

1 **Fishing degrades size structure of coral reef fish communities**

2

3 Running head: *Fishing alters reef fish size structure*

4

5 Authors: James P.W. Robinson¹, Ivor D. Williams², Andrew M. Edwards^{1,3}, Jana
6 McPherson^{4,5}, Lauren Yeager⁶, Laurent Vigliola⁷, Russell E. Brainard², Julia K. Baum¹

7 ¹ Department of Biology, University of Victoria, PO BOX 1700 Station CSC, Victoria
8 British Columbia, V8W 2Y2, Canada

9 ² Coral Reef Ecosystem Program, Pacific Islands Fisheries Science Center, National
10 Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176,
11 Honolulu, Hawaii, United States of America.

12 ³ Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road,
13 Nanaimo, BC, V9T 6N7, Canada.

14 ⁴ Centre for Conservation Research, Calgary Zoological Society, 1300 Zoo Road NE,
15 Calgary, AB, T2E 7V6, Canada.

16 ⁵ Department of Biological Sciences, Simon Fraser University, Burnaby, Canada

17 ⁶ National Socio-Environmental Synthesis Center, 1 Park Place Suite 300, Annapolis,
18 Maryland 21401, United States of America.

19 ⁷ Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Laboratoire
20 d'Excellence LABEX CORAIL, BP A5, 98848 Noumea Cedex, New Caledonia

21

22 Corresponding author. Phone: +1 250-721-6250; Email: jpwrobinson@gmail.com

23

24 Keywords: body size; community structure; coral reef fish; exploitation; fisheries;
25 macroecology; overfishing; size-based approaches; size spectra

26 Type of Paper: Primary Research Article

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **Abstract**

48 Fishing pressure on coral reef ecosystems has been frequently linked to reductions of
49 large fishes and reef fish biomass. Associated impacts on overall community structure
50 are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are
51 commonly quantified using size spectra, which describe the distribution of individual
52 body sizes within a community. We examined the size spectra of coral reef fish
53 communities at 38 US-affiliated Pacific islands, spanning from near pristine to highly
54 human populated. Reef fish community size spectra slopes 'steepened' steadily with
55 increasing human population and proximity to market due to a reduction in the relative
56 biomass of large fishes and an increase in the dominance of small fishes. In contrast, total
57 fish community biomass was substantially lower on inhabited islands than uninhabited
58 ones, regardless of human population density. Comparing the relationship between size
59 spectra and reef fish biomass, we found that on populated islands size spectra steepened
60 linearly with declining biomass, whereas on uninhabited islands size spectra and biomass
61 were unrelated. Size spectra slopes also were steeper in regions of low sea surface
62 temperature but were insensitive to variation in other environmental and geomorphic
63 covariates. In contrast, reef fish biomass was highly sensitive to biophysical conditions,
64 being influenced by oceanic productivity, sea surface temperature, island type, and
65 habitat complexity. Our results suggest that community size structure is more robust than
66 total fish biomass to increasing human presence and that size spectra are reliable
67 indicators of exploitation impacts across regions of different fish community
68 compositions, environmental drivers, and fisheries types. Size-based approaches that link
69 directly to functional properties of fish communities, and are relatively insensitive to

70 abiotic variation across biogeographic regions, offer great potential for developing our
71 understanding of fishing impacts in coral reef ecosystems.

72

73 **Introduction**

74 Overexploitation of marine species can cause system-wide shifts in species
75 abundances and interactions (Bascompte et al., 2005; Britten et al., 2014), which in turn
76 alter the structure and function of marine ecosystems (Jackson et al., 2001; Travis et al.,
77 2014). Selective fishing of large consumers can produce trophic cascades (Bascompte et
78 al., 2005; Baum & Worm, 2009) and destabilize predator-prey dynamics (Britten et al.,
79 2014), while sustained exploitation at lower trophic levels can collapse prey populations
80 (Essington et al., 2015). In temperate systems, broad fishing impacts are often evaluated
81 using complex ecosystem-based models that require high-resolution ecological and
82 exploitation data (Thorpe et al., 2015). However, when ecosystems are characterized by
83 high ecological diversity or limited catch data these approaches are infeasible. Instead,
84 community-level indicators that are simple to estimate, grounded in ecological theory,
85 and generalizable across ecosystems can provide informative assessments of fishing
86 impacts (Rochet & Trenkel, 2003; Thrush & Dayton 2010). Gaining such insights is of
87 paramount importance for subsistence coral reef fisheries, which provide important
88 sources of protein and livelihoods to millions of people across the world's tropical island
89 nations (Sadovy, 2005; Newton et al., 2007). Coral reef fish assemblages are highly
90 diverse (Kulbicki et al., 2013) and their fisheries are multi-species and multi-gear (Hicks
91 & McClanahan, 2012), but catch and effort data are typically limited (Sadovy, 2005;
92 Zeller et al., 2015). As a result, exploitation impacts can be particularly difficult to
93 quantify (McClanahan et al., 2015; Nash & Graham, 2016), underscoring the need for
94 simple community-level indicators of exploitation impacts.

95

96 In aquatic systems, trophic interactions are size-based and body size and
97 individual trophic level are tightly linked (Jennings et al., 2001; Barnes et al., 2010).
98 Size-based approaches that generalize across species but preserve links to community-
99 level traits may provide significant insights into the impacts of exploitation in complex
100 systems such as coral reefs (Nash & Graham, 2016). Body size also scales predictably
101 with a number of important ecological processes, from metabolic rate at the individual
102 scale (West et al., 2001) to biomass turnover at the population scale (Brown et al., 2004).
103 Therefore, size-based approaches offer powerful methods of assessing ecological
104 structure across distinct communities, and link directly to functional traits that are
105 otherwise difficult to estimate in data-poor systems (Taylor et al., 2014). One metric, the
106 size spectrum, describes the distribution of individuals across body sizes irrespective of
107 species (White et al., 2007; Trebilco et al., 2013). The size spectrum has been used to
108 assess fishing impacts across a range of temperate marine (Blanchard et al., 2005; Daan
109 et al., 2005; Sweeting et al., 2009) and freshwater fish communities (Sprules, 2008),
110 where community size structure is represented by the slope of the relationship between
111 abundance and body size on logarithmic scales (White et al., 2007). Size-selective fishing
112 causes the spectrum slope to decrease or ‘steepen’ as large fishes are depleted and prey
113 species are released from predation (Daan et al., 2005; Shin et al., 2005; Fung et al.,
114 2013). Metabolic and size-based theory predicts that a reduction in large fishes will
115 produce shifts in size-linked life history traits such that overexploited communities are
116 characterized by a greater dominance of small individuals, and concomitant higher
117 productivity and faster biomass turnover times (Jennings & Blanchard, 2004; McCann et
118 al., 2016).

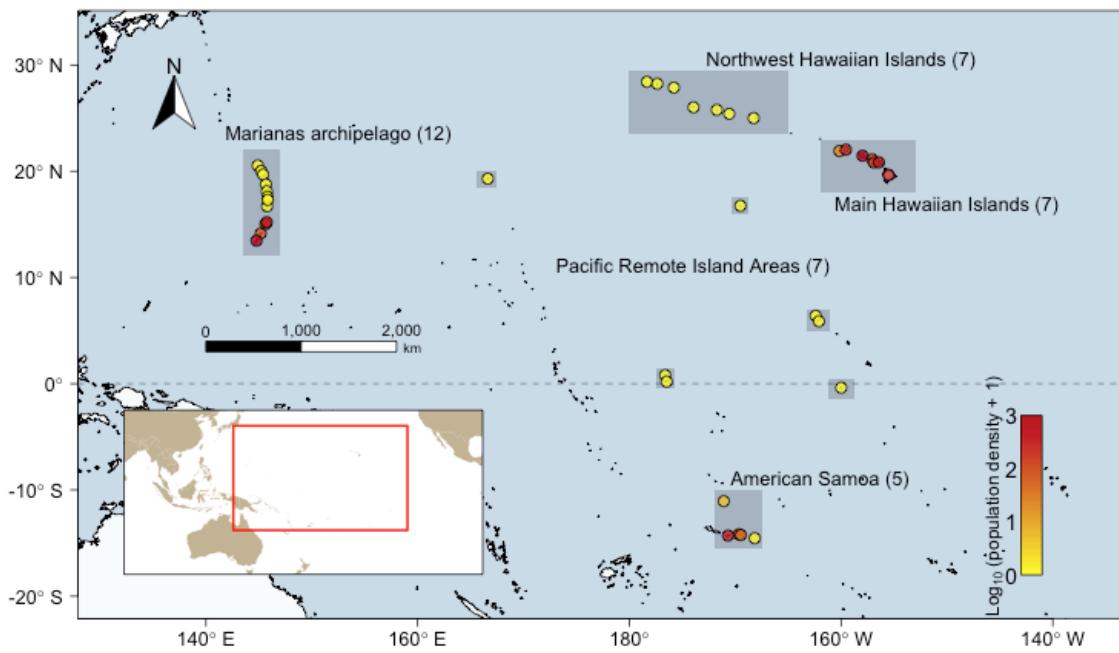
119 In small-scale, artisanal coral reef fisheries, overexploitation is a pervasive issue
120 that threatens the sustainability of a vital food resource for developing coastal countries
121 (Newton et al., 2007; Cinner et al., 2009; Johnson et al., 2013). Standing stock biomass is
122 widely used as metric of fishery health and of exploitation impacts at regional scales
123 (Cinner et al., 2009; Cinner et al., 2012a; MacNeil et al., 2015) and, although declines in
124 the abundance of large fishes on coral reefs are well documented (Sandin et al., 2008;
125 Williams et al., 2011), analyses of associated impacts on coral reef fish community size
126 structure have been infrequent (Nash & Graham, 2016). Steepening of size spectra slopes
127 due to overfishing of large fishes has thus far been detected only in Fijian small-scale reef
128 fisheries, and across only moderate gradients in exploitation pressure (Dulvy et al., 2004;
129 Graham et al., 2005; Wilson et al., 2010). Other direct comparisons between fished and
130 protected areas have found that community size structure is highly variable and unrelated
131 to exploitation, which may reflect unmeasured environmental influences (McClanahan &
132 Graham, 2005; Graham et al., 2007). As a result, it remains unclear whether degradation
133 in overall community size structure occurs across extreme gradients in exploitation
134 pressure, such as from pristine to overexploited reef communities, and if these patterns
135 are dependent on the fisheries' species composition. At regional and global scales, recent
136 macroecological analyses of coral reef fish trophic structure and life history traits indicate
137 that biomass and ecological functions may be broadly preserved in lightly exploited
138 communities (McClanahan et al., 2011; MacNeil et al., 2015; McClanahan et al., 2015).
139 Similar examination of reef fish community size structure across large spatial scales and
140 gradients in fished biomass would provide additional insights into the state of coral reef
141 fisheries relative to unexploited ecosystems.

