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Hierarchical models are characterized by having N living states connected by N�1 rates of

transfer. Demographic measures for such models can be calculated directly from counts of

the number of persons in each state at two nearby points in time. Exploiting the ability of

population stocks to determine the flows in hierarchical models expands the range of

demographic analysis.

The value of such analyses is illustrated by an application to childbearing, where the states

of interest reflect the number of children a woman has born. Using Census data on the

distribution of women by age and parity, a parity status life table for U.S. Women, 2005-

2010, is constructed. That analysis shows that nearly a quarter of American women are

likely to remain childless, with a 0-3 child pattern replacing the 2-4 child pattern of the

past.
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51 Hierarchical models are characterized by having N living states connected by N�1 rates of 

52 transfer.  Demographic measures for such models can be calculated directly from counts of the number of 

53 persons in each state at two nearby points in time.  Exploiting the ability of population stocks to 

54 determine the flows in hierarchical models expands the range of demographic analysis.

55 The value of such analyses is illustrated by an application to childbearing, where the states of 

56 interest reflect the number of children a woman has born.  Using Census data on the distribution of 

57 women by age and parity, a parity status life table for U.S. Women, 2005-2010, is constructed.  That 

58 analysis shows that nearly a quarter of American women are likely to remain childless, with a 0-3 child 

59 pattern replacing the 2-4 child pattern of the past.
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67

68 Hierarchical Multistate Models from Population Data: An Application to Parity Statuses

69

70

71 Multistate population models are widely used in demographic analyses, as they can reflect any 

72 number of states and any pattern of movements between those states.  In general, a model with N living 

73 states has N2 possible transfers:  N(N�1) between living states, and N from each state to the "dead" state.  

74 Population data on the number of persons in each state at the beginning and end of an age/time 

75 interval can provide only N equations, N�1 for transfers between living states and 1 for the overall rate of 

76 death.  Various procedures have been advanced to estimate all of the elements of the matrix that 

77 transforms the population at the beginning of an interval into the population at the end of the interval.  

78 The leading technique is iterative proportional fitting (IPF), also known as the Deming-Stephan 

79 procedure, bi-proportional filling, and the RAS method (Bishop, Fienberg and Holland 1975; Willekens 

80 1982).  IPF yields the solution that maximizes entropy, i.e. it finds the transfers that can occur in the 

81 greatest number of ways.  Schoen and Jonsson (2003) advanced an alternative, more demographic, 

82 approach based on estimating changes in the attractiveness of model states.  More recently, Schoen 

83 (2015) presented a Quadratic Estimation of Rates of Transfer (QERT) procedure, based on the 

84 assumption that the products of selected pairs of rates can be assumed constant.  All three approaches 

85 assume a pattern that is believed to characterize the interstate movements, and thus produce estimated 

86 rather than calculated values.

87 This chapter focuses on "hierarchical" multistate models, that is on N state models with only N�1 

88 possible transfers connecting the living states and 1 unknown risk of death.  In hierarchical models, a 

89 direct algebraic solution for the transfer matrix is possible, without the need to assume any pattern of 

90 interstate movements.  We first discuss the parallels between hierarchical models and graphs, then present 

91 techniques for using sequential population data to calculate rates of transfer and transition probabilities, 

92 and proceed to apply the approach to calculate a Parity Status Life Table for U.S. Women, 2005-10.

93
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94 THE NATURE OF THE HIERARCHICAL MODEL

95 The N living states of a hierarchical model are linked by N�1 occurrence/exposure rates of the 

96 form mij, where i is the origin state and j is the destination state.  The dead state is indicated by the symbol 

97 δ.  For every living state there is at least one connection to another living state, though all states are not 

98 necessarily reachable from any given state.  For example, consider a model with two living states, A and 

99 B.  With interstate transfer rate mAB, it is possible to go from state A to state B, but not from state B to 

100 state A.  

101 Graph theory can provide some useful nomenclature and context.  The living states of a multistate 

102 model correspond to the vertices or nodes of a graph, and the rates connecting them are the edges or 

103 connecting lines of the graph.  Hierarchical multistate models are connected graphs with N vertices and 

104 N�1 edges, and hence constitute a "tree" (Chartrand and Zhang 2012).  Since the rates take persons from 

105 one specified state to another, the tree is "oriented" or, using the term coined by Rebane and Pearl (1987), 

106 a "polytree."  

