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Abstract

Fishing pressure on coral reef ecosystems has been frequently linked to reductions of
large fishes and reef fish biomass. Associated impacts on overall community structure
are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are
commonly quantified using size spectra, which describe the distribution of individual
body sizes within a community. We examined the size spectra of coral reef fish
communities at 38 US-affiliated Pacific islands, spanning from near pristine to highly
human populated. Reef fish community size spectra slopes ‘steepened’ steadily with
increasing human population and proximity to market due to a reduction in the relative
biomass of large fishes and an increase in the dominance of small fishes. In contrast, total
fish community biomass was substantially lower on inhabited islands than uninhabited
ones, regardless of human population density. Comparing the relationship between size
spectra and reef fish biomass, we found that on populated islands size spectra steepened
linearly with declining biomass, whereas on uninhabited islands size spectra and biomass
were unrelated. Size spectra slopes also were steeper in regions of low sea surface
temperature but were insensitive to variation in other environmental and geomorphic
covariates. In contrast, reef fish biomass was highly sensitive to biophysical conditions,
being influenced by oceanic productivity, sea surface temperature, island type, and
habitat complexity. Our results suggest that community size structure is more robust than
total fish biomass to increasing human presence and that size spectra are reliable
indicators of exploitation impacts across regions of different fish community
compositions, environmental drivers, and fisheries types. Size-based approaches that link

directly to functional properties of fish communities, and are relatively insensitive to
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70  abiotic variation across biogeographic regions, offer great potential for developing our
71  understanding of fishing impacts in coral reef ecosystems.
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Introduction

Overexploitation of marine species can cause system-wide shifts in species
abundances and interactions (Bascompte et al., 2005; Britten et al., 2014), which in turn
alter the structure and function of marine ecosystems (Jackson et al., 2001; Travis et al.,
2014). Selective fishing of large consumers can produce trophic cascades (Bascompte et
al., 2005; Baum & Worm, 2009) and destabilize predator-prey dynamics (Britten et al.,
2014), while sustained exploitation at lower trophic levels can collapse prey populations
(Essington et al., 2015). In temperate systems, broad fishing impacts are often evaluated
using complex ecosystem-based models that require high-resolution ecological and
exploitation data (Thorpe et al., 2015). However, when ecosystems are characterized by
high ecological diversity or limited catch data these approaches are infeasible. Instead,
community-level indicators that are simple to estimate, grounded in ecological theory,
and generalizable across ecosystems can provide informative assessments of fishing
impacts (Rochet & Trenkel, 2003; Thrush & Dayton 2010). Gaining such insights is of
paramount importance for subsistence coral reef fisheries, which provide important
sources of protein and livelihoods to millions of people across the world’s tropical island
nations (Sadovy, 2005; Newton et al., 2007). Coral reef fish assemblages are highly
diverse (Kulbicki et al., 2013) and their fisheries are multi-species and multi-gear (Hicks
& McClanahan, 2012), but catch and effort data are typically limited (Sadovy, 2005;
Zeller et al., 2015). As a result, exploitation impacts can be particularly difficult to
quantify (McClanahan et al., 2015; Nash & Graham, 2016), underscoring the need for

simple community-level indicators of exploitation impacts.
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In aquatic systems, trophic interactions are size-based and body size and
individual trophic level are tightly linked (Jennings et al., 2001; Barnes et al., 2010).
Size-based approaches that generalize across species but preserve links to community-
level traits may provide significant insights into the impacts of exploitation in complex
systems such as coral reefs (Nash & Graham, 2016). Body size also scales predictably
with a number of important ecological processes, from metabolic rate at the individual
scale (West et al., 2001) to biomass turnover at the population scale (Brown et al., 2004).
Therefore, size-based approaches offer powerful methods of assessing ecological
structure across distinct communities, and link directly to functional traits that are
otherwise difficult to estimate in data-poor systems (Taylor et al., 2014). One metric, the
size spectrum, describes the distribution of individuals across body sizes irrespective of
species (White et al., 2007; Trebilco et al., 2013). The size spectrum has been used to
assess fishing impacts across a range of temperate marine (Blanchard et al., 2005; Daan
et al., 2005; Sweeting et al., 2009) and freshwater fish communities (Sprules, 2008),
where community size structure is represented by the slope of the relationship between
abundance and body size on logarithmic scales (White et al., 2007). Size-selective fishing
causes the spectrum slope to decrease or ‘steepen’ as large fishes are depleted and prey
species are released from predation (Daan et al., 2005; Shin et al., 2005; Fung et al.,
2013). Metabolic and size-based theory predicts that a reduction in large fishes will
produce shifts in size-linked life history traits such that overexploited communities are
characterized by a greater dominance of small individuals, and concomitant higher
productivity and faster biomass turnover times (Jennings & Blanchard, 2004; McCann et