142 Here, we use a large-scale dataset of Pacific reef fish abundances spanning from
143 remote near-pristine islands and atolls to highly populated ones, to examine how human
144 impacts alter the size structure of reef fish communities. The reefs included in our
145 analyses also span strong gradients in environmental covariates (Williams et al., 2015),
146 and differ substantially in their species compositions (Kulbicki et al., 2013) and
147 exploitation history (Dalzell et al., 1996; Houk et al., 2012). We estimated size spectrum
148 slopes to assess shifts in community structure across a body size range from tiny
149 planktivores (20g) to large piscivores (> 1kg), and quantified the biomass of large fishes
150 relative to the total fish community to determine whether exploitation was size selective.
151 To examine how changes in size structure corresponded with more conventional
152 biomass-based indicators, we also compared trends in size spectra with trends in total
153 community biomass.

154

155 **Materials and Methods**

156


157 *Study location and survey data*

158 We examined reef fish communities at 2,124 sites located on 38 U.S.-affiliated Pacific
159 islands, atolls, and banks (hereafter islands) (Fig. 1), that were surveyed between 2010
160 and 2014 by the Pacific Reef Assessment and Monitoring Program (Pacific RAMP) of
161 NOAA's Coral Reef Ecosystem Program (CREP). Surveyed islands encompass
162 substantial gradients in biodiversity, productivity and temperature, and span human
163 population densities from uninhabited atolls to densely populated islands supporting up to
164 2,235 people/km² forereef habitat (Table S1) (Williams et al., 2015).

165 The survey data (Coral Reef Ecosystem Program; Pacific Islands Fisheries
166 Science Center 2015) consist of observations of individual fish made during underwater
167 visual censuses (UVCs) by CREP's highly trained scientific divers. Two divers
168 conducted stationary point counts (SPC), with each surveying one of two adjacent
169 visually estimated 15 m diameter cylinders along a 30 m transect (survey area = 353 m²).
170 Each diver identified every fish species present in or transient through their cylinder,
171 before enumerating and sizing (total length to the nearest cm) all observed fishes (Ayotte
172 et al., 2011). CREP surveys were stratified by depth bin, into shallow (0-6 m), mid (6-
173 18 m) and deep (18-30 m) zones, and we only examined surveys conducted on forereef
174 habitat. The number of surveys at each island was proportional to the total forereef area.
175

176 We considered each individual UVC survey recorded by a pair of divers (two
177 CREP cylinders) as a unique site. To analyse fishing impacts at the community level we
178 aggregated all sites sampled in each year across each island (n = 70 island x year
179 combinations). We converted the length estimate from each individual fish to body mass
180 (to the nearest gram) using published length-weight relationships for species or families
181 (Kulbicki et al., 2005; Froese & Pauly, 2016). Because UVC methods of coral reef fish
182 communities can be subject to several potential biases (Bozec et al., 2011), we excluded
183 all fish < 20 g body mass to avoid underestimating the abundance of small cryptic fishes
184 (Ackerman & Bellwood, 2000; Wilson et al., 2010). In addition, large mobile piscivores
185 (i.e. sharks and jacks) are often overestimated in small-scale non-instantaneous
186 underwater visual surveys (Ward-Paige et al., 2010), and may also be attracted to divers
187 at remote islands (Parrish et al., 2000; Richards et al., 2011). Both biases can

188 substantially inflate biomass estimates and we therefore followed other recent large-scale
189 studies of reef fish communities by excluding sharks and jacks from our analyses
190 (MacNeil et al., 2015; Williams et al., 2015).

191
192 Fig. 1. Map of Pacific islands surveyed by CREP ($n = 38$) with each coloured by human
193 population density. Human population density is population per forereef area (km^2)
194 within a 20 km radius on a \log_{10} scale.

195

196 *Reeffish community analyses*

197 We used size spectra to quantify reef fish community structure. The size spectrum
198 is usually fitted to frequencies of body sizes and predicted to approximate a power law
199 distribution (Eq. 1) (Vidondo et al., 1997; Andersen & Beyer, 2006). Here, we used
200 maximum likelihood estimation to estimate the size spectrum slope, b (Vidondo et al.,

201 1997; Edwards, 2008). We fitted body size data for individual fishes from each island, for
202 each year, to a bounded power law distribution with probability density function:

203
$$f(x) = \frac{(b+1)x^b}{x_{\max}^{b+1} - x_{\min}^{b+1}} \quad (1)$$

204 where x is body mass, b is the scaling exponent, and the distribution is bounded by the
205 minimum and maximum possible body sizes (x_{\min}, x_{\max}) (White et al., 2008). Equation 1
206 is undefined for $b = -1$, but this value does not occur for our data. The log-likelihood of a
207 bounded power law is:

208
$$\log[L(b \mid \text{data})] = n \log\left(\frac{b+1}{x_{\max}^{b+1} - x_{\min}^{b+1}}\right) + b \sum_{j=1}^n \log x_j \quad (2)$$

209 (Edwards et al., in revision) and was numerically optimized to estimate b (Edwards,
210 2008; Edwards et al., 2012). Unlike binning-based approaches to fitting frequency data,
211 this method has the benefit of producing accurate estimates of b (Edwards et al., in
212 revision). In our maximum likelihood estimation, x_{\min} and x_{\max} are the minimum (i.e. 20
213 g) and maximum observed values at each island within a single survey year (Edwards et
214 al., 2012). In most empirical analyses of the aquatic size spectrum, binning-based
215 methods are used to estimate b , such that the regression slope is the parameter of interest
216 and a ‘steepening spectrum’ is predicted following the selective exploitation of large
217 body sizes (i.e. the regression slope, or b , becomes more negative as the abundance of the
218 largest size classes is depleted relative to small size classes) (Daan et al., 2005; Blanchard
219 et al., 2005; Graham et al., 2005; Petchey & Belgrano, 2010). For consistency with these
220 studies, we refer to the power law exponent b as the size spectrum slope (see also
221 Edwards et al., in revision).

222

223 We used a Monte Carlo resampling procedure to correct for differences in
224 sampling effort (i.e. number of UVCs) at each island. Size spectrum slopes were
225 estimated for a random sample (without replacement) of 1000 individual fish at each
226 island in each survey year, and the size spectrum slope was the mean slope estimate from
227 10,000 replicate random samples. Each island included in the analysis had at least 1000
228 individual fish observations (Table S2).

229

230 In addition to size spectra, we examined two biomass–based fisheries indicators.
231 First, we quantified overall community fish biomass (kg ha^{-1}) by averaging biomass
232 across all UVCs at each island for each year. Second, to investigate the extent to which
233 size-selective fishing was responsible for the observed patterns in size spectra slopes and
234 overall community biomass, we estimated the proportion of large fish at each island using
235 a large fish indicator (LFI) (Greenstreet et al., 2011). We defined the LFI as the biomass
236 of fish $> 1\text{kg}$ divided by the total biomass of the fish community, averaged across all
237 UVCs at each island for each year.

238

239 *Explanatory covariates*

240 We examined variation in community size spectra and fish biomass in relation to
241 two anthropogenic and six environmental covariates (Tables 1, S1). No standard measure
242 of fishing effort was available across all islands sampled. Instead, we estimated both
243 human population density, expressed as number of people within a 20 km radius divided
244 by the forereef area (Williams et al., 2015), and distance to market (defined as the
245 distance to provincial capital) (Cinner et al., 2012a) as distal metrics of exploitation

246 pressure on coral reef fish communities (Appendix S1). Although human population
247 density is often strongly correlated with a loss of reef fish biomass (Mora, 2008;
248 Williams et al., 2011; Cinner et al., 2012a; Williams et al., 2015), distance to market,
249 which is less commonly employed, may be a more sensitive indicator of fishing intensity
250 on sparsely populated coral reefs (Brewer et al., 2012; Cinner et al., 2012a; Maire et al.,
251 2016). Sea surface temperature (SST) and oceanic productivity also can both positively
252 influence reef fish biomass (Williams et al., 2015), but their influence on community size
253 structure remains unclear. We used remote sensing data to calculate time-averaged
254 estimates of SST ($^{\circ}\text{C}$) and oceanic productivity ($\text{mg C m}^{-2} \text{ day}^{-1}$) at each site (Appendix
255 S1). In addition to oceanographic factors, coral reef fish communities may be influenced
256 by a suite of other biophysical characteristics (Table 1). For example, reef area and island
257 type have been shown to influence reef fish biomass (Cinner et al., 2012a) while, at the
258 site level, reefs of high complexity are thought to offer extensive prey refugia that
259 support greater densities of small-bodied fish and steeper size spectra (Wilson et al.,
260 2010; Alvarez-Filip et al., 2011; Rogers et al., 2014). We estimated land area and reef
261 area within 75 km radius of each site (Appendix S1), classified each island as an atoll
262 (e.g. Kure, Palmyra), island with lagoon or pseudo-lagoon ('low' island, e.g. Saipan), or
263 island without a lagoon ('high' island, e.g. Oahu) following D'Agata et al. (2014), and
264 quantified habitat complexity with both *in situ* (habitat complexity) and remotely sensed
265 (bathymetric slope) estimates at each site (Appendix S1). All site-level explanatory
266 covariates were averaged to give estimates for each island (Table S1).