107 Graph theorists have explored the number of distinct polytrees, or distinct multistate 

108 configurations, in models with N states (or vertices).  When N = 2, there is only one form, with the single 

109 transfer rate m12.  When N = 3, there are 3 forms, which can be described by the rate pairs (m12, m23), 

110 (m12, m13), and (m13, m23).  There is no general rule for the number of forms, but when N=4 there are 8 

111 forms, when N=5 there are 27 forms, and when N=6 there are 91 forms (Chartrand and Zhang 2012).  

112 Polytrees thus encompass a substantial number of distinct hierarchical multistate models.

113 Polytrees have demographic significance because transfers in every multistate model that is a 

114 polytree can be fully determined from knowledge of the population, by state, at the beginning and end of 

115 an interval of observation.  Such multistate models can be used to analyze of a wide range of 

116 demographic behaviors, including parity progression, educational attainment, career trajectories, and the 

117 spread of infections.   A procedure for carrying out the calculations needed to produce a hierarchical 

118 multistate life table from cross-sectional data is presented in the next sections.

119 FINDING MULTISTATE RATES FROM BEGINNING AND ENDING POPULATIONS
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120 With N states, the beginning and ending populations support N equations that describe the flows 

121 (movements) between model states.  Those N equations can be used to determine the N�1 rates of transfer 

122 between those living states, and an overall rate of transfer to death.  Each distinct hierarchical model 

123 (polytree) has a different set of N flow equations, but all those sets of equations are readily solvable 

124 because their N equations are independent.  

125 For example, consider the case where N=3 and the polytree form is (m12, m13).  The flow 

126 equations can then be written

127 P1(x+n,n,t+n) = P1(x,n,t) � PP1(x,n,t) [ mδ (x,n,t)  + m12(x,n,t) + m13(x,n,t)]

128 P2(x+n,n,t+n) = P2(x,n,t) � PP2(x,n,t)  mδ (x,n,t)  + PP1 (x,n,t) m12(x,n,t) 

129 P3(x+n,n,t+n) = P3(x,n,t)  � PP3(x,n,t) mδ (x,n,t)  + PP1 (x,n,t)  m13(x,n,t) (1)

130 where Pj(x,n,t) denotes the number of persons in state j between the ages of x and x+n at time t, and 

131 PPj(x,n,t) is the number of person-years lived in state j between times t and t+n by persons aged x to x+n 

132 at time t.   The person-year values can be found from the beginning and ending population values in a 

133 number of ways (Schoen 1988, Chap.4).  Here we use the simple linear relationship

134 PPj(x,n,t) = (n/2)[ Pj(x,n,t) +  Pj(x+n,n,t+n)] (2)

135 From Eqs(1), straightforward algebra yields the solutions

136            P1(x,n,t)+ P2(x,n,t)+ P3(x,n,t) � P1(x+n,n,t+n) � P2(x+n,n,t+n) � P3(x+n,n,t+n)            

137    mδ (x,n,t) =  -------------------------------------------------------------------------------------------------

138 PP1(x,n,t)+ PP2(x,n,t)+ PP3(x,n,t)

139

140                    [PP1+PP3] [P2(n) � P2(0)]  �  PP2 [ P1(n) + P3(n) � P1(0) � P3(0)]

141    m12 (x,n,t) =  ---------------------------------------------------------------------------------------

142                   PP1(x,n,t )[PP1(x,n,t)+ PP2(x,n,t)+ PP3(x,n,t)]

143

144

145                       [PP1+PP2] [P3(n) � P3(0)]  �  PP3 [ P1(n) + P2(n) � P1(0) � P2(0)]

146    m13 (x,n,t) =  ------------------------------------------------------------------------------------------- (3)

147 PP1(x,n,t) [PP1(x,n,t)+ PP2(x,n,t)+ PP3(x,n,t)]

148

149 where the age and time identifiers have been dropped from the PPj functions in the numerators and the 

150 age and time identifiers of the beginning and ending populations are simply denoted by (0) and (n), 

151 respectively, to simplify the presentation.  The overall death rate is just the beginning number of persons 
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152 minus the ending number, divided by the total number of person-years lived in the interval.  The 

153 expressions for the transfer rates are a bit more complicated, but represent a weighted difference in state 

154 sizes over the interval, divided by the origin state number of person-years.  

