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ABSTRACT 10 

Remote sensing techniques provide a new way to obtain hydrological variables (i.e. rainfall and soil moisture), 11 

mainly in poorly instrumented areas that are fundamental for natural hazard assessment and mitigation. The 12 

even increasing availability of satellite derived products characterized by high temporal and spatial coverage 13 

requires the development of techniques and instruments for big data volume managing. Moreover, the use 14 

of open source systems is highly encouraged in order to increase their use by the scientific community. In 15 

this study, the application of the SM2RAIN algorithm to the CCI soil moisture product is proposed as case 16 

study.  A number of Python® classes and methods have been developed for this purpose, with the aim of 17 

creating an open-source web validation tool for SM dataset, within the Earth Observation Data Centre for 18 

Water Resources Monitoring (EODC). 19 

INTRODUCTION 20 

Accurate estimates of rainfall and soil moisture are of paramount importance for geo-hydrological (floods 21 

and landslides) risk assessment. These variables are usually obtained through a monitoring network or by 22 

running land surface models. The first method is impacted by spatial representativeness issues (Kidd and 23 

Levizzani, 2011) and requires a big effort in the set up and maintenance phases. The second method instead 24 

suffers from some issues like the spatial resolution and seasonal dependent performance (Ebert et al., 2007, 25 

Dee et al., 2011).  26 

To overcome these issues, satellite-derived precipitation and soil moisture products may be a valuable 27 

alternative. The retrieval of rainfall from satellite is obtained through the inversion of the atmospheric signals 28 

reflected or radiated by atmospheric hydrometeors (Kucera et al., 2013). However, if microwave sensors do 29 

not pass when it rains, these algorithms are unable to capture the rainfall events thus providing a significant 30 

bias in the estimates. Indeed, these methods provide underestimation of the frequency of light rainfall 31 

(Huffman et al., 2000, Tapiador et al., 2012) and the overestimation of the frequency of heaviest 32 

precipitations which determine a large bias especially for near-real-time products (that do not use gauge 33 

observations for bias adjustment).  34 

The even increasing availability of satellite estimates, their increasing spatial and temporal resolution and 35 

the development of long-term products, however, involve the use of big data volume analysis and managing 36 

platforms and software. As way of example, the European Space Agency Climate Change Initiative (ESA-CCI) 37 

developed and provided three different satellite soil moisture (SM) products, by merging several satellite 38 

estimates (Liu et al., 2012). These three datasets, namely, “Active”, “Passive” and “Combined” (obtained by 39 

combining the SM information retrieved from active, passive and active plus passive sensors), provide daily 40 

SM estimates on a global scale, with 0.25° of spatial resolution from 1978 to 2014. The big data volume poses 41 
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a serious problem and can limit the use of such products for climatological and natural hazards related 42 

studies. A way to overcome this issue could be the use of cloud computing environments that allow to 43 

manage and analyse huge volumes of data. With this aim, the Earth Observation Data Centre for Water 44 

Resources Monitoring (EODC) was recently established in Vienna. The EODC provides a powerful open-source 45 

cloud computing environment for Earth Observation (EO) data analysis and is now used for Sentinel 1 data 46 

pre-processing and provision. On this basis, the main purpose of this study is to present a new set of open-47 

source tools for analyse long-term (>30 years) SM datasets within the EODC platform. However, a long term 48 

validation of the products is challenging since ground soil moisture observations are scarce and, except some 49 

cases, lack of long term recording.  50 

To overcome this issue, Brocca et al. (2013, 2014) have developed a method – SM2RAIN – that allows to 51 

estimating rainfall using only satellite SM observations. The method has shown to be particularly suitable for 52 

estimating accumulated rainfall amount. Indeed, at each satellite overpasses SM2RAIN records the SM value 53 

and relates it to the amount of water fallen into the soil via the inversion of the soil water balance equation. 54 

After been developed and applied worldwide (Brocca et al., 2013, 2014) the method has been successfully 55 

tested in flood prediction applications (Massari et al., 2014 and Ciabatta et al., 2016) and for rainfall 56 

correction (Ciabatta et al., 2015). These studies have shown that the accuracy of the retrieved rainfall is 57 

strictly dependent on the quality of the soil moisture dataset used as input into SM2RAIN. Given that, since 58 

different long-term rainfall products are available worldwide, the retrieved rainfall obtained through soil 59 

moisture via SM2RAIN offers a unique opportunity to evaluate the quality of the soil moisture observations. 60 

In this respect, SM2RAIN is a valuable tool for testing the accuracy of the ESA-CCI SM products, due to the 61 

well-known relationship between rainfall and soil moisture conditions. The main idea is that the perfect SM 62 

product can record all the variation in SM condition due to rainfall. By inverting the relationship, one can 63 

obtain a rainfall estimate and then assess the quality of the SM product by comparing the estimated rainfall 64 

with a benchmark. Indeed, by providing SM for three main different products, SM2RAIN has the chance to 65 

evaluate their relative performance in an alternative way. In addition, this is a chance for testing the 66 

capability of SM2RAIN to producing rainfall by using a continuous, homogenous, long-term SM time series. 67 

