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Abstract

The fuzzy lock-and-key (FLK) powers a vast array of sophisti-
cated logic gates at inter- and intra-cellular levels. We invoke
representations of groupoid tiling wreath products analogous
to the study of nonrigid molecules – or of related fuzzy symme-
try extensions – to build a Morse Function that can describe
spontaneous symmetry breaking phase transitions driven by
information catalysis. The Function can, however, also be
used to construct an Onsager-like stochastic dynamics, linked
to the phase transition approach by the rich stability crite-
ria associated with stochastic differential equations. The two
methods provide complementary ways of looking at the FLK.
A limit condition emerging from the stochastic dynamics gives
insight into a cellular ‘generalized inflammation’ requiring
progressively higher commitment of metabolic free energy for
maintenance of basic FLK processes. These results suggest
that more systematic study may illuminate pathologies asso-
ciated with the failure of the FLK, a centrally-important but
enigmatic biological process.

Key Words: cellular cognition, diffusion, glycosynapse,
information theory, intrinsically disordered protein

1 Introduction

Since Adelman’s (1994) pioneering DNA-based solution to the
directed Hamiltonian path problem, a vast effort has been
directed at producing molecular analogs to the usual NOT,
AND, XOR, and similar logic gates, and at constructing sys-
tems using them (e.g., Stojanovic et al., 2002; Macdonald et
al., 2006). Here, we will examine far more subtle naturally-
occurring logic gates associated with the molecular fuzzy lock-
and-key. Some background is, however, necessary.

Humberto Maturana’s seminal 1970 paper, The Biology of
Cognition introduced a perspective regarding the living state
that focuses on cognition, not only high order ‘neural’ process,
but as a phenomenon that must act at all levels of biological
organization. This perspective, it will appear, provides a basis
for a more comprehensive treatment of these matters.

Something of Maturana’s ideas can be paraphrased as fol-
lows (Maturana, 1970; Maturana and Varela 1980, 1992):

∗Contact: Wallace@nyspi.columbia.edu, Box 47, NYSPI, 1051 River-
side Dr., New York, NY, 10032, USA

Each internal state of a living system requires that certain
interactions with the environment be satisfied in order for the
system to persist. This implies that the prediction that an in-
teraction took place once also implies it will take place again.
The predictions implied in the organization of the living sys-
tem are not predictions of particular events, but of classes
of interactions. While every interaction is, of course, a par-
ticular interaction, every prediction is a prediction of a class
of interactions that will allow the living system to retain its
organization. This makes living systems inferential systems,
and their domains of interactions a cognitive domain.

In consequence, living systems are cognitive systems and
living as a process is a process of cognition for all organisms,
with and without a nervous system. The nervous system ex-
pands the cognitive domain of the living system by making
possible interactions. It does not create cognition. The ner-
vous system, by expanding the domain of interactions of the
organism, has transformed the unit of interactions and has
subjected that expanded unit to the process of evolution.

Accordingly, for every living system the process of cogni-
tion consists in the creation of a field of behavior through its
actual conduct in its closed domain of interactions. Conse-
quently, although due to the historical transformations they
have caused in organisms, or in their nervous systems if they
have them, past interactions determine the inductive infer-
ences that these make in the present, they do not participate
in the inductive process itself.

Perhaps the first systematic information-theoretic applica-
tion of these ideas was the Atlan/Cohen ‘cognitive paradigm’
for the immune system.

2 Immune cognition

Atlan and Cohen (1998) proposed an information-theoretic
cognitive model of immune function and process, a paradigm
incorporating cognitive pattern recognition-and-response be-
haviors that are certainly analogous to, but much slower than,
those of the later-evolved central nervous system.

From the Atlan/Cohen perspective, the meaning of an anti-
gen can be reduced to the type of response the antigen gen-
erates. That is, the meaning of an antigen is functionally
defined by the response of the immune system. The mean-
ing of an antigen to the system is discernible in the type of
immune response produced, not merely whether or not the
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antigen is perceived by the receptor repertoire. Because the
meaning is defined by the type of response there is indeed a
response repertoire and not only a receptor repertoire.

To account for immune interpretation, Cohen (1992, 2000)
has reformulated the cognitive paradigm for the immune sys-
tem. The immune system can respond to a given antigen in
various ways, it has ‘options’. Thus the particular response
observed is the outcome of internal processes of weighing and
integrating information about the antigen.