Covariate	Definition	Source	Size spectrum			Fish biomass
			-ve	+ve	-ve	
Human population density	Total population within a 20 km radius per reef area (km ²)	SEDAC	1, 2, 3	-	6, 7, 8, 9, 10, 11, 12	
Proximity to market	Distance to nearest provincial capital (km)	ARC GIS	-	-	10, 11	
Minimum SST	Mean of weekly minimum SST (°C) values over 1982-2009 at 4x4 km resolution	CoRTAD	-	12	13	
Mean productivity	Weekly mean of productivity (mg C m ⁻² day ⁻¹) values over 2002-2013 for at least 3 1x1 km cells	NOAA CoastWatch	-	12, 13	-	
Habitat complexity	Mean substrate height within point count cylinder	CREP				
Bathymetric slope	Bathymetric slope extent (0 – 90°) at 1x1 km resolution	MARSPEC	3, 4, 5	12, 14, 15	-	
Island type	Atoll, low (island with lagoon or pseudo-lagoon), high (island without lagoon)	D'Agata et al. (2014)	-		Highest at atolls (11)	
Land area	Land area within 75 km radius (km ²)	Millennium/Coral Reef Habitat Map	-	-	-	
Reef area	Total reef area <30 m depth within 75 km radius (km ²)	Millennium/Coral Reef Habitat Map	-		No effect (11)	

268 Source references and methodological details in Appendix S1. Example references: 1. Dulvy et al. (2004); 2. Graham et al. (2005); 3. Wilson et al.
 269 (2010); 4. Alvarez-Filip et al. (2011); 5. Rogers et al. (2014); 6. Jennings et al. (1995); 7. Jennings & Polunin (1997); 8. Mora et al. (2011); 9.
 270 Williams et al. (2011); 10. Brewer et al. (2012); 11. Cinner et al. (2012a); 12. Williams et al. (2015); 13. Barneche et al. (2014); 14. Friedlander et
 271 al. (2003); 15. Graham & Nash (2012)

272 Table 1. Anthropogenic and environmental covariates included in size spectra and
273 biomass models. Previous studies that examined the influence of each covariate on
274 size spectra and biomass are numbered and categorized by the direction of the
275 relationship they observed (positive, +ve; negative, -ve).

276

277 *Statistical modeling*

278 Prior to analyses, we applied \log_{10} transformations to distance to market (km),
279 population density per island ($\log_{10}(\text{density} + 1)$ per km^2), and reef area (km^2) to
280 reduce skewness. We also centered and standardized all continuous covariates
281 (Schielzeth, 2010). Island type (atoll, low island, high island) was coded as two
282 dummy variables before centering to a mean of zero. Distance to market and
283 population density were strongly negatively correlated ($r = -0.84$), so to avoid
284 collinearity issues we fitted separate models for each human covariate.

285

286 We modelled size spectra slopes and reef fish biomass estimates against the
287 eight anthropogenic and environmental covariates at the island level. The distribution
288 of size spectra estimates b was normal (Shapiro-Wilk normality test: $W = 0.992$; $p =$
289 0.934) so we used linear mixed effects models (*lme4* package in R; Bates et al., 2015)
290 to examine variation amongst them. To account for instances of islands sampled in
291 multiple years, survey year (j) was included as a random effect (ρ_j). We modeled reef
292 fish biomass with a gamma distribution and a log link (Zuur et al., 2009), and the
293 same fixed and random effects structure as the size spectra models. Prior to model
294 selection procedures, we assessed evidence of collinearity with variance inflation
295 factors (VIF), where variables with $\text{VIF} > 10$ were considered evidence of strong

296 multicollinearity (Zuur et al., 2009). In the saturated size spectrum and reef fish

297 biomass models every explanatory variable had a VIF <6.

298

299 We used multimodel inference to examine models based on all possible
300 subsets of our anthropogenic and environmental covariates using a dredge function
301 (MuMIn package in R; Barton, 2015). We assessed model support with the Akaike
302 Information Criterion adjusted for small sample sizes (AIC_c) (Burnham & Anderson,
303 2002) and found there was no single top model (i.e. $\Delta\text{AIC}_c > 2$). Instead, following
304 Cade (2015) we examined weighted absolute t-statistic values across all subset
305 models as a measure of covariate importance. The t-statistic can be used as a measure
306 of effect size within models as it is the parameter estimate divided by the standard
307 error. We weighted each t-statistic by the corresponding model probability (i.e. AIC_c
308 weight for each model i , w_i), and estimated the weighted sample variance (σ^2) for
309 each t-value (x_i) for the weighted mean t-value (μ):

$$310 \sigma_{\text{weighted}}^2 = \sum_{i=1}^N w_i (x_i - \mu)^2 \quad [3]$$

311 In this way, the variables that were most important in predicting the given response
312 (i.e., had the strongest effects in the more probable models) had the largest weighted
313 absolute t-statistic.

314

315 To visualize how the most important explanatory covariates influenced size
316 spectra and reef fish biomass, we examined model predictions for each explanatory
317 covariate across the range of observed values while holding all other predictor
318 covariates at their means. We plotted the model-averaged prediction across the top
319 model set ($\Delta\text{AIC}_c < 7$) weighted by the corresponding model probabilities (Burnham
320 & Anderson, 2002), and estimated the weighted sample variance as a measure of

321 variability in predictions across the top model set. We visualized the predictions
322 concerning distance to market models in the same direction as human population
323 density by plotting predictions against the inverse of distance to market (hereafter
324 'proximity to market', i.e. for the scaled covariates, islands with high population
325 estimates also had high proximity to market estimates).

326

327 We also examined if changes in size spectra corresponded with changes in
328 reef fish biomass, and if those relationships differed between populated and
329 uninhabited islands. We fitted linear mixed models to examine how size spectra
330 changed across a gradient of reef fish biomass, treating populated and uninhabited
331 islands separately and including survey year as a random effect. To explicitly test for
332 size-selective fishing of large body sizes, we used the same approach to examine the
333 relationship between size spectra and the LFI at populated and uninhabited islands
334 (Fig. S1).

335

336 Finally, we conducted sensitivity analyses to test the robustness of our results
337 to different treatments of the datasets. UVC methods provide estimates of length
338 rather than mass, and previous studies of reef fish communities have generally fitted
339 length spectra (Dulvy et al., 2004; Graham et al., 2005; Wilson et al., 2010). As such,
340 we also estimated size spectra slopes using reef fish lengths and refitted our statistical
341 models. Model averaged predictions and weighted mean t-statistic ratios for reef fish
342 length spectra models were similar to results from mass spectra models (Figs. S2, S3,
343 Table S5). Estimates of mass spectra facilitate comparisons with our analyses of reef
344 fish biomass and, as a result, we decided to present mass spectra rather than length
345 spectra as our main results.

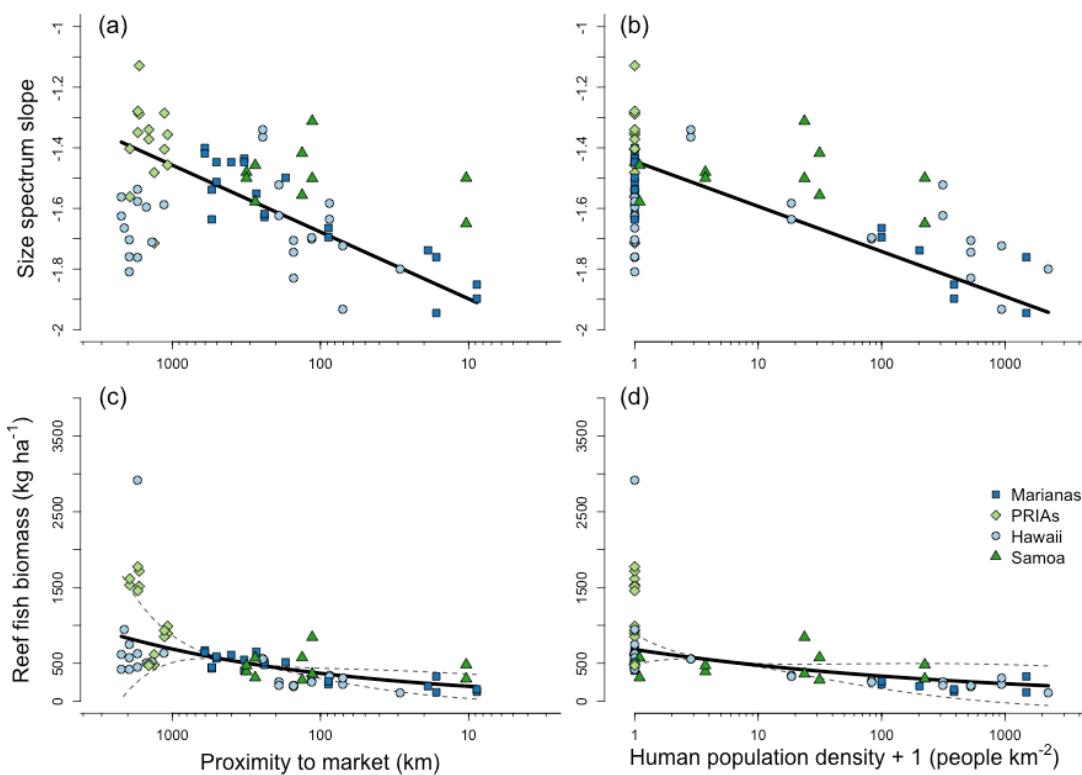
346

347 All analyses were conducted using R version 3.2.0 (R Core Team, 2015), and
348 we provide our code at an open source repository (github.com/baumlab/robinson-
349 reefs-spectra).

