such figures make it easy to spot possible misclassifications.265

The success of the blink correction is evaluated using blink Evoked Response Potentials (ERPs)266

(see e.g. Frank and Frishkoff (2007)) as shown in Figure 5. The correction method clearly removes267

the blink but leaves the underlying EEG largely intact. Some baseline shifts are visible but distortions268

to oscillatory activity are minor.269

Peeks270

Peek logic The CTAP peek data() function helps to regularize data inspection. Visual in-271

spection of raw data is a fundamental step in EEG evaluation. A logical approach is to compare272

the raw data from before and after any correction operations. If ICA-based corrections are made,273

the same approach can also be used on the raw plot of IC data. CTAP aims to expedite this step.274

CTAP peek data() will generate raw data plots of randomly-chosen time-points 5. These ’peek-275

points’ are embedded as events which can then be plotted at a later stage in the pipe, generating true276

before-after comparisons even if the data time course changes (due to, e.g., removal of segments). If277

no peek-point data remains at the ’after’ stage, no comparison can be made; however if peek-points278

are randomly chosen, then such an outcome is itself a strong indication that the data is very bad, or279

the detection methods are too strict.280

4See code repository at https://github.com/bwrc/eogert
5Points can also be set by the user, e.g. chosen from existing events.
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Figure 4. An example of the criterion used to detect blinks. Vertical axis shows the criterion value

while horzontal axis is random data to avoid overplotting. The classification is done by fitting two

Gaussians using the EM algorithm and assigning labels based on likelihoods.

CTAP peek data() will also estimate a set of statistics for every data channel, saved in281

Matlab table format and also aggregated to a log file.282

EEG amplitudes Many EEG artefacts cause large changes in signal amplitudes and consequently283

several basic yet effective EEG artefact detection methods are based on amplitude thresholding. On284

the other hand measurement conditions and test subject can affect the amplitude of the recorded285

signal. Hence accurate knowledge of the average signal amplitude is often important. CTAP286

includes plotting routines for signal amplitude histograms as well as for raw EEG data.287

A sample signal amplitude histogram produced using CTAP is show in Figure 6. It can be used288

e.g. to detect loose electrodes or in finding a suitable threshold for bad segment detection.289

Bad IC detection & rejection290

CTAP usage logic suggests that one or more detect operations for a given data type, e.g. chan-291

nels, or epochs, or components, should be followed by a reject operation. It is bad practice to292

detect bad data across modalities, e.g. channels and epochs, before rejecting any of it, because293

artefacts of one type may affect the other. Thus we describe CTAP detect bad comps() and294

CTAP reject data() together.295

12/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2140v1 | CC BY 4.0 Open Access | rec: 17 Jun 2016, publ: 17 Jun 2016



Figure 5. An example of the blink ERP. The left panel shows the blink centered ERP before

correction with a clearly visible blink signal. The right panel shows the same plot after correction.

The blink is clearly removed but the underlying EEG remains largely unaffected because the

correction was done in IC base.

Detection CTAP contains several options to detect artefactual ICs (for details, see function296

documentation), similarly to other CTAP detect bad *() functions. Whichever option is used,297

a field is created in the EEG struct to store the results. Another field collects all detections, pointing298

to the results. The logic that is then available to the user is to call one or many detection functions,299

possibly pooling the results of several approaches to bad data detection, and then pass the aggregate300

results to the CTAP reject data() function.301

Rejection CTAP reject data() checks the detect field to determine which data type is due302

for rejection, unless explicitly instructed otherwise. Based on the data labelled by prior calls to303

detection functions, CTAP reject data() will call some internal EEGLAB function such as304

pop select(), to remove the bad data.305

Visualization Upon rejection EEGLAB plotting tools are used to produce plots that characterize306

the rejected components. An example of such plot is given in Figure 7.307
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Figure 6. EEG amplitude histograms for eight channels. Fitted normal pdf is shown in red solid

line, fitted normal pdf using trimmed sd in black solid line, upper and lower 2.5 % quantiles are

vertical black solid lines, and distribution mean is vertical dashed blue line. Bad channels B6, B9

are highlighted red.

DISCUSSION308

Philosophy, Benefits and Issues309

The overall goal of CTAP is to improve on typical ways of preprocessing high-dimensional EEG310

data through a structured framework for automation. Automation both reduces the work load of311

the user and also removes subjectivity from the analysis. CTAP output can also be more easily312

reproduced because manual processing steps have been minimized. This enables the user to perform313

multiple comparative analyses for testing the robustness of the results against different preprocessing314

methods.315

CTAP provides many default parameters, and streamlines many features into a handful of316

wrapper functions. This is in order to facilitate rapid build and testing of analysis pipes. The317

philosophy is to prevent users becoming ’stuck’ in a single approach to the data because they have318

invested much in building the preprocessing code for it from scratch; or worse, because they have319

completed a laborious manual processing task and cannot afford to repeat it. However, the user320

should not usually rely on defaults, because the optimal choice often depends on the data. This321

is also one reason to have separate files for pipeline and parameters. Separating these by files is322

convenient for e.g. testing multiple parameter configurations.323

As different analysis strategies and methods can vary greatly the best approach was to implement324

CTAP as a modular system. Each analysis can be constructed from discrete steps which can be325

implemented as standalone functions. The only requirement is to supress all types of pop-ups or326

GUI-elements which would prevent the automatic execution of the analysis pipe. It is also up to the327

user to call the functions in the right order (e.g., not calling averaging before epoching). As CTAP328

is meant to be extended with custom analysis functions the interface between core CTAP features329

and external scripts is also well defined in the documentation.330

CTAP never overrides the user’s configuration options, even when these might break the pipe.331