In contrast to Burnet’s view of the immune response as a
simple reflex, it is seen to exercise cognition by the interpola-
tion of a level of information processing between the antigen
stimulus and the immune response. A cognitive immune sys-
tem organizes the information borne by the antigen stimulus
within a given context and creates a format suitable for in-
ternal processing; the antigen and its context are transcribed
internally into the chemical language of the immune system.

The cognitive paradigm suggests a language metaphor to
describe immune communication by a string of chemical sig-
nals. This metaphor is apt because the human and immune
languages can be seen to manifest several similarities such as
syntax and abstraction. Syntax, for example, enhances both
linguistic and immune meaning.

Although individual words and even letters can have their
own meanings, an unconnected subject or an unconnected
predicate will tend to mean less than does the sentence gen-
erated by their connection.

The immune system creates a language by linking two onto-
genetically different classes of molecules in a syntactical fash-
ion. One class of molecules are the T and B cell receptors
for antigens. These molecules are not inherited, but are so-
matically generated in each individual. The other class of
molecules responsible for internal information processing is
encoded in the individual’s germline.

Meaning, the chosen type of immune response, is the out-
come of the concrete connection between the antigen subject
and the germline predicate signals.

The transcription of the antigens into processed peptides
embedded in a context of germline ancillary signals consti-
tutes the functional language of the immune system. Despite
the logic of clonal selection, the immune system does not re-
spond to antigens as they are, but to abstractions of antigens-
in-context.

3 Cognition as an information
source

Atlan and Cohen (1998) argue that cognition involves compar-
ison of a perceived signal with an internal, learned or inherited
picture of the world, and then, upon that comparison, choice
of one response from a much larger repertoire of possible re-
sponses. Such ‘choice’, by reducing uncertainty, inevitably
involves the transmission of information.

That is, cognitive pattern recognition-and-response pro-
ceeds by an algorithmic combination of an incoming external
sensory signal with an internal ongoing activity – incorporat-

ing the internalized picture of the world – and triggering an
appropriate action based on a decision that the pattern of
sensory activity requires a response.

Incoming sensory input is thus mixed in an unspecified but
systematic manner with internal signals to create a combined
path x = (a0, a1, ..., an, ...). Each ak thus represents some
functional composition of the internal and the external. An
application of this perspective to a standard neural network
is given in Wallace (2005, p.34).

This path is fed into a highly nonlinear, but otherwise sim-
ilarly unspecified, decision function, h, generating an output
h(x) that is an element of one of two disjoint sets B0 and B1

of possible system responses. Let

B0 ≡ {b0, ..., bk},

B1 ≡ {bk+1, ..., bm}.

Assume a graded response, supposing that if h(x) ∈ B0, the
pattern is not recognized, and if h(x) ∈ B1, the pattern is
recognized, and some action bj , k + 1 ≤ j ≤ m takes place.

Interest focuses on those paths x triggering pattern
recognition-and-response: given a fixed initial state a0, ex-
amine all possible subsequent paths x beginning with a0 and
leading to the event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for
all 0 ≤ j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of high
probability paths of length n that begin with some particular
a0 and lead to the condition h(x) ∈ B1. Call such paths
‘meaningful’, assuming that N(n) will be considerably less
than the number of all possible paths of length n leading from
a0 to the condition h(x) ∈ B1.

Note that identification of the ‘alphabet’ of the states aj , Bk
may depend on the proper system ‘coarse graining’ in the
sense of symbolic dynamics (Beck and Schlogl, 1993).

Combining algorithm, the form of the function h, and the
details of grammar and syntax, are all unspecified in this
model. The assumption permitting inference on necessary
conditions constrained by the asymptotic limit theorems of
information theory is that the finite limit

H ≡ lim
n→∞

log[N(n)]

n

both exists and is independent of the path x.
Call such a pattern recognition-and-response cognitive pro-

cess ergodic. Not all cognitive processes are likely to be er-
godic, implying that H, if it indeed exists at all, is path de-
pendent, although extension to nearly ergodic processes, in a
certain sense, seems possible (e.g., Wallace, 2005, pp. 31-32).