350

351 **Results**

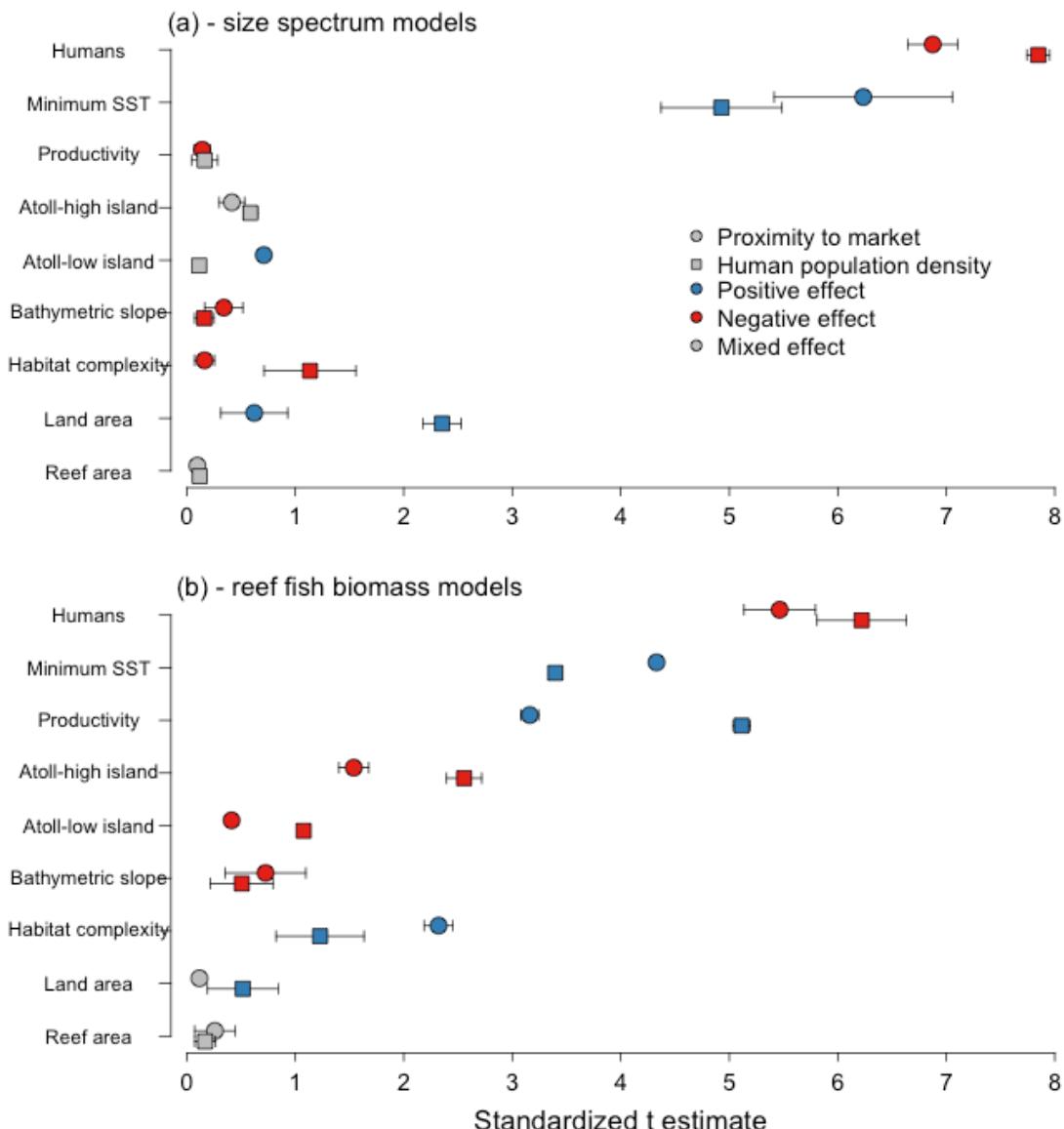
352 *Size spectra analyses*


353 Reef fish community size structure varied considerably across the gradient of
354 human impacts over 38 Pacific islands, with size spectra slopes (b) ranging from -1.13
355 down to -1.95 (Fig. 2a,b). The human disturbance and several environmental variables
356 explained a large proportion of the variation in size spectra across islands. Across the
357 top model set (all models $< 7 \Delta AIC_c$), the range in R^2 was 0.56 – 0.59 and 0.61 – 0.65
358 for the proximity to market and human population density models, respectively (Table
359 S3). Regardless of the metric used, human disturbance had the strongest effect on the
360 size spectrum at a given island (Fig. 3a). Size spectra slopes decreased linearly with
361 increasing proximity to market (model averaged t-statistic = 6.87) (Fig. 2a) and with
362 increasing human population density (model averaged t-statistic = 7.85) (Fig. 2b).
363 The steepest size spectra ($b < -1.8$) were generally observed only at reefs with high
364 human population density, which typically also were close to market centres (Pearson
365 correlation = 0.84) (Fig. 2a,b). Apart from human impact covariates, minimum SST
366 ($^{\circ}C$) had a strong positive effect on size spectra slopes in top model sets for both
367 proximity to market (model averaged t-statistic = 6.23) and population density (4.93).
368 The remaining environmental and biogeographic covariates had relatively weak
369 effects on size spectra (all model averaged t-statistics < 2.4) (Fig. 3a).

370

371 *Biomass analyses*

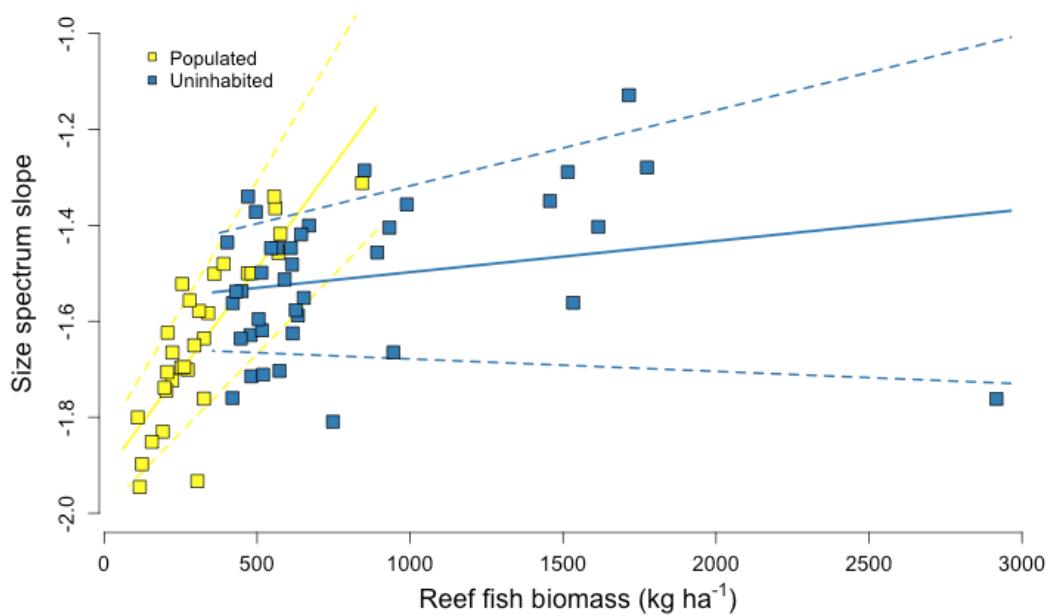
372 Reef fish biomass varied across islands from an estimated 110 kg ha^{-1} to over
373 2900 kg ha^{-1} , and was lowest at islands with high human presence. Across the top
374 model set, R^2 ranged from $0.54 - 0.59$ and $0.53 - 0.58$ for the proximity to market and
375 human population density models, respectively (Table S4). As with the size spectra
376 models, human disturbance covariates were the strongest drivers of reef fish biomass
377 (Fig 3b): reef fish biomass decreased non-linearly with increasing proximity to market
378 (Fig. 2c) and human population density (Fig. 2d), and only the remote, unpopulated
379 islands supported biomass levels $>1000 \text{ kg ha}^{-1}$. The lowest biomass levels ($<200 \text{ kg}$
380 ha^{-1}) were observed only at reefs with high human population density, which typically
381 were also close to market centres (Fig. 2c,d). Several environmental covariates were
382 also important drivers of reef fish biomass. Generally, islands with higher minimum
383 SST ($^{\circ}\text{C}$) and higher productivity supported greater biomass (Fig. 3b). However, the
384 relative effects of SST and productivity on biomass differed slightly between model
385 sets, with SST the stronger driver in the proximity to market model set (model
386 averaged t-statistic = 4.33 for proximity to market; 3.40 for human population
387 density) and productivity the stronger in the human population density model set
388 (3.16 and 5.11). For both model sets, atolls supported greater biomass than high (t-
389 statistics: 1.53 and 2.56 for proximity to market and human population density,
390 respectively) and low islands (0.41 and 1.08), and more complex habitats were
391 associated with higher biomass levels (2.32 and 1.23) (Fig. 3b).