For example, CTAP reject data() contains code to autodetect the data to reject. However332

the user can set this option explicitly, and can do so without having first called any corresponding333
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Figure 7. An example of a plot describing a bad ICA component - in this case the algorithm used

to find the bad data was the blink detection procedure described above. Shown are component scalp

map (top left), component power spectrum (top right), event-related spectral potential (ERSP) plot

(bottom).

detection function, which will cause preprocessing on that file to fail. Allowing this failure to happen334

is the most straightforward approach. Combined with an informative error message the user gets335

immediate feedback on what is wrong with the pipe.336

On the other hand, CTAP does provide several features to handle failure gracefully. As noted, the337

pipe will not crash if a single file has an unrecoverable error, although that file will not be processed338

further. This allows a batch to run unsupervised. Then, because no existing outputs are overwritten339

automatically, you can easily ’mop up’ the files that failed without redoing all those that succeeded,340

if the fault is identified. Because pipes can be divided to step sets, the ’tricky’ processes that are341

prone to failure can be isolated and reduce the overall time spent on crash recovery. CTAP also342

allows crashed files to be saved at the point of failure, permitting closer analysis of the problematic343

data.344

In contrast to most analysis plugins built on top of EEGLAB, no graphical user interface (GUI)345

was included in CTAP. While GUIs have their advantages (more intuitive data exploration, easier346

for novice users, etc) it would have been very difficult and time consuming to add one to a complex a347

system like CTAP. The GUI also sets limits to configurability and can cause problems for automation348
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if analysis pipes is executed on a hardware with no graphical capabilities. The absence of GUI also349

makes the development of extensions easier as there are fewer dependencies to worry about.350

In contrast to many other physiological data analysis tools, CTAP is designed to meet a very351

focused goal with a specific approach. This does however create some drawbacks. Compared to352

scripting ones own pipeline from scratch, there are usage constraints imposed by the heavy use of353

struct passing interfaces. There is a learning curve for using some non-obvious features and it can354

be difficult to understand some the more complex underlying processes.355

CTAP is also built to enable easy further development by third parties, by using standardised356

interfaces and structures. This was a feature of original EEGLAB code, but contrasts with many357

of the EEGLAB-compatible tools released since, where functionality was often built in an ad hoc358

manner. The main requirement for development is to understand the content and purpose of the359

EEG.CTAP field (which is extensively documented in the wiki), and the general logic of CTAP.360

Developers can easily extend the toolbox by using (or emulating) the existing ctapeeg *()361

functions, especially the ctapeeg detect *() functions, which are simply interfaces to external362

tools for detecting artefacts. Existing CTAP *() functions can be relatively more complex to363

understand, but the existing template provides a guideline for development with the correct interface.364

Future work365

CTAP is far from finalized, and development will continue after the initial release of the software.366

Many publications have described methods for processing EEG for different purposes, such as367

removing artefacts, estimating signal sources, analysing event-related potentials (ERPs), and so368

on. However despite the wealth of methodological work done, there is a lack of benchmarking, or369

tools for comparison of such methods. The outcome is that the most reliable way to assess each370

method is to learn how to it works, apply it, and test the outcome on one’s own data: this is a highly371

time-consuming process which is not competitive with simply performing the bulk of preprocessing372

in a manual way, as seems to remain the ’gold standard’. The effect of each method on the data is373

also not commonly characterised, such that methods to correct artefacts can often introduce noise to374

the data, especially where there was no artefact (false positives).375

In section Approach we described the aim to test and compare automated methods for prepro-376

cessing. This is still work in progress, as we are building an extension for CTAP that improves377

testing and comparison of preprocessing methods by repeated analyses on synthetic data. This378

extension, tentatively titled Handler for sYnthetic Data and Repeated Analyses (HYDRA), will379

use synthetic data to generate ground truth controlled tests of preprocessing methods. It will have380

capability to generate new synthetic data matching the parameters of the lab’s own data. This381

allows experimenters to select the best methods for their purpose, or developers to flexibly test and382

benchmark their novel methods.383

Another desirable but not vital future task is to expand the QC output, to include functionality384

such as statistical testing of detected bad data, for the experimenter to make a more informed385

decision. Although statistical testing is already implied in many methods of bad data detection, it is386

not visible to users.387

We will also provide an automated tool to compare output from two (or more) peeks, to help388

visualize both changes in baseline level as well as changes in local waveforms.389
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CONCLUSIONS390

The ultimate aims of CTAP are: a) to facilitate processing of large quantities of EEG data; b)391

to improve reliability and objectivity of such processing; c) to support development of ’smart’392

algorithms to tune the thresholds of statistical selection methods (for bad channels, epochs, segments393

or components) to provide results which are robust enough to minimise manual intervention. With394

this contribution, we have addressed aim a), partly also b), and laid the groundwork to continue395

developing solutions for c). CTAP will thereby help to minimise human effort, subjectivity and396

error; and facilitate easy, reliable batch processing for experts and novices alike.397
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Peyk, P., De Cesarei, A., and Junghöfer, M. (2011). ElectroMagnetoEncephalography software:458

overview and integration with other EEG/MEG toolboxes. Computational intelligence and459

neuroscience, 2011:861705.460

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm: a user-friendly461

application for MEG/EEG analysis. Computational intelligence and neuroscience, 2011:879716.462

Toivanen, M., Pettersson, K., and Lukander, K. (2015). A probabilistic real-time algorithm for463

detecting blinks , saccades , and fixations from EOG data. Journal of Eye Movement Research,464

8(2):1–14.465

Tremblay, A. and Newman, A. J. (2015). Modeling nonlinear relationships in ERP data using466

mixed-effects regression with R examples. Psychophysiology, 52(1):124–39.467

18/18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2140v1 | CC BY 4.0 Open Access | rec: 17 Jun 2016, publ: 17 Jun 2016