155 When the transfer rates take persons only from state 1 to state 2, state 2 to state 3, etc., the model 

156 can be termed "strictly" hierarchical.  The flow equations of an N state strictly hierarchical model are 

157 P1(x+n,n,t+n) = P1(x,n,t) � PP1(x,n,t) [ mδ (x,n,t)  + m12(x,n,t) ]

158 Pj(x+n,n,t+n) = Pj(x,n,t) � PPj(x,n,t) [ mδ (x,n,t)+mj,j+1(x,n,t)]  + PPj�1 (x,n,t) mj�1,j(x,n,t) 

159 PN(x+n,n,t+n) = PN(x,n,t)  � PPN(x,n,t) mδ (x,n,t)  + PPN�1 (x,n,t) mN�1,N(x,n,t) (4)

160 where 1<j<N.  Those flow equations yield the death and transfer rates

161 Σi [Pi(x,n,t) � Pi(x+n,n,t+n) ]

162 mδ(x,n,t) =  --------------------------------------------------- (5a)

163 Σi [PPi(x,n,t) ]

164

165

166 Σi [Pi(x,n,t) � Pi(x+n,n,t+n) � PPi(x,n,t) mδ(x,n,t) ]

167 mj,j+1(x,n,t) =   -------------------------------------------------------------------------- (5b)

168       PPj(x,n,t)

169

170 where the sum in Eq(5a) goes from 1 to N, and the sum in Eq(5b) goes from 1 to j.  The overall death 

171 rate, mδ(x,n,t), is again the difference between the beginning and ending populations divided by the total 

172 number of person-years lived in the interval.   The transfer rate from state j to state j+1 is the difference 

173 between the beginning and ending populations through state j, less the losses to death through state j, 

174 divided by the number of person-years lived in state j during the interval.  

175 In general, the flow equations that describe the specific polytree form (or the structure of the 

176 desired multistate model), plus the initial and final population numbers in each state, can yield all of the 

177 transfer rates of a hierarchical multistate model.  The only assumptions involved are that the population 

178 data are accurate, the population is closed, there is the same rate of death (or attrition) from every state, 

179 and the linear calculation assumption is appropriate.  All of those assumptions can be relaxed with 

180 additional information.  If mortality is known, the interstate transfer rates can be found from cross-

181 sectional surveys of the beginning and ending populations.
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182 FINDING PROBABILITIES OF TRANSFER

183 The basic problem in life table construction is how to go from rates of transfer to probabilities of 

184 transfer.  In multistate models, including hierarchical models, the problem is best approached by arraying 

185 the transfer rates in a matrix.  With N living states, the N x N rate matrix can be written 

186

187 ┌ ┐
188 │   Σj m1j    �m12     �m13  ...     �m1N  │
189 │ │
190 M(x,n,t)  = │   �m21    Σj m2j     �m23  ...     �m2N  │ (6)

191 │  │
192 │    ...         ...            ...              ... │
193 │ │
194 │   �mN1     �mN2     �mN3   ...    Σj mNj │
195 └ ┘
196

197 where the interval identifiers have been dropped from the m's and the sums over j in the diagonal 

198 elements exclude mjj and include the rate to the dead state.  In hierarchical models, only N transfer rates, 

199 including mδ , are nonzero.  

200 There are a number of ways to calculate the array of transition probabilities from M.  One is to 

201 assume that the underlying risks of transition are constant over the interval and find the probabilities by 

202 exponentiating M (cf. Schoen 2006, Chap.1).  Here, we will continue to use the linear assumption 

203 underlying Eq(2), and employ the linear solution described in Schoen (2006, Chap. 1).  We then have

204 Π(x,n,t)  =  [ I � (n/2)M(x,n,t)] [ I + (n/2)M(x,n,t)]�1 (7)

205 where I is the N x N identity matrix.  Transition probability matrix Π(x,n,t) is an N x N matrix whose ijth 

206 element is πij(x,n,t), the probability that a person in state i at age x and time t will be in state j exactly n 

207 years later.  In hierarchical models, Π can be written as an upper triangular matrix, that is a matrix where 

208 all of the elements below the main diagonal are zero.  That can be accomplished by numbering the states 

209 so that every nonzero mij has i < j.  

210 The age-specific transition probability matrices for a period allow the construction of a multistate 

211 life table for that period.  That life table provides, among other functions, the number of persons in each 

212 state at every age.  Those life table survivorship values follow from the projection relationship
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213 ℓT(x+n) = ℓT(x) Π(x,n,t) (8)

214 where the jth element of  the N element survivorship vector ℓ(x) is ℓj(x), the number of persons in the life 

215 table cohort who are in state j at exact age x.  The superscript T indicates that column vector ℓ(x) is 

216 transposed into a row vector.  The initial (radix) vector, ℓ(0), is assumed to be known. The remaining 

217 multistate life table functions follow in the usual manner (cf. Schoen 1988, Chap. 4).  

