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Abstract

The fuzzy lock-and-key (FLK) powers a vast array of so-
phisticated logic gates at inter- and intra-cellular levels. We
invoke representations of groupoid tiling wreath products –
analogous to the study of nonrigid molecules – or of the syn-
topy group and related fuzzy symmetry extensions, to build
a Morse Function that can describe spontaneous symmetry
breaking phase transitions driven by information catalysis.
The Function can, however, also be used to construct an
Onsager-like stochastic dynamics, linked to the phase tran-
sition approach by the rich stability criteria associated with
stochastic differential equations. The two methods provide
complementary ways of looking at the FLK. A limit condi-
tion emerging from the stochastic dynamics gives insight into
a cellular ‘generalized inflammation’ requiring progressively
higher commitment of metabolic free energy for maintenance
of basic FLK processes. These results suggest that more sys-
tematic study may illuminate pathologies associated with the
failure of the FLK, a centrally-important but enigmatic bio-
logical process.

Key Words: cellular cognition, diffusion, glycosynapse,
information theory, intrinsically disordered protein

1 Introduction

The fuzzy lock-and-key dominates many mechanisms that
transmit information at inter- and intra-cellular levels. In-
deed, 30% of all proteins are ‘intrinsically disordered’ (IDP),
and, by some measures, perhaps 50% of all proteins have sig-
nificant regions that are intrinsically disordered. Such struc-
ture – or rather, its lack – allows operation of the extraor-
dinarily flexible logic gates necessary for many of the cog-
nitive processes that are the foundation of the living state
(e.g., Maturana, 1970). Figure 1, adapted from Tompa et al.
(2005), provides and example in which the same IDP can ei-
ther activate or inhibit a chemical logic gate, depending on
an ‘information catalysis’ in which an incoming signal splits
isoenergetic groupoid tiling symmetry states via an analog to
spontaneous symmetry breaking, making one or the other the
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Figure 1: From Tompa et al., 2005. The partner can bind in
two ways to the IDP. The top form is activated, and the bot-
tom inhibited. The triggering between the states is done by
an ‘information catalysis’ in which an incoming signal shifts
the lowest energy state between the two otherwise thermody-
namically competitive – isoenergetic – topological forms via
a kind of spontaneous symmetry breaking acting on tiling
groupoids.

lower energy conformation (e.g., Wallace, 2011a, 2012). Far
more sophisticated logic gates can easily be constructed quite
simply using similar mechanisms.

Figure 2 shows another example, a frond of the highly flex-
ible ‘glycan kelp bed’ that coats the cell surface, and, via
binding with lectins, triggers even more complicated logical
processes. While proteins are constructed from 20 basic amino
acids, the glycan kelp bed is formed from as many as 7,000
glycan determinants, and represents a vastly more complex
system for information transmission (Cummings, 2009; Gupta
et al., 2010).

Figure 3, from Dam et al. (2007), illustrates a ‘bind-and-
slide’ mechanism by which increasing concentration of a lectin
species can induce a phase transition topological change. Ini-
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Figure 2: From Cohen and Varki, (2010). Levels of sialome
complexity, from core and core modifications to the shifting,
bending, twisting, glycan ‘kelp fronds’ that coat most cell
surfaces and, via lectin interaction, constitute sophisticated
logic gates involved in explosively vast information transfers:
in comparison with the 20 amino acids making up all proteins,
some 7,000 glycan determinants are needed to constitute the
flexible kelp fronds, side branches and all (Cummings, 2009).

tially, the lectin diffuses along and off the glycan kelp frond,
until a sufficient number of sites are occupied. Then the
lectin-coated fronds cross bind until the reaction saturates,
triggering the gate.

Wallace (2011a, 2012) applies nonrigid molecule symme-
tries to IDP, and Wallace and Wallace (2013, chapter 8) ex-
tend the analysis to the glycan/lectin interface. Here we will
generalize the argument across chemical species, and examine
what may be an important stability criterion that appears to
underlie all possible such mechanisms.

We begin with a brief recapitulation of the basic formalism.

2 Symmetries of the FLK

One basis for the approach is the classic observation by
Longuet-Higgins (1963) that the symmetry group of a non-
rigid molecule is the set of (i) all feasible permutations of
the positions and spins of identical nuclei and (ii) all feasi-
ble permutation-inversions, which simultaneously invert the
coordinates of all particles in the center of mass.