DATA AND METHODS 68 

In this study, SM2RAIN is applied to the ESA-CCI SM datasets. These satellite products are characterized by 69 

daily temporal resolution and 0.25° of spatial resolution. The Passive and Combined datasets span from 1st 70 

November 1978 to 31st December 2014, while the Active dataset from 5th August 1991 to 31st December 71 

2014. The SM2RAIN algorithm is based on the inversion of the soil water balance equation and uses three 72 

parameters which are calibrated by using rainfall from the Global Precipitation Climatology Centre (GPCC) 73 

full data daily product at 1° of resolution (Schamm et al., 2015) during the period 2008-2010. SM2RAIN has 74 

been calibrated on a pixel-by-pixel basis by selecting the closest land GPCC pixel selected with the Nearest 75 

Neighbour Algorithm. The algorithm parameters have been estimated by minimizing the Root Mean Square 76 

Error (RMSE) between the estimated and the observed rainfall for 5 days of accumulated rainfall. For a 77 

detailed description of the SM2RAIN algorithm the reader is referred to Brocca et al. (2013, 2014).  78 

The performances are assessed in terms of correlation coefficient (R) and RMSE, for five days of accumulated 79 

rainfall during the calibration period. The estimated rainfall datasets are then assessed by considering their 80 

native resolution (0.25°) and by regridding them at 1° of resolution, in order to perform the evaluation on 81 

the same grid of the considered benchmark. The regridding procedure has been carried out by averaging the 82 

25 closest pixels to each 1° grid centroid. Python® language has been used to create classes and methods for 83 

the geographical, statistical and cal/val analysis steps and has been chosen for the availability of packages for 84 

geographical analysis and big data handling and for the strong support provided by the vast Python scientific 85 

community. The developed routines take advantages of the analysis libraries developed by the TUWIEN 86 

Remote Sensing Research Group, like the Python Toolbox for the Evaluation of Soil Moisture Observations 87 
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(pytesmo, https://pypi.python.org/pypi/pytesmo, Paulik et al., 2014). All the developed routines will be 88 

implemented into the EODC platform in order to create a valuable satellite SM data validation tool. Figure 1 89 

draws the analysis framework highlighting the used Python® packages.  90 

 91 

Figure 1 – Analysis framework and Python packages used for each steps. The * indicates Python packages 92 

developed by the TUWIEN Remote Sensing Research Group.  93 

RESULTS AND CONCLULSIONS 94 

The SM-derived rainfall datasets are in good agreement with the observed benchmark. As it can be seen in 95 

Figure 2, the performances are depending on the SM input data quality, i.e. the correlation is lower over 96 

deserts, over vegetated areas, over mountainous regions and over areas characterized by frozen soil. The 97 

rainfall obtained from the passive dataset shows the lowest correlation, due to the quality of the input data, 98 

while the “active” and the “combined” rainfall show similar patterns and R median values. The passive 99 

dataset seems to perform better over the desert areas and over Australia than the other two rainfall 100 

estimates. The combined product shows the highest R values, taking advantages of the two different parent 101 

datasets. In terms of RMSE the three rainfall datasets provide a different scenario, with the “active” rainfall 102 

showing the best score and the “combined” showing the highest RMSE error. The analysis of the 1° datasets 103 

(not shown for the sake of brevity) provides the same trend, with better performance values, probably due 104 

to an averaging effect during the regridding procedure. Table 1 summarizes the results obtained for the 105 

considered datasets in terms of median R and RMSE by considering the two different analysis grids. It is worth 106 

to underline that the median performances do not reach extraordinary values due to the presence of areas 107 
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where the satellite retrieval is highly impacted, as discussed above. In this framework, the obtained results 108 

can be considered very satisfactory. 109 

 110 

Product 
R RMSE 

0.25° 1° 0.25° 1° 

Active dataset 0.42 0.56 9.48 8.77 

Passive dataset 0.32 0.44 9.72 9.24 

Combined dataset 0.46 0.57 12.02 10.74 

Table 1 – Median correlation coefficient (R) and Root Mean Square Error obtained for the Active, Passive and 111 

Combined ECV-SM derived rainfall during the calibration period, at 0.25° and 1° of spatial resolution and for 112 

5 days of accumulated rainfall.  113 

 114 

 115 

 116 
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 117 

Figure 2 – Correlation maps for 5 days of accumulated rainfall obtained for the active (up), passive (middle) 118 

and combined (down) ECV-SM dataset.  119 

Base on the results obtained in this analysis the following conclusion can be drawn: 120 

 Cloud computing facilities can be very beneficial for analyzing huge amount of data and they are 121 

becoming a fundamental environment for these kind of analysis, due to the increasing volume of EO 122 

data; 123 

 A Python® validation and big data analysis tool is presented. The validation tool will be exported in 124 

other open source languages in order to test their capabilities and to find out the best software 125 

structure; 126 

 SM2RAIN algorithm can be used for estimating rainfall and for assess the quality of SM dataset, due 127 

to the relationship between rainfall and soil wetness conditions. An assessment carried on via 128 

SM2RAIN does not need long observed SM records, which can be hardly obtained on a global scale 129 

for more than 30 years; 130 

 During the analysis period, the “combined” rainfall outperforms the “active” and the “passive” 131 

estimates; 132 
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