218 The calculation that provides the transition probabilities from observed adjacent population 

219 values proceeds from the observed populations to the rates of transfer and then to the transition 

220 probabilities.  It is thus rate centered, not probability based.  Rates are preferable because they directly 

221 reflect the underlying behavior, i.e. the  risk of movement from state i to state j, while probabilities only 

222 reflect that behavior in the context of other prevailing risks.  In the hierarchical model, there are only N�1 

223 nonzero rates of transfer between living states while, because of multiple moves within an interval, there 

224 can be N(N�1)/2 nonzero probabilities of transfer.  That larger (for N>2) number of probabilities cannot 

225 be determined from adjacent population data alone, unless the underlying rate structure is hierarchical.  

226 The proposed rate based approach accommodates multiple moves with an interval via the underlying 

227 Markov assumption that the risk of transfer depends only on current age and state.  

228 AN APPLICATION TO PARITY STATUS LIFE TABLES

229 The procedure described in the previous two sections can find the rates and probabilities of any 

230 hierarchical multistate model from initial and final population data alone.  To illustrate the procedure 

231 numerically, let us consider an important demographic application: the parity status model.

232 The Demographic Significance of Parity.

233 Parity, the number of live births a woman has had, is a meaningful demographic indicator.  It is 

234 associated with subsequent fertility as well as with many other social, economic, and demographic 

235 behaviors.  Childlessness has been a particular focus of interest, and has been seen as having strong 

236 connections to core social values (Bulcroft and Teachman 2004; Koropeckyj-Cox and Pendell 2007; 

237 Veevers 1980).  
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238 Previous research has shown that the ultimate parity distributions of American women have 

239 varied greatly.  A parity status life table based on 1970 fertility rates implied that 12% of women would 

240 remain childless, while 25% would have 4 or more children.  Under 1995 rates, the life table proportion 

241 childless increased to 15%, while the proportion with 4 or more children dropped to 14% (Schoen 2006a, 

242 Table 1).  Recent population data on levels of childlessness among American women aged 40-44 indicate 

243 that 18% were childless in 1995 and 15% in 2002 (Abma and Martinez 2006).  

244 U.S. Parity Distributions and the Rates They Imply.

245 The age distribution of American women, by number of children ever born,  is available for even 

246 numbered years from the Current Population Survey, accessible online at 

247 Census.gov/hhes/fertility/data/cps/[year]/html.   Table 1 shows the proportions of women by age and 

248 parity for 2005 and 2010, the former year found as the average of the values for 2004 and 2006.  There 

249 were very few women at parities higher than 6, so 6 was taken to be the highest parity possible.   In 2010, 

250 18.8% of women aged 40-44 were childless, while 1.6% attained parity 6.  

251 The figures in Table 1, along with the assumption of no mortality at the reproductive ages, is 

252 sufficient to allow the construction of a parity status life table for the 2005-2010 interval.  The model is 

253 strictly hierarchical, as women of parity j can only move to parity j+1.  The transfer rates of the model 

254 follow from Eq(5), and are shown in Table 2.  The age intervals shown are offset by 2.5 years from those 

255 in Table 1, as Pj(x,n,t) was taken to be the number of persons at exact age x+n/2.  Fertility rates are 

256 assumed to be zero for women past age group 40-44 in 2010.  That assumption, while dictated by the 

257 available data, is not problematic because the rates at ages 37.5-42.5 are already quite small, and the rates 

258 at higher ages are invariably even smaller.  

259 The rates of transfer to parities 1 and 2 reach their maximum at ages 27.5-32.5, while the rates to 

260 parities 3 and 4 reach their maximum at ages 22.5-27.5.  At young ages, rates to the highest parities are 

261 based on few observations, and tend to be unstable (e.g. the rate to parity 6 at ages 17.5-22.5).  However, 

262 those rates are applied to the very small numbers of persons at those high parities, and hence have little 

263 impact on the life table parity distributions. 
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264 Calculating the Transition Probabilities and Life Table Survivorship.                                              

265 Using Eq(7), the rates of transfer can be used to calculate transition probability matrices for every 

266 age.  Because the model is strictly hierarchical, the elements of the Π matrices are patterned, and can be 

267 written out in scalar form.  The jth diagonal element has the basic life table survivorship form