al., 2016).
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In small-scale, artisanal coral reef fisheries, overexploitation is a pervasive issue
that threatens the sustainability of a vital food resource for developing coastal countries
(Newton et al., 2007; Cinner et al., 2009; Johnson et al., 2013). Standing stock biomass is
widely used as metric of fishery health and of exploitation impacts at regional scales
(Cinner et al., 2009; Cinner et al., 2012a; MacNeil et al., 2015) and, although declines in
the abundance of large fishes on coral reefs are well documented (Sandin et al., 2008;
Williams et al., 2011), analyses of associated impacts on coral reef fish community size
structure have been infrequent (Nash & Graham, 2016). Steepening of size spectra slopes
due to overfishing of large fishes has thus far been detected only in Fijian small-scale reef
fisheries, and across only moderate gradients in exploitation pressure (Dulvy et al., 2004;
Graham et al., 2005; Wilson et al., 2010). Other direct comparisons between fished and
protected areas have found that community size structure is highly variable and unrelated
to exploitation, which may reflect unmeasured environmental influences (McClanahan &
Graham, 2005; Graham et al., 2007). As a result, it remains unclear whether degradation
in overall community size structure occurs across extreme gradients in exploitation
pressure, such as from pristine to overexploited reef communities, and if these patterns
are dependent on the fisheries’ species composition. At regional and global scales, recent
macroecological analyses of coral reef fish trophic structure and life history traits indicate
that biomass and ecological functions may be broadly preserved in lightly exploited
communities (McClanahan et al., 2011; MacNeil et al., 2015; McClanahan et al., 2015).
Similar examination of reef fish community size structure across large spatial scales and
gradients in fished biomass would provide additional insights into the state of coral reef

fisheries relative to unexploited ecosystems.
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Here, we use a large-scale dataset of Pacific reef fish abundances spanning from
remote near-pristine islands and atolls to highly populated ones, to examine how human
impacts alter the size structure of reef fish communities. The reefs included in our
analyses also span strong gradients in environmental covariates (Williams et al., 2015),
and differ substantially in their species compositions (Kulbicki et al., 2013) and
exploitation history (Dalzell et al., 1996; Houk et al., 2012). We estimated size spectrum
slopes to assess shifts in community structure across a body size range from tiny
planktivores (20g) to large piscivores (> 1kg), and quantified the biomass of large fishes
relative to the total fish community to determine whether exploitation was size selective.
To examine how changes in size structure corresponded with more conventional
biomass-based indicators, we also compared trends in size spectra with trends in total

community biomass.

Materials and Methods

Study location and survey data

We examined reef fish communities at 2,124 sites located on 38 U.S.-affiliated Pacific
islands, atolls, and banks (hereafter islands) (Fig. 1), that were surveyed between 2010
and 2014 by the Pacific Reef Assessment and Monitoring Program (Pacific RAMP) of
NOAA's Coral Reef Ecosystem Program (CREP). Surveyed islands encompass
substantial gradients in biodiversity, productivity and temperature, and span human
population densities from uninhabited atolls to densely populated islands supporting up to

2,235 people/km? forereef habitat (Table S1) (Williams et al., 2015).
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The survey data (Coral Reef Ecosystem Program; Pacific Islands Fisheries
Science Center 2015) consist of observations of individual fish made during underwater
visual censuses (UVCs) by CREP’s highly trained scientific divers. Two divers
conducted stationary point counts (SPC), with each surveying one of two adjacent
visually estimated 15 m diameter cylinders along a 30 m transect (survey area = 353 m?).
Each diver identified every fish species present in or transient through their cylinder,
before enumerating and sizing (total length to the nearest cm) all observed fishes (Ayotte
etal., 2011). CREP surveys were stratified by depth bin, into shallow (0-6 m), mid (6-

18 m) and deep (18-30 m) zones, and we only examined surveys conducted on forereef

habitat. The number of surveys at each island was proportional to the total forereef area.

We considered each individual UVC survey recorded by a pair of divers (two
CREP cylinders) as a unique site. To analyse fishing impacts at the community level we
aggregated all sites sampled in each year across each island (n = 70 island x year
combinations). We converted the length estimate from each individual fish to body mass
(to the nearest gram) using published length-weight relationships for species or families
(Kulbicki et al., 2005; Froese & Pauly, 2016). Because UVC methods of coral reef fish
communities can be subject to several potential biases (Bozec et al., 2011), we excluded
all fish <20 g body mass to avoid underestimating the abundance of small cryptic fishes
(Ackerman & Bellwood, 2000; Wilson et al., 2010). In addition, large mobile piscivores
(i.e. sharks and jacks) are often overestimated in small-scale non-instantaneous
underwater visual surveys (Ward-Paige et al., 2010), and may also be attracted to divers

at remote islands (Parrish et al., 2000; Richards et al., 2011). Both biases can
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188  substantially inflate biomass estimates and we therefore followed other recent large-scale
189  studies of reef fish communities by excluding sharks and jacks from our analyses

190 (MacNeil et al., 2015; Williams et al., 2015).
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192  Fig. 1. Map of Pacific islands surveyed by CREP (n = 38) with each coloured by human
193  population density. Human population density is population per forereef area (km?)