Invoking the spirit of the Shannon-McMillan Theorem, it
is possible to define an adiabatically, piecewise stationary, er-
godic information source X associated with stochastic variates
Xj having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the relations:

H[X] = lim
n→∞

log[N(n)]

n
=
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lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, X1, ..., Xn)

n+ 1
. (1)

Shannon uncertainties all have the form −
∑
k Pk log(Pk),

with
∑
k Pk = 1 (Cover and Thomas, 2006).

The information source H[X] is defined as dual to the un-
derlying ergodic cognitive process.

‘Adiabatic’ means that, when the information source is pa-
rameterized according to some appropriate scheme, within
continuous ‘pieces’, changes in parameter values take place
slowly enough so that the information source remains as close
to stationary and ergodic as needed to make the fundamental
limit theorems work. ‘Stationary’ means that probabilities
do not change in time, and ‘ergodic’ (roughly) that cross-
sectional means converge to long-time averages. Between
‘pieces’ one invokes various kinds of phase change formalism,
for example renormalization theory in cases where a mean
field approximation holds (Wallace, 2005), or variants of ran-
dom network theory where a mean number approximation is
applied. This will be outlined below.

An equivalence class algebra can be constructed by choosing
different origin points, a0, and defining the equivalence of two
states, am, an, by the existence of high probability meaning-
ful paths connecting them to the same origin point. Disjoint
partition by equivalence class, analogous to orbit equivalence
classes for dynamical systems, defines the vertices of a net-
work of cognitive dual languages. Each vertex then repre-
sents a different information source dual to a cognitive pro-
cess. This is not a representation of a cognitive network as
such. It is, rather, an abstract set of ‘languages’ dual to the
set of interacting cognitive processes.

This structure generates a groupoid, an extension of the
idea of the symmetry group, as summarized by Brown (1987)
and Weinstein (1996). See the Mathematical Appendix for
an introduction to groupoids, which will appear later in the
argument as generalizations of simple molecular symmetries
applied to tilings that are only locally symmetric.

4 Information catalysis

Information, although a form of free energy (Feynman, 2000),
per se does not itself carry very much ability to do work,
but the physical mechanisms that instantiate signals do, and
this fact, in concert with the asymptotic limit theorems of
information theory, permits an important general argument.

Suppose there are two interacting information sourcesX,Y ,
emitting sequences of signals x = [x1, x2, ...] and y =
[y1, y2, ...] at times i = 1, 2, .... A joint sequence of signals
xy ≡ [(x1, y1), (x2, y2), ...] can then be defined, and, where
the individual sequences x and y are correlated, it is possible
to define a joint source information source uncertainty HX,Y

for which a version of the information theory chain rule ap-
plies (Cover and Thomas, 2006):

HX,Y < HX +HY . (2)

The average production of information, Ĥ, from a process
having an available metabolic free energy rate M , can be ex-
pected to follow a relation having the standard Gibbs form

Ĥ =

∫
H exp[−H/κM ]dH∫
exp[−H/κM ]dH

≈ κM , (3)

where κ is quite small, so the integral converges.
Then, from the chain rule,

ĤX,Y < ĤX + ĤY ,

MX,Y < MX +MY . (4)

If X is the system of interest, then, at the expense of main-
taining the regulatory information source Y , it is possible to
canalize the reaction paths of X: MX,Y becomes a valley in
the larger energy structure created by imposing Y and X to-
gether.

Interpreting the metabolic free energy rate MY driving the
information source Y as a temperature analog, we are now in
a position to examine more complicated biological logic gates
than are currently described in the computing literature.

5 The fuzzy lock-and-key

The fuzzy lock-and-key dominates many mechanisms that
transmit information at inter- and intra-cellular levels. In-
deed, 30% of all proteins are ‘intrinsically disordered’ (IDP),
and, by some measures, perhaps 50% of all proteins have sig-
nificant regions that are intrinsically disordered. Such struc-
ture – or rather, its lack – allows operation of the extraor-
dinarily flexible logic gates necessary for many of the cog-
nitive processes that are the foundation of the living state
(e.g., Maturana, 1970). Figure 1, adapted from Tompa et al.
(2005), provides and example in which the same IDP can ei-
ther activate or inhibit a chemical logic gate, depending on
an ‘information catalysis’ in which an incoming signal splits
isoenergetic groupoid tiling symmetry states via an analog to
spontaneous symmetry breaking, making one or the other the
lower energy conformation (e.g., Wallace, 2011a, 2012). Far
more sophisticated logic gates can easily be constructed quite
simply using similar mechanisms.