392

393

394 Fig. 2. Human drivers of coral reef fish community size structure and biomass (kg ha^{-1})¹. Size spectra (a) and reef fish biomass (b) relationships are model averaged predictions across the standardized range of observed \log_{10} proximity to provincial capital (km) and \log_{10} human population density per forereef area (km^2) (b, d respectively). Predictions were made across the top model set ($\Delta\text{AICc} < 7$) and weighted using model probabilities (Tables S3, S4), while holding all other relevant covariates to their mean observed value. Dashed lines are the weighted sample variance at each value of human covariate (though these are indistinguishable from the model predictions in the size spectra analyses). For visualization purposes, we included the observed data as points plotted against the untransformed human covariates and coloured by region (dark blue squares = Marianas archipelago; light blue circles = Hawaiian archipelago, light green diamonds = Pacific Remote Island Areas, dark green triangles = American Samoa).

407


408

409 Fig. 3. Human and environmental drivers of reef fish size structure and biomass. Size
 410 spectra (a) and reef fish biomass (b) are presented for the distance to market (circles)
 411 and human population density (squares) full model sets. Points are the weighted
 412 absolute t-values for each explanatory covariate, with weighted sample variance as
 413 error bars. T-values indicate the magnitude of each covariate effect, and colors
 414 indicate the direction of each covariate effect (blue = positive; red = negative; grey =
 415 mixed). See Tables S3 and S4 for further details.

416

417 *Populated vs. uninhabited reef fish community structure*

418 At the populated islands, there was a strong relationship between size spectra
419 and reef fish biomass ($P < 0.001$, $R^2 = 0.70$) (Fig. 4). This relationship appeared to be
420 explained by the disproportionate exploitation of large-bodied fishes, since the most
421 negative (i.e. steepest) spectra slopes were associated with particularly low values for
422 the large fish indicator (i.e. low relative biomass of large-bodied fish; $P < 0.001$, $R^2 =$
423 0.30) (Fig. S1). In contrast, despite substantial variation in size spectra slopes (-1.81
424 to -1.13) and reef fish biomass (402 to 2917 kg ha⁻¹), size spectra did not consistently
425 covary with either fish biomass ($P = 0.172$, $R^2 = 0.05$) (Fig. 4) or the large fish
426 indicator ($P = 0.316$, $R^2 = 0.03$) at the remote, uninhabited islands (Fig. S1).

427
428 Fig. 4. Change in size spectra across the gradient of reef fish biomass. Size spectra ~
429 biomass relationships were fitted separately to uninhabited (blue) and populated
430 (yellow) islands. Solid lines are linear regression slope estimates with 95%
431 confidence intervals. Each point is a size spectrum slope and biomass estimate at one
432 island in a single survey year.

433

434 **Discussion**

435 Our analyses reveal that, along a disturbance gradient from reefs of near-pristine
436 wilderness to degraded reefs at developed population centres, increasing human
437 presence causes a gradual degradation of coral reef fish community size structure. At
438 populated islands, steeper size spectrum slopes were associated with a reduction in
439 total fish biomass and the relative biomass of large-bodied fishes. The specificity of
440 each ecological indicator to human impacts was markedly different, such that size
441 spectra responded to solely to human presence and sea surface temperature whereas
442 total biomass was highly sensitive to low levels of human presence as well as
443 influences of temperature, oceanic productivity, and island geomorphology.

444

445 At populated islands, steepening size spectra represent a gradual shift in body
446 size distributions from fish communities with a high relative proportion of large fish
447 (shallow slopes) to ones dominated by small fishes (steep slopes). Large-bodied fishes
448 play important roles in maintaining reef functions, suggesting that the loss of these
449 individuals due to size selective exploitation may have disproportionate functional
450 impacts on coral reefs. For example, many large herbivorous fishes are important
451 bioeroders and control algal growth (Bellwood et al., 2011; Edwards et al., 2013).
452 More generally, large predators can control the stability of prey populations across
453 habitats (Rooney et al., 2006; Britten et al., 2014). Size-selective exploitation of these
454 fishes may therefore impair the ability of reefs to recover from additional disturbances
455 such as coral bleaching and hurricane damage (Cheal et al., 2013). Size spectra
456 analyses of moderately exploited reef fisheries in Fiji (Dulvy et al., 2004: 1-100
457 people per km reef front; Graham et al., 2005: 3-300 people per km reef front)
458 previously suggested that harvesting of large-bodied fishes steepens size spectra at

459 small spatial scales. Fishing practices across the Pacific are, however, highly variable,
460 with the gear and associated target species varying across islands and regions
461 (Friedlander & Parrish, 1997; Craig et al., 2008; Houk et al., 2012). Our analyses
462 encompass regions characterized by a high diversity of fishing gears (Dalzell et al.,
463 1996; Fenner, 2012) and fish species (Kulbicki et al., 2013), and span a wider
464 gradient in human population density (0 – 2,235 people per km² forereef area) than
465 that of previous studies. As such, we show that size-selective exploitation is a
466 pervasive issue on coral reefs at ocean-basin scales, which consistently alters reef
467 community size structure.

468

469 Altered community size structure also may have important functional
470 consequences that extend beyond a loss of large-bodied individuals. Size structuring
471 of trophic interactions on coral reefs (Robinson & Baum, 2016) means that
472 communities with steeper size spectra will have a lower mean trophic level (Jennings
473 et al., 2002), consistent with evidence that the mean trophic level of reef fisheries
474 catch is negatively correlated with human population density (Houk et al., 2012).
475 Moreover, communities dominated by smaller individuals have faster rates of
476 population growth (Brown et al., 2004; Blanchard et al., 2012) and biomass turnover
477 (Jennings & Blanchard, 2004), and communities with lower mean trophic level may
478 be less stable (Blanchard et al., 2012; Rochet & Benoit, 2012; Britten et al., 2014) and
479 more sensitive to environmental change (Jennings & Blanchard, 2004). Exploitation
480 of large size classes also may release prey populations from predation pressure and
481 thus further steepen size spectra (Daan et al., 2005). However, such cascading effects
482 may be difficult to detect in reef systems in which predator-prey interaction strengths
483 are dampened due to apex predators feeding across large spatial scales and across

484 trophic levels (McCauley et al., 2012; Frisch et al., 2014; Frisch et al., 2016; Roff et
485 al., 2016). In addition, exploited reef fisheries likely also target medium- and small-
486 bodied fishes, thus depressing any compensatory growth by prey populations.
487 Disentangling the combined effects of trophic release of prey populations and
488 exploitation of smaller size classes therefore remains problematic, but shifts in
489 community size structure along human disturbance gradients may provide an early
490 warning of impacts on functional properties at the community level.

491

492 Human-associated declines in total biomass and large fish biomass have been
493 documented globally across distinct coral reef regions (Roberts, 1995; Mora, 2008;
494 Cinner et al., 2012a; MacNeil et al., 2015; Williams et al., 2015; Nash & Graham,
495 2016), but the link between community size structure and biomass has not previously
496 been examined. We found that gradual declines in size spectra slopes along either
497 human covariate gradient contrasted with a rapid decrease in reef fish biomass from $>$
498 1500 kg ha^{-1} at unpopulated islands to $< 600 \text{ kg ha}^{-1}$ at islands with the lowest human
499 presence. These different patterns likely arose because biomass estimates are most
500 strongly influenced by the number of large-bodied fish that are present (Nash &
501 Graham, 2016), whereas size spectra respond to shifts across the entire distribution of
502 body sizes from the smallest to largest fish, and treat each individual fish equally. At
503 the most degraded reefs where large fishes are absent, fishing of medium- and small-
504 sized fish would further deteriorate community structure but cause less dramatic
505 reductions in total community biomass. In contrast, the size spectra of lightly fished
506 reefs were similar that of an undisturbed size spectrum despite supporting biomass
507 values typical of more heavily disturbed communities. The differential response of
508 community size spectra and community biomass suggests that community size

509 structure may be more resilient than total biomass to light exploitation. These findings
510 are consistent with patterns at coral reefs in the Indian Ocean where the functional
511 composition of fished reefs remains partially intact at biomass levels $> 600 \text{ kg ha}^{-1}$,
512 despite total biomass falling far below that of neighbouring unexploited sites
513 (McClanahan et al., 2015). Although recovery of reef fish biomass towards natural
514 baseline levels is an important conservation target that aims to restore ecosystem
515 properties by preserving functionally important species (Knowlton & Jackson, 2008;
516 Bellwood et al., 2011; MacNeil et al., 2015), the maintenance of productive fisheries
517 in populated regions is also a priority (Cinner et al., 2012b; Zeller et al., 2015).
518 Rebuilding community size structure in exploited regions is a realistic management
519 target that may be achieved without implementing the fisheries closures necessary for
520 rebuilding pristine biomass (MacNeil et al. 2015). Management for the recovery of
521 community size structure would also benefit from assessments of the influence of
522 shark and jack populations on spectra slopes, as these top predators likely play
523 important roles in structuring reef food webs (Bascompte et al., 2005; Rooney et al.,
524 2006) but are largely absent in heavily exploited regions (Roff et al., 2016).

525

526 Although human covariates were the strongest predictors of size spectra,
527 additional variation was attributed to differences in sea surface temperature.
528 Metabolic principles predict that, in warmer environments, increases in individual
529 energy demands drive greater per-capita consumption rates and strengthen top-down
530 control of prey populations (Bruno et al., 2015; DeLong et al., 2015). Therefore, in
531 agreement with our results, warmer islands should be characterized by shallower size
532 spectra (lower abundance of small bodied fish relative to large bodied fish). However,
533 difficulties with small-scale UVC methods in accurately enumerating large predator

534 populations (Ward-Paige et al., 2010) prevented the inclusion of some groups of large
535 predators in our size spectra analyses; our results, therefore, can provide only
536 incomplete evidence in support of stronger top-down control. Although metabolic
537 approaches have provided valuable insights into environmental constraints on reef
538 fish community biomass and trophic structure (Barneche et al., 2014, 2016),
539 theoretical predictions of the effect of temperature on reef fish size distributions are
540 lacking. Since size spectra were robust across gradients in other environmental
541 covariates, improved understanding of temperature control of size spectra would help
542 the development of predictions of natural baselines for reef fish community size
543 structure. Such understanding also is increasingly important as climate change warms
544 reef systems and degrades fish habitat, further stressing reef fish populations (Hoegh-
545 Guldberg et al. 2007).