194  within a 20 km radius on a log; scale.

195

196  Reef fish community analyses

197 We used size spectra to quantify reef fish community structure. The size spectrum
198  is usually fitted to frequencies of body sizes and predicted to approximate a power law
199  distribution (Eq. 1) (Vidondo et al., 1997; Andersen & Beyer, 2006). Here, we used

200  maximum likelihood estimation to estimate the size spectrum slope, b (Vidondo et al.,
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1997; Edwards, 2008). We fitted body size data for individual fishes from each island, for

each year, to a bounded power law distribution with probability density function:

b+1)x"
f(x)=% (1)

where x is body mass, b is the scaling exponent, and the distribution is bounded by the
minimum and maximum possible body sizes (Xmin, Xmax) (White et al., 2008). Equation 1
is undefined for b = -1, but this value does not occur for our data. The log-likelihood of a

bounded power law is:

+1

b+1 b+1

max min

log[L(bldata)]=n log[ j +b) logx, ()
j=1

(Edwards et al., in revision) and was numerically optimized to estimate b (Edwards,
2008; Edwards et al., 2012). Unlike binning-based approaches to fitting frequency data,
this method has the benefit of producing accurate estimates of » (Edwards et al., in
revision). In our maximum likelihood estimation, xpin and xmax are the minimum (i.e. 20
g) and maximum observed values at each island within a single survey year (Edwards et
al., 2012). In most empirical analyses of the aquatic size spectrum, binning-based
methods are used to estimate b, such that the regression slope is the parameter of interest
and a ‘steepening spectrum’ is predicted following the selective exploitation of large
body sizes (i.e. the regression slope, or b, becomes more negative as the abundance of the
largest size classes is depleted relative to small size classes) (Daan et al., 2005; Blanchard
et al., 2005; Graham et al., 2005; Petchey & Belgrano, 2010). For consistency with these
studies, we refer to the power law exponent b as the size spectrum slope (see also

Edwards et al., in revision).
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We used a Monte Carlo resampling procedure to correct for differences in
sampling effort (i.e. number of UVCs) at each island. Size spectrum slopes were
estimated for a random sample (without replacement) of 1000 individual fish at each
island in each survey year, and the size spectrum slope was the mean slope estimate from
10,000 replicate random samples. Each island included in the analysis had at least 1000

individual fish observations (Table S2).

In addition to size spectra, we examined two biomass—based fisheries indicators.
First, we quantified overall community fish biomass (kg ha™) by averaging biomass
across all UVCs at each island for each year. Second, to investigate the extent to which
size-selective fishing was responsible for the observed patterns in size spectra slopes and
overall community biomass, we estimated the proportion of large fish at each island using
a large fish indicator (LFI) (Greenstreet et al., 2011). We defined the LFI as the biomass
of fish > 1kg divided by the total biomass of the fish community, averaged across all

UVCs at each island for each year.

Explanatory covariates

We examined variation in community size spectra and fish biomass in relation to
two anthropogenic and six environmental covariates (Tables 1, S1). No standard measure
of fishing effort was available across all islands sampled. Instead, we estimated both
human population density, expressed as number of people within a 20 km radius divided
by the forereef area (Williams et al., 2015), and distance to market (defined as the

distance to provincial capital) (Cinner et al., 2012a) as distal metrics of exploitation
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pressure on coral reef fish communities (Appendix S1). Although human population
density is often strongly correlated with a loss of reef fish biomass (Mora, 2008;
Williams et al., 2011; Cinner et al., 2012a; Williams et al., 2015), distance to market,
which is less commonly employed, may be a more sensitive indicator of fishing intensity
on sparsely populated coral reefs (Brewer et al., 2012; Cinner et al., 2012a; Maire et al.,
2016). Sea surface temperature (SST) and oceanic productivity also can both positively
influence reef fish biomass (Williams et al., 2015), but their influence on community size
structure remains unclear. We used remote sensing data to calculate time-averaged
estimates of SST (°C) and oceanic productivity (mg C m™ day™") at each site (Appendix
S1). In addition to oceanographic factors, coral reef fish communities may be influenced
by a suite of other biophysical characteristics (Table 1). For example, reef area and island
type have been shown to influence reef fish biomass (Cinner et al., 2012a) while, at the
site level, reefs of high complexity are thought to offer extensive prey refugia that
support greater densities of small-bodied fish and steeper size spectra (Wilson et al.,
2010; Alvarez-Filip et al., 2011; Rogers et al., 2014). We estimated land area and reef
area within 75 km radius of each site (Appendix S1), classified each island as an atoll
(e.g. Kure, Palmyra), island with lagoon or pseudo-lagoon (‘low’ island, e.g. Saipan), or
island without a lagoon (‘high’ island, e.g. Oahu) following D’Agata et al. (2014), and
quantified habitat complexity with both in situ (habitat complexity) and remotely sensed
(bathymetric slope) estimates at each site (Appendix S1). All site-level explanatory

covariates were averaged to give estimates for each island (Table S1).
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267