268 πjj = [2 � n mj�1,j] / [2 + n mj�1,j] (9)

269 The element in the jth column (1 < j < N) of the first row is given by

270

271                                  j�1                              j                                            

272 π1j =  [4nj�1  Π  mi�1,i] /  [  Π  (2 + n mi�1,i] (10)

273                                  i=1                            i=1                                     

274                                                                                                                                   

275 In general, πi+k,j+k, the element in the (i+k)th row and (j+k)th column (i+k<j+k<N), equals π1j with all rate 

276 indexes increased by k.  For example, in the parity status life table with n=5, the probability of going from 

277 parity 2 to parity 4 is given by

278 π24 = π13[all rate indexes increased by 1]

279 or

280

281 π24 =  [ 100 m12 m23]  /  { [2 + 5 m12] [2 +5 m23] [2 + 5 m34]  } (11)

282 The elements of Π in the Nth column are different because that state has no movements 

283 (decrements) to another state.  Eq(7) yields

284                                      N�1                           N�1                                            

285 π1N  =  [ 2 nN�1  Π  mi�1,i] /  [  Π  (2 + n mi�1,i] (12)

286                                      i=1                            i=1                                     

287

288 which differs from Eq(10) in that the initial factor is 2 rather than 4, and that the product in the 

289 denominator goes to N�1 instead of N.  The element in the ith row (i>1) and Nth column is similarly the 

290 expression given in Eq(11), but with an initial factor of 2 and a denominator product ending with the 

291 N�1st term.  

292 Under the linear assumption, the expressions for the probabilities of moving more than one state 

293 in strictly hierarchical models can be interpreted in terms of successive risks of transfer.  The probability 

294 of moving from state j�1 to state j is [ n mj�1,j ] / [ 1 + (n/2) mj�1,j].  The linear assumption implies that 

295 moves occur uniformly over the interval or, on average, at the midpoint, n/2.  The movers are then 
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296 exposed to the risk of moving from state j to state j+1 according to rate mj,j+1 over half the interval.  The 

297 successive factors in Eq(10) reflect the likelihood of those additional moves, each with a shorter time 

298 exposure to risk.

299 The Parity Status Life Table.

300 At birth, all women are at parity zero, so the parity distribution at initial age 12.5 has one person 

301 at parity zero and zero persons at al higher parities.  The life table parity distributions at successively 

302 higher ages are found using projection Eq(8).  

303 Table 3 shows the parity distributions at ages 12.5 through 42.5 for U.S. Women based on the 

304 data for 2005-2010.  The proportion at parity zero steadily decreases, while the proportions at parities 3 

305 and above steadily increase.  The proportion at parity 1 reaches a peak at age 27.5, while the proportion at 

306 parity 2 peaks at age 37.5.  At age 42.5, 23.4% of women are still at parity zero, while only 8.6% have 4 

307 or more children.   The U.S. proportion childless has continued to rise, and is approaching one out of 

308 every four women.  In contrast, large families of 4 or more children characterize barely one woman in 

309 twelve.

310 The Parity Specific Total Fertility Rate (PSTFR) of the life table cohort can be found from the 

311 parity distribution of women at the end of childbearing, here taken to be age 42.5.  Algebraically,

312                               N
313 PSTFR = Σ (j�1) ℓj (42.5) (13)

314                              j=1

315

316 where Σ ℓj (42.5) = 1 and state 1 is parity 0.  The PSTFR differs from the conventional TFR because it is 

317 calculated from age-parity-specific fertility rates, rather than the usual age-specific fertility rates, and thus 

318 takes the parity composition of the hypothetical cohort into account. Table 3 shows a PSTFR, or 

319 cumulative fertility to age 42.5, of 1.73, less than two children per woman.  

320 The life table proportion childless, 0.234, is substantially larger than 0.188, the proportion 

321 childless among American women in 2010.  That observed proportion reflects childlessness in one actual 

322 cohort of women.  In contrast, the life table proportion indicates that a greater fraction of women would 
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323 never have a child under the age-parity-specific fertility rates prevailing during 2005-2010.  The initiation 

324 of childbearing in the observed cohort followed a different pattern from that in the 2005-2010 period. 