546

547 We also detected strong influences of oceanic productivity and habitat
548 complexity on reef fish biomass. These patterns are broadly consistent with previous
549 observations that high oceanic production promotes planktivorous fish abundance
550 (Barneche et al., 2014; Williams et al., 2015) and high structural complexity promotes
551 survival of small-bodied fishes (Graham & Nash, 2012; Rogers et al., 2014).

552 Subsequent increases in energy availability to upper trophic levels promote greater
553 total community biomass (Friedlander et al., 2003; Cinner et al., 2009; Williams et al.,
554 2015) though, interestingly, these apparent differences in energy availability did not
555 affect size spectra. The lack of a strong response by size spectra at the island scale
556 suggests that the extra biomass afforded by high productivity and habitat complexity
557 may be equitably redistributed among all body sizes. Temperature was also a positive
558 influence on biomass. A previous analysis of the CREP dataset detected this effect

559 only in planktivorous fishes (Williams et al., 2015), and other studies have variously
560 noted positive (Richards et al., 2012) and negative (Barneche et al., 2014) effects of
561 temperature on reef fishes, indicating that further study of the influence of
562 temperature on biomass is warranted.

563

564 The apparent lack of environmental influences on size spectra - with the
565 exception of temperature - across islands that varied greatly in environmental setting
566 and biogeographic context supports the utility of size spectra as a robust ecological
567 indicator of fishing. In temperate systems, size-based indicators have proven to be
568 powerful methods of assessing exploitation effects across communities of different
569 compositions (Bianchi et al., 2000; Shin et al., 2005). In reef fisheries, which typically
570 lack adequate catch and survey data (Sadovy, 2005), UVC monitoring programmes
571 can provide the body length information required for size spectra analyses (Graham et
572 al., 2005; Nash & Graham, 2016). Size-based indicators also can effectively link
573 patterns in community structure with less tangible community-level properties such as
574 production and biomass turnover rates. Given their sensitivity to environmental
575 influences and strong response at low levels of exploitation, biomass estimates may
576 be less reliable as ecological indicators at large spatial scales.

577

578 Although we accounted for several potential sampling issues in our analyses,
579 size spectra estimates derived from different UVC methods might vary substantially.
580 Limitations of census methods can introduce error in the counts of small or large size
581 classes (Bozec et al., 2011) that bias slope estimates or produce non-linear size
582 spectra (Ackerman et al., 2004). Spectra estimated with biased binning-based methods
583 (e.g. earlier reef spectra studies (Dulvy et al., 2004; Graham et al., 2005)) can also

584 introduce error in size spectra analyses, while subtle differences between these
585 methods can even result in spectra slopes that differ by 1 (White et al., 2008).
586 Difficulties in enumerating fishes accurately across the size spectrum suggest that it
587 may be problematic to produce meaningful empirical estimates of baseline size
588 spectra slopes, as has been done for temperate marine ecosystems (Jennings &
589 Blanchard, 2004). Importantly, by removing some of the largest fish species (the
590 sharks and jacks) that are heavily targeted by fishers, our results are almost certainly a
591 conservative estimate of fishing impacts on reefs and are unlikely to match metabolic
592 predictions for size spectra in which slopes are a simple function of predator-prey
593 mass ratio and trophic energy transfer efficiency (Brown & Gillooly, 2003; Jennings
594 & Blanchard, 2004; Trebilco et al., 2013). Instead, size spectra may be most
595 informative if used to assess relative differences among communities in a space-for-
596 time approach (as we did here) or to assess temporal changes in community size
597 structure.

598

599 Across tropical Pacific coral reef ecosystems, islands with a strong human
600 presence were characterized by degraded coral reef fish community size structure.
601 Steepening size spectra suggest a shift in size-linked life history traits, implying that
602 fished communities may have reduced resilience to further exploitation and future
603 environmental change. Given comparative insensitivity to variation in environmental
604 conditions, size spectra may prove to be effective ecological indicators of exploitation
605 impacts on reef fisheries (Graham et al., 2005; Shin et al., 2005; Nash & Graham,
606 2016). Extreme reductions in reef fish biomass can have potentially wide-ranging and
607 pervasive consequences for reef ecosystems, particularly when species or trophic
608 groups that provide key ecosystem functions are depleted (Bellwood et al., 2011;

609 McClanahan et al., 2011; Ruttenberg et al., 2011; McClanahan et al., 2015). However,
610 despite the loss of biomass at lightly exploited islands, we detected weaker impacts on
611 size spectra slopes that suggest that maintenance of ecological size structure is a
612 tangible management target that could enhance the ecological resilience of coral reef
613 ecosystems.

614

615 **Acknowledgements**

616 Data on coral reef fish communities was collected by the NOAA Pacific Islands
617 Fisheries Science Center's Coral Reef Ecosystem Program. Funding for surveys and
618 to support program operation was provided by NOAA's Coral Reef Conservation
619 Program (<http://coralreef.noaa.gov>). We thank the officers and crews of the NOAA
620 Ships Hi'ialakai and Oscar Elton Sette, and the partner agencies that contributed to
621 field data collection and provided permissions to work in local waters including:
622 Papahānaumokuākea Marine National Monument, US Fish and Wildlife Service,
623 Department of the Interior, State of Hawaii Department of Land and Natural
624 Resources, Commonwealth of the Northern Mariana Islands (CNMI) Division of Fish
625 and Wildlife, Coastal Resources Management Office, Division of Environmental
626 Quality, Guam Division of Aquatic and Wildlife Resources, and American Samoa
627 Department of Marine and Wildlife Resources. JPWR was supported by funding from
628 The Leverhulme Trust and the University of Victoria, JMM was supported by an
629 NSERC postdoctoral fellowship, LAY was supported by a National Socio-
630 Environmental Synthesis Center (SESYNC) postdoctoral fellowship funded by the
631 National Science Foundation (DBI-1052875), and JKB acknowledges support from a
632 Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery
633 Grant and from an Alfred P. Sloan Research Fellowship in Ocean Science.

634

635 **References**

636 Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using
637 enclosed rotenone stations. *Marine Ecology Progress Series*, **206**, 227–237.

638

639 Ackerman JL, Bellwood DR, Brown JH (2004) The contribution of small individuals
640 to density-body size relationships: examination of energetic equivalence in reef fishes.
641 *Oecologia*, **139**, 568–571.

642

643 Alvarez-Filip L, Gill JA, Dulvy NK (2011) Complex reef architecture supports more
644 small-bodied fishes and longer food chains on Caribbean reefs. *Ecosphere*, **2**, 1–17.

645

646 Andersen KH, Beyer JE (2006) Asymptotic size determines species abundance in the
647 marine size spectrum. *The American Naturalist*, **168**, 54–61.

648

649 Ayotte P, McCoy K, Williams ID, Zamzow J (2011) Coral Reef Ecosystem Division
650 standard operating procedures: data collection for rapid ecological assessment fish
651 surveys. Pacific Islands Fisheries Science Center, Honolulu, 30 p.

652

653 Barneche DR, Kulbicki M, Floeter SR, Friedlander AM, Allen AP (2016) Energetic
654 and ecological constraints on population density of reef fishes. *Proceedings of the*
655 *Royal Society B: Biological Sciences*, **283**, 20152186.

656

657 Barneche DR, Kulbicki M, Floeter SR, Friedlander AM, Maina J, Allen AP (2014)

658 Scaling metabolism from individuals to reef-fish communities at broad spatial scales.

659 *Ecology Letters*, **17**, 1067–1076.

660

661 Barnes C, Maxwell D, Reuman DC, Jennings S (2010) Global patterns in predator-

662 prey size relationships reveal size dependency of trophic transfer efficiency. *Ecology*,

663 **91**, 222–232.

664

665 Barton K (2013) MuMIn: multi-model inference. R package version, **1**, 18.

666

667 Bascompte J, Melian C, Sala E (2005) Interaction strength combinations and the

668 overfishing of a marine food web. *Proceedings of the National Academy of Sciences*,

669 **102**, 5443–5447.

670

671 Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models

672 using lme4. *Journal of Statistical Software*, **67**, 1–48.

673

674 Bellwood DR, Hoey AS, Hughes TP (2011) Human activity selectively impacts the

675 ecosystem roles of parrotfishes on coral reefs. *Proceedings of the Royal Society B:*

676 *Biological Sciences*, **279**, 1621–1629.

677

678 Bianchi G, Gislason H, Graham K et al. (2000) Impact of fishing on size composition

679 and diversity of demersal fish communities. *ICES Journal of Marine Science*, **57**,

680 558–571.

681

682 Blanchard J, Dulvy N, Jennings S, Ellis J, Pinnegar JK, Tidd A, Kell L (2005) Do
683 climate and fishing influence size-based indicators of Celtic Sea fish community
684 structure? *ICES Journal of Marine Science*, **62**, 405–411.

685

686 Blanchard JL, Jennings S, Holmes R et al. (2012) Potential consequences of climate
687 change for primary production and fish production in large marine ecosystems.
688 *Philosophical Transactions of the Royal Society B: Biological Sciences*, **367**, 2979–
689 2989.