268
269
270
271

Size Fish biomass
spectrum
Covariate Definition Source -ve +ve -ve
Human population  Total population within a 20 km radius per reef 6,7, 8,
) 2 SEDAC 1,2,3 - 9, 10,
density area (km”)
11,12
Proximity to Distance to nearest provincial capital (km) ARC GIS - - 10, 11
market
.. Mean of weekly minimum SST (°C) values

Minimum SST over 1982-2009 at 4x4 km resolution CORTAD i 12 13

Weekly mean of productivity (mg C m™ day™)
Mean productivity ~ values over 2002-2013 for at least 3 1x1 km NOAA CoastWatch - 12,13 -

cells
Habitat complexity lg/liz;r:i Z;lbstrate height within point count CREP

B};thymetric slope extent (0 —90°) at 1x1 km 3,45 12,1415 -
Bathymetric slope . MARSPEC

resolution

Atoll, low (island with lagoon or pseudo- , .
Island type lagoon), high (island without lagoon) D’Agataetal. (2014) - Highest at atolls (11)

. ) 5 Millennium/Coral

Land area Land area within 75 km radius (km®) Reef Habitat Map - - -

Total reef area <30 m depth within 75 km Millennium/Coral
Reef arca radius (km?) Reef Habitat Map i No effect (11)

Source references and methodological details in Appendix S1. Example references: 1. Dulvy et al. (2004); 2. Graham et al. (2005); 3. Wilson et al.
(2010); 4. Alvarez-Filip et al. (2011); 5. Rogers et al. (2014); 6. Jennings et al. (1995); 7. Jennings & Polunin (1997); 8. Mora et al. (2011); 9.

Williams et al. (2011); 10. Brewer et al. (2012); 11. Cinner et al. (2012a); 12. Williams et al. (2015); 13. Barneche et al. (2014); 14. Friedlander et
al. (2003); 15. Graham & Nash (2012)
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272  Table 1.Anthropogenic and environmental covariates included in size spectra and
273  biomass models. Previous studies that examined the influence of each covariate on
274  size spectra and biomass are numbered and categorized by the direction of the

275  relationship they observed (positive, +ve; negative, -ve).

276

277  Statistical modeling

278 Prior to analyses, we applied log;o transformations to distance to market (km),
279  population density per island (log;o (density + 1) per km?), and reef area (km?) to

280  reduce skewness. We also centered and standardized all continuous covariates

281  (Schielzeth, 2010). Island type (atoll, low island, high island) was coded as two

282  dummy variables before centering to a mean of zero. Distance to market and

283  population density were strongly negatively correlated (» = -0.84), so to avoid

284  collinearity issues we fitted separate models for each human covariate.

285

286 We modelled size spectra slopes and reef fish biomass estimates against the
287  eight anthropogenic and environmental covariates at the island level. The distribution
288  of size spectra estimates b was normal (Shapiro-Wilk normality test: W = 0.992; p =
289  0.934) so we used linear mixed effects models (/me4 package in R; Bates et al., 2015)
290 to examine variation amongst them. To account for instances of islands sampled in
291  multiple years, survey year (j) was included as a random effect (p;). We modeled reef
292  fish biomass with a gamma distribution and a log link (Zuur et al., 2009), and the
293  same fixed and random effects structure as the size spectra models. Prior to model
294  selection procedures, we assessed evidence of collinearity with variance inflation

295  factors (VIF), where variables with VIF >10 were considered evidence of strong
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296  multicollinearity (Zuur et al., 2009). In the saturated size spectrum and reef fish

297  biomass models every explanatory variable had a VIF <6.

298

299 We used multimodel inference to examine models based on all possible

300  subsets of our anthropogenic and environmental covariates using a dredge function
301 (MuMlIn package in R; Barton, 2015). We assessed model support with the Akaike
302 Information Criterion adjusted for small sample sizes (AIC.) (Burnham & Anderson,
303  2002) and found there was no single top model (i.e. AAIC, > 2). Instead, following
304 Cade (2015) we examined weighted absolute t-statistic values across all subset

305 models as a measure of covariate importance. The t-statistic can be used as a measure
306  of effect size within models as it is the parameter estimate divided by the standard
307  error. We weighted each t-statistic by the corresponding model probability (i.e. AIC,
308  weight for each model 7, w;), and estimated the weighted sample variance (0?) for

309 each t-value (x;) for the weighted mean t-value (p):

310 02 s = 2, (3, — 1)’ [3]
311 In this way, the variables that were most important in predicting the given response
312  (i.e., had the strongest effects in the more probable models) had the largest weighted
313  absolute t-statistic.