Figure 2 shows another example, a frond of the highly flex-
ible ‘glycan kelp bed’ that coats the cell surface, and, via
binding with lectins, triggers even more complicated logical
processes. While proteins are constructed from 20 basic amino
acids, the glycan kelp bed is formed from as many as 7,000
glycan determinants, and represents a vastly more complex
system for information transmission (Cummings, 2009; Gupta
et al., 2010).

Figure 3, from Dam et al. (2007), illustrates a ‘bind-and-
slide’ mechanism by which increasing concentration of a lectin
species can induce a phase transition topological change. Ini-
tially, the lectin diffuses along and off the glycan kelp frond,
until a sufficient number of sites are occupied. Then the
lectin-coated fronds cross bind until the reaction saturates,
triggering the gate.
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Figure 1: From Tompa et al., 2005. The partner can bind in
two ways to the IDP. The top form is activated, and the bot-
tom inhibited. The triggering between the states is done by
an ‘information catalysis’ in which an incoming signal shifts
the lowest energy state between the two otherwise thermody-
namically competitive – isoenergetic – topological forms via
a kind of spontaneous symmetry breaking acting on tiling
groupoids.

Figure 2: From Cohen and Varki, (2010). Levels of sialome
complexity, from core and core modifications to the shifting,
bending, twisting, glycan ‘kelp fronds’ that coat most cell
surfaces and, via lectin interaction, constitute sophisticated
logic gates involved in explosively vast information transfers:
in comparison with the 20 amino acids making up all proteins,
some 7,000 glycan determinants are needed to constitute the
flexible kelp fronds, side branches and all (Cummings, 2009).

Figure 3: From Dam et al. (2007). Lectin diffuses along and
off the flexible glycan frond, until a sufficient number of sites
are occupied. Then the coated glycan fronds begin to cross
bind, the reaction is complete, and the logic gate is activated.
The last figure shows an end view.

Wallace (2011a, 2012) applies nonrigid molecule symme-
tries to IDP, and Wallace and Wallace (2013, chapter 8) ex-
tend the analysis to the glycan/lectin interface. Here we will
generalize the argument across chemical species, and examine
what may be an important stability criterion that appears to
underlie all possible such mechanisms.

We begin with a brief recapitulation of the basic formalism.

6 Symmetries of the FLK

One basis for the approach is the classic observation by
Longuet-Higgins (1963) that the symmetry group of a non-
rigid molecule is the set of (i) all feasible permutations of
the positions and spins of identical nuclei and (ii) all feasi-
ble permutation-inversions, which simultaneously invert the
coordinates of all particles in the center of mass.

It may then, for some forms of the FLK, be possible to
extend nonrigid molecule group theory using wreath, semidi-
rect, or other products over a set of finite and/or compact
groups (e.g., Balasubramanian, 1980, 2004), or their groupoid
generalizations, as now common in stereochemistry (Wallace,
2011b and cited references). Groupoids are local structures
that characterize the partial symmetries of finite tilings, qua-
sicrystals, and the like, and provide a highly natural means of
extending local symmetries (Brown, 1987; Weinstein, 1996).
The simplest groupoid can be envisioned as a disjoint union
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of groups, so that the group element product is only locally
defined. In addition, equivalence classes define groupoids, so
that the concept generalizes both structures.

The groups or groupoids of interest are taken as param-
eterized by an index of ‘topological complexity’, in a large
sense, a temperature-analog L. In general, the number of
group/groupoid elements can be expected to grow exponen-
tially with L, typically as

∑
Πj |Gj ||Aj |L, where |Gk| and |Ak|

are the size, in an appropriate sense, of symmetry groups Gk
and Ak. See the Balasubramanian references for details.

Kahraman (2009) argues that the observed ‘sloppiness’ of
large lock/small key molecular reaction dynamics suggests
that binding site symmetry may be greater than binding lig-
and symmetries. Thus binding ligands may be expected to in-
volve dual, mirror subgroups/groupoids of the anchored non-
rigid group/groupoid symmetries of the binding site. Thus
the argument becomes:

Increasing L, |G|, |A| → more flexibility →
greatly enlarged binding site nonrigid symmetry
group/groupoid → more subgroups/subtilings of
possible binding sites for ligand attachment.