325 SUMMARY AND CONCLUSIONS

326 Many demographic phenomena can be represented by hierarchical models, that is by models with 

327 N living states that have N�1 rates of movement between them.  In such models, the rates of transfer 

328 between living states and to death can be found from data on the number of persons in each state at the 

329 beginning and end of a given interval.  With the rates of transfer provided by Eqs(5), the probabilities of 

330 transfer can be found from Eq(7) and used to produce a multistate life table.   Exploiting the ability of 

331 population counts to infer rates of transfer in hierarchical contexts broadens the scope of demographic 

332 analysis.

333 The potential of the approach is illustrated by an application to parity status.  A parity status life 

334 table for U.S. Women, 2005-2010, is constructed from survey data on the fraction of women, by age, in 

335 each parity status in 2004, 2006, and 2010.  The results show that the U.S. proportion childless is 

336 continuing to increase, with nearly a quarter of women aged 42.5 remaining at parity zero.  The 2-4 child 

337 pattern of the past has been replaced by a 0-3 child pattern.

338

339

340    
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368 Table 1. Percentages of Women by Age and Parity, United States 2005 and 2010

369

370 YEAR 2005

371 Parity

372

373 Age     0   1     2       3         4           5 6 Total

374 10-14 100   0     0       0         0           0               0 100

375 15-19  93.35   4.55    1.45      0.55        0.10         0   0 100

376 20-24  68.65 18.55       9.25      2.65         0.70        0.10         0.1 100

377 25-29  44.90 23.15     20.05        8.30         2.65        0.55 0.4 100

378 30-34  26.90   21.35     29.05      15.55         4.90        1.35         0.9 100

379 35-39  19.25   18.20     34.85      18.40         6.15        1.75 1.4 100

380 YEAR 2010

381 Parity

382

383 Age     0   1     2       3         4           5 6 Total

384 15-19              94.7      4.4     0.6        0.3            0           0              0 100

385 20-24 70.5    18.1     9.0     2.0         0.3          0.1 0 100

386 25-29 47.6    22.7    18.7     7.8         2.3          0.6 0.3 100

387 30-34 29.7    19.2    29.1    14.3         5.2          1.5 1.0 100

388 35-39 19.7    18.5    32.7    19.7         5.9          2.1 1.4 100

389 40-44 18.8    18.5    33.3    19.1         6.8          1.9 1.6 100

390 NOTE:  Percentages for 2005 are the average of those in 2004 and 2006.

391 SOURCE:  Census.gov/hhes/fertility/data/cps/[2004][2006][2010].html, downloaded 9/11/2014.
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393 Table 2.  Rates of Movement to Successive Parities, by Age, U.S. Women 2005-10

394         Rate of movement from parity j to parity j+1 (mj,j+1) 

395 Age    m01        m12   m23  m34 m45 m56  

396 12.5-17.4 .01089      .08182 .20000 0 0 0

397 17.5-22.4 .05620      .16777 .07464 .07843 .30000 .30000*

398 22.5-27.4 .07243      .16388 .10662 .08804 .09333 .11429

399 27.5-32.4 .08150      .18087 .08220 .07257 .07898 .11707

400 32.5-37.4 .06180      .10088 .04146 .02553 .04630 .05797

401 37.5-42.4 .00473      .00163 .00998 .01067 .01081 .02192

402 NOTE (*):   Adjusted value; calculated rate of 0.8 based on very few exposures.

403 SOURCE:   Calculated from figures in Table 1 as described in text.  
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405 Table 3.  Parity Distributions and Cumulated Fertility, by Age, Parity Status Life Table for U.S. Women 

406 2005-10

407                      Proportion of Women at Parity Indicated   Cumulated Fertility

408 Age  0 1 2 3 4 5 6      to Age indicated  

409 12.5           1. 0 0 0 0 0 0 0

410 17.5             .947 .044 .006 .003 0 0 0 .06

411 22.5             .714 .182 .084 .016 .002 .001 .001 .42

412 27.5             .495 .232 .183 .069 .016 .004 .002 .90

413 32.5             .327 .203 .283 .129 .041 .011 .006             1.41

414 37.5             .240 .191 .320 .172 .050 .017 .010             1.69

415 42.5             .234 .195 .306 .178 .056 .018 .012             1.73

416 NOTE:  Cumulated fertility is the sum of the births to the life table cohort (of 1 woman) up to the given 

417 age.   Parity 6 is assumed to be the highest parity possible, and no fertility is assumed after age 42.5.  

418 Thus cumulated fertility to age 42.5 represents the Parity Status Total Fertility Rate.

419

420 SOURCE:  Calculated from Table 2 as described in text

421

422

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2128v1 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 15 Jun 2016