314

315 To visualize how the most important explanatory covariates influenced size
316  spectra and reef fish biomass, we examined model predictions for each explanatory
317  covariate across the range of observed values while holding all other predictor

318 covariates at their means. We plotted the model-averaged prediction across the top
319 model set (AAIC, < 7) weighted by the corresponding model probabilities (Burnham
320 & Anderson, 2002), and estimated the weighted sample variance as a measure of
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321  variability in predictions across the top model set. We visualized the predictions

322  concerning distance to market models in the same direction as human population
323  density by plotting predictions against the inverse of distance to market (hereafter
324  ‘proximity to market’, i.e. for the scaled covariates, islands with high population

325  estimates also had high proximity to market estimates).

326

327 We also examined if changes in size spectra corresponded with changes in
328  reef fish biomass, and if those relationships differed between populated and

329  uninhabited islands. We fitted linear mixed models to examine how size spectra

330 changed across a gradient of reef fish biomass, treating populated and uninhabited
331  islands separately and including survey year as a random effect. To explicitly test for
332  size-selective fishing of large body sizes, we used the same approach to examine the
333 relationship between size spectra and the LFI at populated and uninhabited islands
334  (Fig. S1).

335

336 Finally, we conducted sensitivity analyses to test the robustness of our results
337  to different treatments of the datasets. UVC methods provide estimates of length

338  rather than mass, and previous studies of reef fish communities have generally fitted
339  length spectra (Dulvy et al., 2004; Graham et al., 2005; Wilson et al., 2010). As such,
340  we also estimated size spectra slopes using reef fish lengths and refitted our statistical
341 models. Model averaged predictions and weighted mean t-statistic ratios for reef fish
342  length spectra models were similar to results from mass spectra models (Figs. S2, S3,
343  Table S5). Estimates of mass spectra facilitate comparisons with our analyses of reef
344  fish biomass and, as a result, we decided to present mass spectra rather than length

345  spectra as our main results.
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346

347 All analyses were conducted using R version 3.2.0 (R Core Team, 2015), and
348  we provide our code at an open source repository (github.com/baumlab/robinson-

349  reefs-spectra).

350

351 Results

352  Size spectra analyses

353 Reef fish community size structure varied considerably across the gradient of
354  human impacts over 38 Pacific islands, with size spectra slopes () ranging from -1.13
355  down to -1.95 (Fig. 2a,b). The human disturbance and several environmental variables
356  explained a large proportion of the variation in size spectra across islands. Across the
357  top model set (all models <7 AAICc), the range in R? was 0.56 — 0.59 and 0.61 — 0.65
358 for the proximity to market and human population density models, respectively (Table
359  S3). Regardless of the metric used, human disturbance had the strongest effect on the
360 size spectrum at a given island (Fig. 3a). Size spectra slopes decreased linearly with
361 increasing proximity to market (model averaged t-statistic = 6.87) (Fig. 2a) and with
362  increasing human population density (model averaged t-statistic = 7.85) (Fig. 2b).
363  The steepest size spectra (b < -1.8) were generally observed only at reefs with high
364  human population density, which typically also were close to market centres (Pearson
365  correlation = 0.84) (Fig. 2a,b). Apart from human impact covariates, minimum SST
366 (°C) had a strong positive effect on size spectra slopes in top model sets for both

367  proximity to market (model averaged t-statistic = 6.23) and population density (4.93).
368  The remaining environmental and biogeographic covariates had relatively weak

369 effects on size spectra (all model averaged t-statistics < 2.4) (Fig. 3a).

370
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371  Biomass analyses

372 Reef fish biomass varied across islands from an estimated 110 kg ha™ to over
373 2900 kg ha', and was lowest at islands with high human presence. Across the top
374  model set, R ranged from 0.54 — 0.59 and 0.53 — 0.58 for the proximity to market and
375  human population density models, respectively (Table S4). As with the size spectra
376  models, human disturbance covariates were the strongest drivers of reef fish biomass
377  (Fig 3b): reef fish biomass decreased non-linearly with increasing proximity to market
378  (Fig. 2¢) and human population density (Fig. 2d), and only the remote, unpopulated
379  islands supported biomass levels >1000 kg ha™'. The lowest biomass levels (<200 kg
380 ha™) were observed only at reefs with high human population density, which typically
381  were also close to market centres (Fig. 2¢,d). Several environmental covariates were
382  also important drivers of reef fish biomass. Generally, islands with higher minimum
383  SST (°C) and higher productivity supported greater biomass (Fig. 3b). However, the
384  relative effects of SST and productivity on biomass differed slightly between model
385  sets, with SST the stronger driver in the proximity to market model set (model

386  averaged t-statistic = 4.33 for proximity to market; 3.40 for human population

387  density) and productivity the stronger in the human population density model set

388 (3.16 and 5.11). For both model sets, atolls supported greater biomass than high (t-
389  statistics: 1.53 and 2.56 for proximity to market and human population density,

390 respectively) and low islands (0.41 and 1.08), and more complex habitats were

391  associated with higher biomass levels (2.32 and 1.23) (Fig. 3b).