This can be addressed by supposing that the duality be-
tween a subgroup or subgroupoid of the fuzzy lock and of the
fuzzy key can be expressed as

Bα = CβDγ (5)

where Bα is a subgroup/groupoid (or set of them) of the ap-
propriate nonrigid symmetry group or groupoid, Dγ a similar
structure of the set of binding ligands, and Cβ is an appropri-
ate inversion operation or set of them that represents static
or dynamic matching between them. The fuzziness, Wallace
and Wallace (2013) argue, can even extend to sequence re-
placement as well as geometric variations.

An outcome of this approach is that FLK matching sym-
metries, and their associated dynamics, can be highly punc-
tuated in the parameter L that broadly indexes topological
complexity.

A nonrigid molecule analog based on wreath products of
tiling groupoids is not the only possible attack on the FLK
problem. Paul Mezey and colleagues have introduced another
extension of simple molecular symmetries using a fuzzy set ap-
proach (e.g., Mezey, 1997). In that methodology, the sharply
defined families of nuclear arrangements with specified point
symmetry are replaced by fuzzy sets – so-called ‘syntopy sets’
– of arrangements having only some degree of symmetry of
the original perfect point symmetries. The method provides
the syntopy sets with a group theoretic characterization, and
the syntopy groups retain some aspects of the underlying
point groups, gaining, however, a continuous parameteriza-
tion. Mezey further generalizes these ideas to what he calls
fuzzy symmorphy groups.

In essence, the ‘fuzzification’ of algebraic structures and
relations is based on an extension of the characteristic func-
tion, mapping an arbitrary set into the set of integers 0, 1,
so that f : G → 0, 1. Then, if x ∈ G, f(x) = 1, other-
wise f(x) = 0. Generalization involves letting f map onto

the real interval [0, 1]. Rosenfeld (1971) applied the method
to groups and groupoids, and application to group/groupoid
representations seems direct, albeit modified by some of the
complexities associated with groupoid wreath products and
other matters (Houghton, 1975; Bos, 2007).

To the extent that representations of these objects are pos-
sible, the Morse Function techniques that follow should carry
through.

7 Phase transitions and reaction dy-
namics

Again, interpret the regulatory free energy intensity MY as-
sociated with an information catalyst having an information
source Y as a pseudo-temperature index T . For large T , it
becomes possible to apply a statistical mechanics analog, and
to use Landau’s spontaneous symmetry breaking/lifting ap-
proach via a Morse Theory argument (Wallace, 2012; Pettini,
2007). See the Mathematical Appendix for a summary of
standard material on Morse Theory. Typically, very many
Morse functions are possible under a given circumstance, and
it is possible to construct what is perhaps the simplest us-
ing representations of the appropriate generalized groupoids
and/or groups. Although representations of groupoids are,
broadly, similar to those of groups, there are necessary mod-
ifications (Bos, 2007).

Taking an appropriate group (or groupoid) representation
in a particular matrix or function algebra, now construct a
‘pseudo probability’ P for nonrigid group element ω as

P[ω] =
exp[−|χω|/κT ]∑
ν exp[−|χν |/κT ]

. (6)

χφ is the character of the group element φ in that repre-
sentation, i.e., the trace of the matrix or function assigned
to φ, and |...| is the norm of the character, a real number.
For systems that include compact groups, the sum may be a
generalized integral.

The central idea is that F in the construct

exp[−F/κT ] =
∑
ν

exp[−|χν |/κT ] (7)

is a Morse Function in the signaling temperature-analog T to
which Landau’s spontaneous symmetry breaking arguments
apply (Wallace, 2012; Pettini, 2007; Landau and Lifshitz,
2007). This leads to the expectation of empirically observ-
able highly punctuated structure and reaction dynamics in
the index T that are the analog to phase transitions in ‘sim-
ple’ physical systems.