690

691 Bozec Y-M, Kulbicki M, Laloë F, Mou-Tham G, Gascuel D (2011) Factors affecting
692 the detection distances of reef fish: implications for visual counts. *Marine Biology*,
693 **158**, 969–981.

694

695 Brewer TD, Cinner JE, Fisher R, Green A, Wilson SK (2012) Market access,
696 population density, and socioeconomic development explain diversity and functional
697 group biomass of coral reef fish assemblages. *Global Environmental Change*, **22**,
698 399–406.

699

700 Britten GL, Dowd M, Minto C, Ferretti F, Boero F (2014) Predator decline leads to
701 decreased stability in a coastal fish community. *Ecology Letters*, **17**, 1518–1525.

702

703 Brown JH, Gillooly JF (2003) Ecological food webs: high-quality data facilitate
704 theoretical unification. *Proceedings of the National Academy of Sciences*, **100**, 1467–
705 1468.

706

707 Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic
708 theory of ecology. *Ecology*, **85**, 1771–1789.

709

710 Bruno JF, Carr LA, O'Connor MI (2015) Exploring the role of temperature in the
711 ocean through metabolic scaling. *Ecology*, **96**, 3126–3140.

712

713 Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a
714 practical information-theoretic approach. 2nd edition. Springer, New York.

715

716 Cade BS (2015) Model averaging and muddled multimodel inference. *Ecology*, **96**,
717 2370–2382.

718

719 Cheal AJ, Emslie M, MacNeil MA, Miller I (2013) Spatial variation in the functional
720 characteristics of herbivorous fish communities and the resilience of coral reefs.
721 *Ecological Applications*, **23**, 174-188.

722

723 Cinner JE, Graham NAJ, Huchery C, MacNeil MA (2012a) Global effects of local
724 human population density and distance to markets on the condition of coral reef
725 fisheries. *Conservation Biology*, **27**, 453–458.

726

727 Cinner JE, McClanahan TR, Daw T, Graham NAJ, Maina J, Wilson SK, Hughes TP
728 (2009) Linking social and ecological systems to sustain coral reef fisheries. *Current
729 Biology*, **19**, 206–212.

730

731 Cinner JE, McClanahan TR, MacNeil MA et al. (2012b) Comanagement of coral reef
732 social-ecological systems. *Proceedings of the National Academy of Sciences*, **109**,
733 5219–5222.

734

735 Coral Reef Ecosystem Program; Pacific Islands Fisheries Science Center (2015).

736 National Coral Reef Monitoring Program: Stratified Random surveys (StRS) of Reef
737 Fish, including Benthic Estimate Data of the U.S. Pacific Reefs since 2007. NOAA
738 National Centers for Environmental Information. Unpublished Dataset. [10/30/2015],
739 <https://inport.nmfs.noaa.gov/inport/item/24447>

740

741 Craig P, Green A, Tuilagi F (2008) Subsistence harvest of coral reef resources in the
742 outer islands of American Samoa: Modern, historic and prehistoric catches. *Fisheries
743 Research*, **89**, 230–240.

744

745 Daan N, Gislason H, Pope JG, Rice JC (2005) Changes in the North Sea fish
746 community: evidence of indirect effects of fishing? *ICES Journal of Marine Science*,
747 **62**, 177–188.

748

749 Dalzell P, Adams T, Polunin N (1996) Coastal fisheries in the Pacific islands.
750 *Oceanography and Marine Biology*, **34**, 395–531.

751

752 DeLong JP, Gilbert B, Shurin JB et al. (2015) The body size dependence of trophic
753 cascades. *The American Naturalist*, **185**, 354–366.

754

755 Dulvy NK, Polunin NV, Mill AC, Graham NAJ (2004) Size structural change in
756 lightly exploited coral reef fish communities: evidence for weak indirect effects.
757 Canadian Journal of Fisheries and Aquatic Sciences, **61**, 466–475.

758

759 D'Agata S, Mouillot D, Kulbicki M, Andréfouët S (2014) Human-mediated loss of
760 phylogenetic and functional diversity in coral reef fishes. Current Biology, **24**, 555–
761 560.

762

763 Edwards AM (2008) Using likelihood to test for Lévy flight search patterns and for
764 general power-law distributions in nature. Journal of Animal Ecology, **77**, 1212–
765 1222.

766

767 Edwards AM, Freeman MP, Breed GA, Jonsen ID (2012) Incorrect likelihood
768 methods were used to infer scaling laws of marine predator search behaviour. PloS
769 one, **7**, e45174.

770

771 Edwards AM, Robinson JPW, Plank MJ, Baum JK, Blanchard JL (In revision)
772 Testing and recommending methods for fitting size spectra to data. Methods in
773 Ecology and Evolution.

774

775 Edwards CB, Friedlander AM, Green AG et al. (2013) Global assessment of the status
776 of coral reef herbivorous fishes: evidence for fishing effects. Proceedings of the Royal
777 Society B: Biological Sciences, **281**, 20131835.

778

779 Essington TE, Moriarty PE, Froehlich HE et al. (2015) Fishing amplifies forage fish
780 population collapses. *Proceedings of the National Academy of Sciences*, **21**, 6648-
781 6652.

782

783 Fenner D (2012) Challenges for managing fisheries on diverse coral reefs. *Diversity*,
784 **4**, 105–160.

785

786 Friedlander AM, Parrish JD (1997) Fisheries harvest and standing stock in a Hawaiian
787 Bay. *Fisheries Research*, **32**, 33–50.

788

789 Friedlander AM, Brown EK, Jokiel PL, Smith WR, Rodgers KS (2003) Effects of
790 habitat, wave exposure, and marine protected area status on coral reef fish
791 assemblages in the Hawaiian archipelago. *Coral Reefs*, **22**, 291–305.

792

793 Frisch AJ, Ireland M, Baker R (2014) Trophic ecology of large predatory reef fishes:
794 energy pathways, trophic level, and implications for fisheries in a changing climate.
795 *Marine Biology*, **161**, 61–73.

796

797 Frisch AJ, Ireland M, Rizzari JR, Lonnstedt OM, Magnenat KA, Mirbach CE, Hobbs
798 J-PA (2016) Reassessing the trophic role of reef sharks as apex predators on coral
799 reefs. *Coral Reefs*, 1-14.

800

801 Froese R, Pauly D (2016) FishBase. Available at <http://www.fishbase.org>.

802

803 Fung T, Farnsworth KD, Shephard S, Reid DG, Rossberg AG (2013) Why the size
804 structure of marine communities can require decades to recover from fishing. *Marine*
805 *Ecology Progress Series*, **484**, 155–171.

806

807 Graham NAJ, Nash KL (2012) The importance of structural complexity in coral reef
808 ecosystems. *Coral Reefs*, **32**, 315–326.

809

810 Graham NAJ, Dulvy NK, Jennings S, Polunin N (2005) Size-spectra as indicators of
811 the effects of fishing on coral reef fish assemblages. *Coral Reefs*, **24**, 118–124.

812

813 Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM
814 (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries,
815 and ecosystems. *Conservation Biology*, **21**, 1291–1300.

816

817 Greenstreet SPR, Rogers SI, Rice JC, Piet GJ, Guirey EJ, Fraser HM, Fryer RJ (2011)
818 Development of the EcoQO for the North Sea fish community. *ICES Journal of*
819 *Marine Science*, **68**, 1–11.

820

821 Hicks CC, McClanahan TR (2012) Assessing gear modifications needed to optimize
822 yields in a heavily exploited, multi-species, seagrass and coral reef fishery. *PLoS one*,
823 **7**, e36022.

824

825 Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS (2007) Coral Reefs Under
826 Rapid Climate Change and Ocean Acidification. *Science*, **318**, 1737–1742.

827

828 Houk P, Rhodes K, Cuetos-Bueno J, Lindfield S, Fread V, McIlwain JL (2012)

829 Commercial coral-reef fisheries across Micronesia: A need for improving

830 management. *Coral Reefs*, **31**, 13–26.

831

832 Jackson JB, Kirby MX, Berger WH et al. (2001) Historical overfishing and the recent

833 collapse of coastal ecosystems. *Science*, **293**, 629–637.

834

835 Jennings S, Blanchard JL (2004) Fish abundance with no fishing: predictions based

836 on macroecological theory. *Journal of Animal Ecology*, **73**, 632–642.

837

838 Jennings S, Polunin NVC (1997) Impacts of predator depletion by fishing on the

839 biomass and diversity of non-target reef fish communities. *Coral Reefs*, **16**, 71–82.

840

841 Jennings S, Grandcourt EM, Polunin NVC (1995) The effects of fishing on the

842 diversity, biomass and trophic structure of Seychelles' reef fish communities. *Coral*

843 *Reefs*, **14**, 225–235.

844

845 Jennings S, Greenstreet SPR, Hill L, Piet GJ, Pinnegar JK, Warr KJ (2002) Long-term

846 trends in the trophic structure of the North Sea fish community: evidence from stable-

847 isotope analysis, size-spectra and community metrics. *Marine Biology*, **141**, 1085–

848 1097.

849

850 Jennings S, Pinnegar JK, Polunin NVC, Boon TW (2001) Weak cross-species

851 relationships between body size and trophic level belie powerful size-based trophic

852 structuring in fish communities. *Journal of Animal Ecology*, **70**, 934–944.

853

854 Johnson AE, Cinner JE, Hardt MJ, Jacquet J, McClanahan TR, Sanchirico JN (2013)

855 Trends, current understanding and future research priorities for artisanal coral reef

856 fisheries research. *Fish and Fisheries*, **14**, 281–292.

857

858 Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change

859 on coral reefs. *PLOS Biology*, **6**, e54.

860

861 Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight

862 relationships for New Caledonian lagoon fishes. *Cybium*, **29**, 235–252.