392
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Fig. 2. Human drivers of coral reef fish community size structure and biomass (kg ha’

1. Size spectra (a) and reef fish biomass (b) relationships are model averaged
predictions across the standardized range of observed log;¢ proximity to provincial
capital (km) and log;o human population density per forereef area (km?) (b, d

respectively). Predictions were made across the top model set (AAICc < 7) and

weighted using model probabilities (Tables S3, S4), while holding all other relevant

covariates to their mean observed value. Dashed lines are the weighted sample
variance at each value of human covariate (though these are indistinguishable from
the model predictions in the size spectra analyses). For visualization purposes, we
included the observed data as points plotted against the untransformed human
covariates and coloured by region (dark blue squares = Marianas archipelago; light
blue circles = Hawaiian archipelago, light green diamonds = Pacific Remote Island

Areas, dark green triangles = American Samoa).
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418 At the populated islands, there was a strong relationship between size spectra
419  and reef fish biomass (P < 0.001, R* = 0.70) (F ig. 4). This relationship appeared to be
420  explained by the disproportionate exploitation of large-bodied fishes, since the most
421 negative (i.e. steepest) spectra slopes were associated with particularly low values for
422 the large fish indicator (i.e. low relative biomass of large-bodied fish; P < 0.001, R* =
423  0.30) (Fig. S1). In contrast, despite substantial variation in size spectra slopes (-1.81
424  to-1.13) and reef fish biomass (402 to 2917 kg ha™), size spectra did not consistently
425  covary with either fish biomass (P =0.172, R*=0.05) (Fig. 4) or the large fish

426 indicator (P = 0.316, R* = 0.03) at the remote, uninhabited islands (Fig. S1).
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428  Fig. 4. Change in size spectra across the gradient of reef fish biomass. Size spectra ~
429  biomass relationships were fitted separately to uninhabited (blue) and populated

430  (yellow) islands. Solid lines are linear regression slope estimates with 95%

431 confidence intervals. Each point is a size spectrum slope and biomass estimate at one

432  island in a single survey year.

433
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434  Discussion

435  Our analyses reveal that, along a disturbance gradient from reefs of near-pristine

436  wilderness to degraded reefs at developed population centres, increasing human

437  presence causes a gradual degradation of coral reef fish community size structure. At
438  populated islands, steeper size spectrum slopes were associated with a reduction in
439 total fish biomass and the relative biomass of large-bodied fishes. The specificity of
440  each ecological indicator to human impacts was markedly different, such that size
441  spectra responded to solely to human presence and sea surface temperature whereas
442  total biomass was highly sensitive to low levels of human presence as well as

443  influences of temperature, oceanic productivity, and island geomorphology.

444

445 At populated islands, steepening size spectra represent a gradual shift in body
446  size distributions from fish communities with a high relative proportion of large fish
447  (shallow slopes) to ones dominated by small fishes (steep slopes). Large-bodied fishes
448  play important roles in maintaining reef functions, suggesting that the loss of these
449  individuals due to size selective exploitation may have disproportionate functional
450  impacts on coral reefs. For example, many large herbivorous fishes are important
451  bioeroders and control algal growth (Bellwood et al., 2011; Edwards et al., 2013).
452  More generally, large predators can control the stability of prey populations across
453  habitats (Rooney et al., 2006; Britten et al., 2014). Size-selective exploitation of these
454  fishes may therefore impair the ability of reefs to recover from additional disturbances
455  such as coral bleaching and hurricane damage (Cheal et al., 2013). Size spectra

456 analyses of moderately exploited reef fisheries in Fiji (Dulvy et al., 2004: 1-100

457  people per km reef front; Graham et al., 2005: 3-300 people per km reef front)

458  previously suggested that harvesting of large-bodied fishes steepens size spectra at
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459  small spatial scales. Fishing practices across the Pacific are, however, highly variable,
460  with the gear and associated target species varying across islands and regions

461  (Friedlander & Parrish, 1997; Craig et al., 2008; Houk et al., 2012). Our analyses
462  encompass regions characterized by a high diversity of fishing gears (Dalzell et al.,
463  1996; Fenner, 2012) and fish species (Kulbicki et al., 2013), and span a wider

464  gradient in human population density (0 — 2,235 people per km? forereef area) than
465 that of previous studies. As such, we show that size-selective exploitation is a

466 pervasive issue on coral reefs at ocean-basin scales, which consistently alters reef
467  community size structure.