Recall Landau’s central insight: for many physical phenom-
ena, raising the temperature makes accessible higher energy
states of the system Hamiltonian, the quantum mechanical
energy operator, and the inherent symmetry changes are nec-
essarily be punctuated. Here the focus is directly on a Morse
Function constructed from a representation of underlying non-
rigid groupoid wreath product tiling symmetries.
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However, topological matters – the shape of a system has
– long been known to profoundly affect phase transition be-
havior (e.g., Privman and Fisher, 1983). Thus, a distinctly
different approach is also possible to FLK reaction mecha-
nism. The basic assumption is that the group or groupoid
tiling symmetries of the fuzzy lock must be matched by an
appropriate set of keys in a dynamic manner. Thus the sta-
tistical mechanics of fuzzy interaction symmetries becomes
central to reaction trajectories, treated here according to an
Onsager-like nonequilibrium thermodynamics formulation.

Define, then, a ‘symmetry entropy’ based on the Morse
Function F of equation (7) over a set of underlying struc-
tural or other parameters Q = [Q1, ..., Qn] as the Legendre
transform

S = F (Q)−
∑
i

Qi∂F (Q)/∂Qi . (8)

The time behavior of such a system will be driven, at least
in first approximation, by standard Onsager-like nonequilib-
rium thermodynamics relations (de Groot and Mazur, 1984):

dQi/dt =
∑
j

Ki,j∂S/∂Qj , (9)

where the Ki,j are appropriate empirical parameters and t
is the time. The system may, or may not, have local time
reversibility. If not, then Ki,j 6= Kj,i.

Since, however, this is essentially a ‘fuzzy’ system, a more
fitting approach is through a set of stochastic differential
equations having the form:

dQit = Ki(t,Q)dt+
∑
j

σi,j(t,Q)dBj , (10)

where the Ki and σi,j are appropriate functions.
Different kinds of ‘noise’ dBj will have particular forms of

quadratic variation affecting dynamics.
Setting the expectation of this equation to zero and solving

for stationary points gives attractor states, since noise pre-
cludes unstable equilibria, although the solution may, in fact,
be a highly dynamic strange attractor set.

But setting the expectation of equation (10) to zero also
generates an index theorem (Hazewinkel, 2002) in the sense
of Atiyah and Singer (1963) that relates analytic results – the
solutions of the equations – to an underlying set of topolog-
ical structures representing the eigenmodes of a complicated
‘nonrigid molecule’ geometric operator whose group/groupoid
spectrum represents the symmetries of the possible FLK reac-
tions that must take place for information to be transmitted,
i.e., for the chemical logic gate to be triggered.

A one-dimensional model, however, raises significant ques-
tions regarding the stability of the dynamics of the fuzzy
lock-and-key in the presence of noise. This will be a spe-
cific example of a well-known general phenomenon: systems
described by stochastic differential equations can be stable
in the expectation of the first moment, the mean, but may
be unstable in the expectation of some higher moment, trig-
gering a catastrophe (Khasminskii, 2010). That catastrophe
appears analogous to spontaneous symmetry breaking in the
metabolic free energy rate index T .

8 An example

The motivation for this approach is as follows. Regulation
can be viewed in terms of the average distortion between sig-
nals sent by the regulating agent and the observed impact on
the regulated system. The Rate Distortion Function (RDF),
R(D), measures the minimum signal channel capacity – a
free energy index – needed to keep the average distortion less
than or equal to some value D, using a particular distortion
measure (Cover and Thomas, 2006). For a Gaussian channel
under the squared measure, R(D) = 1/2 log[σ2/D], where σ2

is the variance of the inherent channel noise. Define an ‘RDF
entropy’ as

SR = R(D)−DdR/dD = 1/2 log[σ2/D] + 1/2 . (11)

The simplest nonequilibrium Onsager equation is just

dD/dt = −µdSR/dD = µ/2D , (12)

where t is the time and µ the diffusion coefficient. By inspec-
tion,

D(t) =
√
µt . (13)

This is the classic solution to the diffusion equation, a cor-
respondence reduction to a well-known result that can serve
as a basis for arguing upward in complexity.

Regulation does not involve diffusive drift, but rather con-
sumes massive amounts of free energy at high rates to ensure
that target systems operate within characteristic limits. Let
G(T ) represent a monotonic increasing function of the rate
of free energy consumption T , then a plausible form of equa-
tion (10), in the presence of an added regulatory system noise
indexed by β/2, is

dQt = [f(Qt)−G(T )]dt+
β

2
QtdWt , (14)

where dWt is standard white noise, G(T ) is as above, and the
last term represents a volatility effect.