863

864 Kulbicki M, Parravicini V, Bellwood DR et al. (2013) Global biogeography of reef

865 fishes: a hierarchical quantitative delineation of regions. *PloS one*, **8**, e81847.

866

867 MacNeil MA, Graham NAJ, Cinner JE et al. (2015) Recovery potential of the world's

868 coral reef fishes. *Nature*, **520**, 341–344.

869

870 Maire E, Cinner J, Velez L et al. (2016) How accessible are coral reefs to people? A

871 global assessment based on travel time, *Ecology Letters*, **19**, 351–360.

872

873 McCann KS, Gellner G, McMeans BC et al. (2016) Food webs and the sustainability

874 of indiscriminate fisheries. *Canadian Journal of Fisheries and Aquatic Sciences*, **73**,

875 656–665.

876

877 McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F (2012)

878 Assessing the effects of large mobile predators on ecosystem connectivity. *Ecological*

879 *Applications*, **22**, 1711–1717.

880

881 McClanahan TR, Graham NAJ (2005) Recovery trajectories of coral reef fish

882 assemblages within Kenyan marine protected areas. *Marine Ecology Progress Series*,

883 **294**, 214–248.

884

885 McClanahan TR, Graham NAJ, MacNeil MA, Cinner JE (2015) Biomass-based

886 targets and the management of multispecies coral reef fisheries. *Conservation*

887 *Biology*, **29**, 409–417.

888

889 McClanahan TR, Graham NAJ, MacNeil MA, Muthiga NA, Cinner JE, Bruggemann

890 JH, Wilson SK (2011) Critical thresholds and tangible targets for ecosystem-based

891 management of coral reef fisheries. *Proceedings of the National Academy of*

892 *Sciences*, **108**, 17230–17233.

893

894 Mora C (2008) A clear human footprint in the coral reefs of the Caribbean.

895 *Proceedings of the Royal Society of London. Series B: Biological Sciences*, **275**, 767–

896 773.

897

898 Mora C, Aburto-Oropeza O, Bocos AA et al. (2011) Global human footprint on the

899 linkage between biodiversity and ecosystem functioning in reef fishes. *PLOS*

900 *Biology*, **9**, e1000606.

901

902 Nash KL, Graham NAJ (2016) Ecological indicators for coral reef fisheries
903 management. *Fish and Fisheries*, Early View 10.1111/faf.12157

904

905 Newton K, Côté IM, Pilling GM, Jennings S, Dulvy NK (2007) Current and future
906 sustainability of island coral reef fisheries. *Current Biology*, **17**, 655–658.

907

908 Parrish FA, Craig MP, Ragen TJ (2000) Identifying diurnal foraging habitat of
909 endangered Hawaiian monk seals using a seal-mounted video camera. *Marine
910 Mammal Science*, **16**, 392–412.

911

912 Petchey OL, Belgrano A (2010) Body-size distributions and size spectra: universal
913 indicators of ecological status? *Biology Letters*, **22**, 434–437.

914

915 Richards BL, Williams ID, Nadon MO, Zgliczynski BJ (2011) A towed-diver survey
916 method for mesoscale fishery-independent assessment of large-bodied reef fishes.
917 *Bulletin of Marine Science*, **87**, 55–74.

918

919 Richards BL, Williams ID, Vetter OJ, Williams GJ (2012) Environmental factors
920 affecting large-bodied coral reef fish assemblages in the Mariana Archipelago. *PloS
921 ONE*, **7**, e31374.

922

923 Roberts CM (1995) Effects of fishing on the ecosystem structure of coral reefs.
924 *Conservation Biology*, **9**, 988-995.

925

926 Robinson JPW, Baum JK (2016) Trophic roles determine coral reef fish community
927 size structure. *Canadian Journal of Fisheries and Aquatic Sciences*, **73**, 496-505.

928

929 Rochet M-J, Trenkel VM (2003) Which community indicators can measure the
930 impact of fishing? A review and proposals. *Canadian Journal of Fisheries and Aquatic
931 Sciences*, **60**, 86–99.

932

933 Rochet MJ, Benoit E (2012) Fishing destabilizes the biomass flow in the marine size
934 spectrum. *Proceedings of the Royal Society of London. Series B: Biological Sciences*,
935 **279**, 284–292.

936

937 Roff G, Doropoulos C, Rogers A et al. (2016) The Ecological Role of Sharks on
938 Coral Reefs, **31**, 395-407.

939

940 Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a
941 loss of structural complexity. *Current Biology*, **24**, 1000–1005.

942

943 Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the
944 stability of diverse food webs. *Nature*, **442**, 265–269.

945

946 Ruttenberg BI, Hamilton SL, Walsh SM et al. (2011) Predator-induced demographic
947 shifts in coral reef fish assemblages. *PLoS one*, **6**, e21062.

948

949 Sadovy Y (2005) Trouble on the reef: the imperative for managing vulnerable and
950 valuable fisheries. *Fish and Fisheries*, **6**, 167–185.

951

952 Sandin SA, Smith JE, DeMartini EE et al. (2008) Baselines and degradation of coral
953 reefs in the Northern Line Islands. *PloS one*, **3**, e1548.

954

955 Schielzeth, H. (2010) Simple means to improve the interpretability of regression
956 coefficients. *Methods in Ecology and Evolution*, **1**, 103-113.

957

958 Shin Y-J, Rochet M-J, Jennings S, Field JG, Gislason H (2005) Using size-based
959 indicators to evaluate the ecosystem effects of fishing. *ICES Journal of Marine*
960 *Science*, **62**, 384–396.

961

962 Sprules WG (2008) Ecological change in Great Lakes communities-a matter of
963 perspective. *Canadian Journal of Fisheries and Aquatic Sciences*, **65**, 1–9.

964

965 Sweeting CJ, Badalamenti F, D'Anna G, Pipitone C, Polunin N (2009) Steeper
966 biomass spectra of demersal fish communities after trawler exclusion in Sicily. *ICES*
967 *Journal of Marine Science*, **66**, 195–202.

968

969 Taylor BM, Houk P, Russ GR, Choat JH (2014) Life histories predict vulnerability to
970 overexploitation in parrotfishes. *Coral Reefs*, **33**, 869–878.

971

972 Thorpe RB, Le Quesne WJF, Luxford F, Collie JS, Jennings S (2015) Evaluation and
973 management implications of uncertainty in a multispecies size-structured model of
974 population and community responses to fishing. *Methods in Ecology and Evolution*,
975 **6**, 49–58.

976

977 Thrush SF, Dayton PK (2010) What can ecology contribute to ecosystem-based
978 management? *Annual Review of Marine Science*, **2**, 419–441.

979

980 Travis J, Coleman FC, Auster PJ et al. (2014) Integrating the invisible fabric of nature
981 into fisheries management. *Proceedings of the National Academy of Sciences*, **111**,
982 581–584.

983

984 Trebilco R, Baum JK, Salomon AK, Dulvy NK (2013) Ecosystem ecology: size-
985 based constraints on the pyramids of life. *Trends in Ecology & Evolution*, **28**, 423–
986 431.

987

988 Vidondo B, Prairie YT, Blanco JM, Duarte CM (1997) Some aspects of the analysis
989 of size spectra in aquatic ecology. *Limnology and Oceanography*, **42**, 184–192.

990

991 Ward-Paige C, Flemming JM, Lotze HK (2010) Overestimating fish counts by non-
992 instantaneous visual censuses: consequences for population and community
993 descriptions. *PloS one*, **5**, e11722.

994

995 West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth.
996 *Nature*, **413**, 628–631.

997

998 White EP, Enquist BJ, Green JL (2008) On estimating the exponent of power-law
999 frequency distributions. *Ecology*, **89**, 905–912.

1000

1001 White EP, Ernest SK, Kerkhoff AJ, Enquist BJ (2007) Relationships between body
1002 size and abundance in ecology. *Trends in Ecology & Evolution*, **22**, 323–330.

1003

1004 Williams ID, Baum JK, Heenan A, Hanson KM, Nadon MO, Brainard RE (2015)

1005 Human, oceanographic and habitat drivers of Central and Western Pacific coral reef
1006 fish assemblages. *PloS one*, **10**, e0120516.

1007

1008 Williams ID, Richards BL, Sandin SA et al. (2011) Differences in reef fish
1009 assemblages between populated and remote reefs spanning multiple archipelagos
1010 across the central and western Pacific. *Journal of Marine Biology*, **2011**, 826234.

1011

1012 Wilson SK, Fisher R, Pratchett MS et al. (2010) Habitat degradation and fishing
1013 effects on the size structure of coral reef fish communities. *Ecological Applications*,
1014 **20**, 442–451.

1015

1016 Zeller D, Harper S, Zyllich K, Pauly D (2015) Synthesis of underreported small-scale
1017 fisheries catch in Pacific island waters. *Coral Reefs*, **34**, 25–39.

1018

1019 Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models
1020 and extensions in ecology with R. Springer, New York.

1021

1022 **Supporting Information**

1023 Appendix S1. Explanatory covariate processing.

1024 Figure S1. Relationship between size spectra slopes and the LFI at populated and
1025 uninhabited reef areas.

1026 Figure S2. Length spectra slopes across proximity to market (a) and human
1027 population density (b).

1028 Figure S3. Model parameter estimates for length spectra.

1029 Table S1. Covariate estimates for CREP reef areas.

1030 Table S2. Reef areas surveyed in the CREP dataset.

1031 Table S3. Parameter estimates and model fit for top size spectra model set ($\Delta\text{AICc} <$
1032 7).

1033 Table S4. Parameter estimates and model fit for top biomass model set ($\Delta\text{AICc} < 7$).

1034 Table S5. Parameter estimates and model fit for top length spectra model set (ΔAICc
1035 < 7).

1036

1037