468

469 Altered community size structure also may have important functional

470  consequences that extend beyond a loss of large-bodied individuals. Size structuring
471  of trophic interactions on coral reefs (Robinson & Baum, 2016) means that

472  communities with steeper size spectra will have a lower mean trophic level (Jennings
473  etal., 2002), consistent with evidence that the mean trophic level of reef fisheries
474  catch is negatively correlated with human population density (Houk et al., 2012).
475  Moreover, communities dominated by smaller individuals have faster rates of

476  population growth (Brown et al., 2004; Blanchard et al., 2012) and biomass turnover
477  (Jennings & Blanchard, 2004), and communities with lower mean trophic level may
478  be less stable (Blanchard et al., 2012; Rochet & Benoit, 2012; Britten et al., 2014) and
479  more sensitive to environmental change (Jennings & Blanchard, 2004). Exploitation
480  of large size classes also may release prey populations from predation pressure and
481  thus further steepen size spectra (Daan et al., 2005). However, such cascading effects
482  may be difficult to detect in reef systems in which predator-prey interaction strengths

483  are dampened due to apex predators feeding across large spatial scales and across
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484  trophic levels (McCauley et al., 2012; Frisch et al., 2014; Frisch et al., 2016; Roft et
485 al., 2016). In addition, exploited reef fisheries likely also target medium- and small-
486  bodied fishes, thus depressing any compensatory growth by prey populations.

487  Disentangling the combined effects of trophic release of prey populations and

488  exploitation of smaller size classes therefore remains problematic, but shifts in

489  community size structure along human disturbance gradients may provide an early
490  warning of impacts on functional properties at the community level.

491

492 Human-associated declines in total biomass and large fish biomass have been
493  documented globally across distinct coral reef regions (Roberts, 1995; Mora, 2008;
494  Cinner et al., 2012a; MacNeil et al., 2015; Williams et al., 2015; Nash & Graham,
495  2016), but the link between community size structure and biomass has not previously
496  been examined. We found that gradual declines in size spectra slopes along either
497  human covariate gradient contrasted with a rapid decrease in reef fish biomass from >
498 1500 kg ha™' at unpopulated islands to < 600 kg ha™' at islands with the lowest human
499  presence. These different patterns likely arose because biomass estimates are most
500 strongly influenced by the number of large-bodied fish that are present (Nash &

501 Graham, 2016), whereas size spectra respond to shifts across the entire distribution of
502  body sizes from the smallest to largest fish, and treat each individual fish equally. At
503 the most degraded reefs where large fishes are absent, fishing of medium- and small-
504  sized fish would further deteriorate community structure but cause less dramatic

505 reductions in total community biomass. In contrast, the size spectra of lightly fished
506 reefs were similar that of an undisturbed size spectrum despite supporting biomass
507  wvalues typical of more heavily disturbed communities. The differential response of

508 community size spectra and community biomass suggests that community size
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509  structure may be more resilient than total biomass to light exploitation. These findings
510 are consistent with patterns at coral reefs in the Indian Ocean where the functional
511  composition of fished reefs remains partially intact at biomass levels > 600 kg ha™,
512  despite total biomass falling far below that of neighbouring unexploited sites

513 (McClanahan et al., 2015). Although recovery of reef fish biomass towards natural
514 baseline levels is an important conservation target that aims to restore ecosystem

515  properties by preserving functionally important species (Knowlton & Jackson, 2008;
516 Bellwood et al., 2011; MacNeil et al., 2015), the maintenance of productive fisheries
517  in populated regions is also a priority (Cinner et al., 2012b; Zeller et al., 2015).

518  Rebuilding community size structure in exploited regions is a realistic management
519 target that may be achieved without implementing the fisheries closures necessary for
520 rebuilding pristine biomass (MacNeil et al. 2015). Management for the recovery of
521 community size structure would also benefit from assessments of the influence of
522  shark and jack populations on spectra slopes, as these top predators likely play

523  important roles in structuring reef food webs (Bascompte et al., 2005; Rooney et al.,
524  2006) but are largely absent in heavily exploited regions (Roff et al., 2016).

525

526 Although human covariates were the strongest predictors of size spectra,

527  additional variation was attributed to differences in sea surface temperature.

528  Metabolic principles predict that, in warmer environments, increases in individual
529  energy demands drive greater per-capita consumption rates and strengthen top-down
530 control of prey populations (Bruno et al., 2015; DeLong et al., 2015). Therefore, in
531 agreement with our results, warmer islands should be characterized by shallower size
532  spectra (lower abundance of small bodied fish relative to large bodied fish). However,

533  difficulties with small-scale UVC methods in accurately enumerating large predator
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534  populations (Ward-Paige et al., 2010) prevented the inclusion of some groups of large
535  predators in our size spectra analyses; our results, therefore, can provide only

536 incomplete evidence in support of stronger top-down control. Although metabolic
537  approaches have provided valuable insights into environmental constraints on reef
538 fish community biomass and trophic structure (Barneche et al., 2014, 2016),

539 theoretical predictions of the effect of temperature on reef fish size distributions are
540 lacking. Since size spectra were robust across gradients in other environmental

541 covariates, improved understanding of temperature control of size spectra would help
542  the development of predictions of natural baselines for reef fish community size

543  structure. Such understanding also is increasingly important as climate change warms
544  reef systems and degrades fish habitat, further stressing reef fish populations (Hoegh-
545  Guldberg et al. 2007).