This has the simple equilibrium expectation

Qequlib = f−1(G(T )) . (15)

However, the presence of the noise term can introduce se-
rious complications. Suppose, following the example of equa-
tion (12), f = α/Q. Then determining the variance of Q
involves using the Ito chain rule on the variate Y = Q2. This
leads to the stochastic differential equation

dYt = [2
√
Yt(

α√
Yt
−G(T )) +

β2

4
Yt]dt+ βYtdWt , (16)

where (β2/4)Yt in the time term is the Ito correction.
Taking the expectation at equilibrium gives a condition for

a real solution for the variance of Q involving the discriminant
of a quadratic equation:

G(T ) > β
√
α/2 . (17)

If this condition is not satisfied, then there can be no real
expectation in the second moment of Q.
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Note that if f ∝ 1/An(Q), where An is a polynomial of
degree n, then the equivalent of equation (17) will involve the
discriminant of a polynomial of degree n+ 1.

G(T ) determines the metabolic free energy needed to acti-
vate FLK dynamics, in this model. Solving for T gives

T > G−1(β
√
α/2) . (18)

Taking a Landau spontaneous symmetry breaking perspec-
tive, T in equation (18) represents the minimum rate of free
energy expenditure needed to maintain a high state of symme-
try in the FLK system. Lowering T under that limit triggers
a phase transition to a simpler, disjointed, nonfunctional – or
at least differently functional – structure, potentially a catas-
trophe, but at the very least, a different reaction regime.

Depending on the form of G−1, small increase in β may
cause significant increase in the free energy needed to prop-
erly control FLK dynamics, according to the model. Such
an event could represent a kind of generalized inflammation,
a persistent overdrive, that could cause long-term physiolog-
ical damage, as does chronic activation of the immune sys-
tem (e.g., Wallace and Wallace, 2010, 2013, and references
therein).

More generally, however, the rich stability criteria associ-
ated with systems described by equation (10) may provide
tools for understanding a broad class of symmetry changes
across the dynamics of the FLK, not just those of catastrophic
failure. This could give a method for exploring the spectrum
determined by the underlying Atiyah/Singer index theorem
associated with equation (10).

9 Discussion and conclusions

The fuzzy lock-and-key drives a vast array of elaborate logic
gates at inter- and intra-cellular levels of biological structure.
Indeed, the glycan kelp bed that coats the cell surface pro-
vides one of the most information-rich of biological environ-
ments (Gupta et al., 2010), one that Cohen and Varki (2010)
characterize in terms of a ‘glycosynapse’ that apparently ri-
vals the neural synapse in sophistication. While there may be
some 1011 active neurons in humans, virtually all living cells
within an organism may have numerous glycosynapses engag-
ing in complicated information switching. Within cells there
are even more FLK logic gates using IDP, or using regions of
structured proteins that are intrinsically disordered. Thus the
numbers of FLK logic gates within an organism are literally
astronomical, far more numerous than neural synapses. This
might well be called the Maturana world of the organism.

Here, we have used representations of groupoid tiling
wreath products, or other possible symmetry descriptions
associated with the FLK, to construct a Morse Function
that can describe both spontaneous symmetry breaking phase
transitions driven by information catalysis, and can be used
to construct an Onsager-like stochastic dynamics. The two
approaches appear linked by the rich instability structure pos-
sible to stochastic differential equations.

The limit condition of equation (18) may, in addition, give
insight into a cellular ‘generalized inflammation’ requiring
higher and higher commitment of metabolic free energy for
maintenance of basic FLK processes, leading to pathologies
analogous to those resulting from overactive immune or HPA
axis systems (e.g., Wallace and Wallace, 2010). A more com-
plete study may provide a deeper understanding of the broad
array of serious dysfunctions that must inevitably be associ-
ated with failures of the FLK’s, since these are among the
most basic phenomena of the living state.

10 Mathematical Appendix

10.1 Morse Theory

Morse Theory examines relations between analytic behavior
of a function – the location and character of its critical points
– and the underlying topology of the manifold on which the
function is defined. Here we follow Pettini (2007).

The underlying idea of Morse Theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M → R where R is the set of real numbers. The
a-level set of f is defined as

f−1(a) = {x ∈M : f(x) = a},

the set of all points inM with f(x) = a. IfM is compact, then
the whole manifold can be decomposed into such slices in a
canonical fashion between two limits, defined by the minimum
and maximum of f on M . Let the part of M below a be
defined as

Ma = f−1(−∞, a] = {x ∈M : f(x) ≤ a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f .