546

547 We also detected strong influences of oceanic productivity and habitat

548  complexity on reef fish biomass. These patterns are broadly consistent with previous
549  observations that high oceanic production promotes planktivorous fish abundance
550 (Barneche et al., 2014; Williams et al., 2015) and high structural complexity promotes
551  survival of small-bodied fishes (Graham & Nash, 2012; Rogers et al., 2014).

552  Subsequent increases in energy availability to upper trophic levels promote greater
553  total community biomass (Friedlander et al., 2003; Cinner et al., 2009; Williams et al.,
554  2015) though, interestingly, these apparent differences in energy availability did not
555  affect size spectra. The lack of a strong response by size spectra at the island scale
556  suggests that the extra biomass afforded by high productivity and habitat complexity
557  may be equitably redistributed among all body sizes. Temperature was also a positive

558 influence on biomass. A previous analysis of the CREP dataset detected this effect
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559  only in planktivorous fishes (Williams et al., 2015), and other studies have variously
560 noted positive (Richards et al., 2012) and negative (Barneche et al., 2014) effects of
561 temperature on reef fishes, indicating that further study of the influence of

562  temperature on biomass is warranted.

563

564 The apparent lack of environmental influences on size spectra - with the

565  exception of temperature - across islands that varied greatly in environmental setting
566  and biogeographic context supports the utility of size spectra as a robust ecological
567 indicator of fishing. In temperate systems, size-based indicators have proven to be
568 powerful methods of assessing exploitation effects across communities of different
569  compositions (Bianchi et al., 2000; Shin et al., 2005). In reef fisheries, which typically
570 lack adequate catch and survey data (Sadovy, 2005), UVC monitoring programmes
571  can provide the body length information required for size spectra analyses (Graham et
572  al., 2005; Nash & Graham, 2016). Size-based indicators also can effectively link

573  patterns in community structure with less tangible community-level properties such as
574  production and biomass turnover rates. Given their sensitivity to environmental

575 influences and strong response at low levels of exploitation, biomass estimates may
576  be less reliable as ecological indicators at large spatial scales.

577

578 Although we accounted for several potential sampling issues in our analyses,
579  size spectra estimates derived from different UVC methods might vary substantially.
580 Limitations of census methods can introduce error in the counts of small or large size
581 classes (Bozec et al., 2011) that bias slope estimates or produce non-linear size

582  spectra (Ackerman et al., 2004). Spectra estimated with biased binning-based methods

583  (e.g. earlier reef spectra studies (Dulvy et al., 2004; Graham et al., 2005)) can also
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584 introduce error in size spectra analyses, while subtle differences between these

585 methods can even result in spectra slopes that differ by 1 (White et al., 2008).

586  Difficulties in enumerating fishes accurately across the size spectrum suggest that it
587  may be problematic to produce meaningful empirical estimates of baseline size

588  spectra slopes, as has been done for temperate marine ecosystems (Jennings &

589  Blanchard, 2004). Importantly, by removing some of the largest fish species (the

590 sharks and jacks) that are heavily targeted by fishers, our results are almost certainly a
591 conservative estimate of fishing impacts on reefs and are unlikely to match metabolic
592  predictions for size spectra in which slopes are a simple function of predator-prey
593  mass ratio and trophic energy transfer efficiency (Brown & Gillooly, 2003; Jennings
594 & Blanchard, 2004; Trebilco et al., 2013). Instead, size spectra may be most

595 informative if used to assess relative differences among communities in a space-for-
596 time approach (as we did here) or to assess temporal changes in community size

597  structure.

598

599 Across tropical Pacific coral reef ecosystems, islands with a strong human
600 presence were characterized by degraded coral reef fish community size structure.
601  Steepening size spectra suggest a shift in size-linked life history traits, implying that
602  fished communities may have reduced resilience to further exploitation and future
603 environmental change. Given comparative insensitivity to variation in environmental
604 conditions, size spectra may prove to be effective ecological indicators of exploitation
605 impacts on reef fisheries (Graham et al., 2005; Shin et al., 2005; Nash & Graham,
606  2016). Extreme reductions in reef fish biomass can have potentially wide-ranging and
607  pervasive consequences for reef ecosystems, particularly when species or trophic

608  groups that provide key ecosystem functions are depleted (Bellwood et al., 2011;

Peer] Preprints | https://doi.org/10.7287 rj.preprints.2118v1 | CC BY 4.0 Open Access | rec: 10 Jun 2016, publ: 10 Jun 2016
29



609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

McClanahan et al., 2011; Ruttenberg et al., 2011; McClanahan et al., 2015). However,
despite the loss of biomass at lightly exploited islands, we detected weaker impacts on
size spectra slopes that suggest that maintenance of ecological size structure is a
tangible management target that could enhance the ecological resilience of coral reef

ecosystems.
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