Morse functions are defined as a particular set of smooth
functions f : M → R as follows. Suppose a function f has
a critical point xc, so that the derivative df(xc) = 0, with
critical value f(xc). Then, f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at xc, whose elements, in terms of local
coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigenvalues,
so that there are no lines or surfaces of critical points and,
ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical point
xc ∈ f−1(a).

Again following Pettini (2007), the essential results of
Morse Theory are:

1. If an interval [a, b] contains no critical values of f , then
the topology of f−1[a, v] does not change for any v ∈ (a, b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.
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2. If the interval [a, b] contains critical values, the topology
of f−1[a, v] changes in a manner determined by the properties
of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e., critical
points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then
on a finite interval [a, b] ⊂ R, there is only a finite number of
critical points p of f such that f(p) ∈ [a, b]. The set of critical
values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse
functions on M is an open dense set in the set of real functions
of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that
are the same for all the manifolds that have the same topology
as M , can be estimated and sometimes computed exactly once
all the critical points of f are known: let the Morse numbers
µi(i = 0, ...,m) of a function f on M be the number of critical
points of f of index i, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M ,

χ =

m∑
i=1

(−1)iµi.

The Euler characteristic reduces, in the case of a simple
polyhedron, to

χ = V − E + F

where V,E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

7. Another important theorem states that, if the interval
[a, b] contains a critical value of f with a single critical point
xc, then the topology of the set Mb defined above differs from
that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold
obtained from attaching to Ma an i-handle, i.e., the direct
product of an i-disk and an (m− i)-disk.

Pettini (2007) and Matsumoto (2002) contain mathemati-
cal details and further references.

10.2 Groupoids

Following Weinstein (1996), a groupoid, G, is defined by a
base set A upon which some mapping – a morphism – can be
defined. Note that not all possible pairs of states (aj , ak)
in the base set A can be connected by such a morphism.
Those that can define the groupoid element, a morphism
g = (aj , ak) having the natural inverse g−1 = (ak, aj). Given
such a pairing, it is possible to define ‘natural’ end-point maps
α(g) = aj , β(g) = ak from the set of morphisms G into A, and
a formally associative product in the groupoid g1g2 provided
α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then,
the product is defined, and associative, (g1g2)g3 = g1(g2g3).

In addition, there are natural left and right identity ele-
ments λg, ρg such that λgg = g = gρg (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. Following Cannas da
Silva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. As Weinstein
(1996) explains, a groupoid G is a topological groupoid over a
base space X if G and X are topological spaces and α, β and
multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to
isomorphism is nothing other than the classification of equiv-
alence relations via the orbit equivalence relation and groups
via the isotropy groups. The imposition of a compatible topo-
logical structure produces a nontrivial interaction between the
two structures. Above, we have introduced a metric structure
on manifolds of related information sources, producing such
interaction.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over A
identifies not only which elements of A are equivalent to one
another (isomorphic), but it also parameterizes the different
ways (isomorphisms) in which two elements can be equiva-
lent, i.e., in our context, all possible information sources dual
to some cognitive process. Given the information theoretic
characterization of cognition presented above, this produces
a full modular cognitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as fol-
lows:

A groupoid should be thought of as a group with
many objects, or with many identities... A groupoid
with one object is essentially just a group. So the no-
tion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups] G =
∪λGλ, λ ∈ Λ, is a groupoid: the product ab is defined
if and only if a, b belong to the same Gλ, and ab is
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then just the product in the group Gλ. There is an
identity 1λ for each λ ∈ Λ. The maps α, β coincide
and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a
set] X becomes a groupoid with α, β : R → X the
two projections, and product (x, y)(y, z) = (x, z)
whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X...

Weinstein (1996) makes the fundamental point that almost
every interesting equivalence relation on a space B arises in a
natural way as the orbit equivalence relation of some groupoid
G over B. Instead of dealing directly with the orbit space
B/G as an object in the category Smap of sets and mappings,
one should consider instead the groupoid G itself as an object
in the category Ghtp of groupoids and homotopy classes of
morphisms.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, (e.g., Golubitsky
and Stewart 2006).
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