It may then, for some forms of the FLK, be possible to
extend nonrigid molecule group theory using wreath, semidi-
rect, or other products over a set of finite and/or compact
groups (e.g., Balasubramanian, 1980, 2004), or their groupoid
generalizations, as now common in stereochemistry (Wallace,
2011b and cited references). Groupoids are local structures
that characterize the partial symmetries of finite tilings, qua-
sicrystals, and the like, and provide a highly natural means of
extending local symmetries (Brown, 1987; Weinstein, 1996).
The simplest groupoid can be envisioned as a disjoint union
of groups, so that the group element product is only locally
defined. In addition, equivalence classes define groupoids, so
that the concept generalizes both structures.

Figure 3: From Dam et al. (2007). Lectin diffuses along and
off the flexible glycan frond, until a sufficient number of sites
are occupied. Then the coated glycan fronds begin to cross
bind, the reaction is complete, and the logic gate is activated.
The last figure shows an end view.

The groups or groupoids of interest are taken as param-
eterized by an index of ‘topological complexity’, in a large
sense, a temperature-analog L. In general, the number of
group/groupoid elements can be expected to grow exponen-
tially with L, typically as

∑
Πj |Gj ||Aj |L, where |Gk| and |Ak|

are the size, in an appropriate sense, of symmetry groups Gk
and Ak. See the Balasubramanian references for details.

Kahraman (2009) argues that the observed ‘sloppiness’ of
large lock/small key molecular reaction dynamics suggests
that binding site symmetry may be greater than binding lig-
and symmetries. Thus binding ligands may be expected to in-
volve dual, mirror subgroups/groupoids of the anchored non-
rigid group/groupoid symmetries of the binding site. Thus
the argument becomes:

Increasing L, |G|, |A| → more flexibility →
greatly enlarged binding site nonrigid symmetry
group/groupoid → more subgroups/subtilings of
possible binding sites for ligand attachment.

This can be addressed by supposing that the duality be-
tween a subgroup or subgroupoid of the fuzzy lock and of the
fuzzy key can be expressed as

Bα = CβDγ (1)

where Bα is a subgroup/groupoid (or set of them) of the ap-
propriate nonrigid symmetry group or groupoid, Dγ a similar
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structure of the set of binding ligands, and Cβ is an appropri-
ate inversion operation or set of them that represents static
or dynamic matching between them. The fuzziness, Wallace
and Wallace (2013) argue, can even extend to sequence re-
placement as well as geometric variations.

An outcome of this approach is that FLK matching sym-
metries, and their associated dynamics, can be highly punc-
tuated in the parameter L that broadly indexes topological
complexity.

A nonrigid molecule analog based on wreath products of
tiling groupoids is not the only possible attack on the FLK
problem. Paul Mezey and colleagues have introduced another
extension of simple molecular symmetries using a fuzzy set ap-
proach (e.g., Mezey, 1997). In that methodology, the sharply
defined families of nuclear arrangements with specified point
symmetry are replaced by fuzzy sets – so-called ‘syntopy sets’
– of arrangements having only some degree of symmetry of
the original perfect point symmetries. The method provides
the syntopy sets with a group theoretic characterization, and
the syntopy groups retain some aspects of the underlying
point groups, gaining, however, a continuous parameteriza-
tion. Mezey further generalizes these ideas to what he calls
fuzzy symmorphy groups.

To the extent that representations of these objects are pos-
sible, the Morse Function techniques that follow should carry
through.

3 Information catalysis

Information, although a form of free energy (Feynman, 2000),
per se does not itself carry very much ability to do work,
but the physical mechanisms that instantiate signals do, and
this fact, in concert with the asymptotic limit theorems of
information theory, permits an important general argument.

Suppose there are two interacting information sourcesX,Y ,
emitting sequences of signals x = [x1, x2, ...] and y =
[y1, y2, ...] at times i = 1, 2, .... A joint sequence of signals
xy ≡ [(x1, y1), (x2, y2), ...] can then be defined, and, where
the individual sequences x and y are correlated, it is possible
to define a joint source information source uncertainty HX,Y

for which a version of the information theory chain rule ap-
plies (Cover and Thomas, 2006):

HX,Y < HX +HY . (2)

The average production of information, Ĥ, from a process
having an available metabolic free energy rate M , can be ex-
pected to follow a relation having the standard Gibbs form

Ĥ =

∫
H exp[−H/κM ]dH∫
exp[−H/κM ]dH

≈ κM , (3)

where κ is quite small, so the integral converges.
Then, from the chain rule,

ĤX,Y < ĤX + ĤY ,

MX,Y < MX +MY . (4)

If X is the system of interest, then, at the expense of main-
taining the regulatory information source Y , it is possible to
canalize the reaction paths of X: MX,Y becomes a valley in
the larger energy structure created by imposing Y and X to-
gether.

4 Phase transitions and reaction dy-
namics

Now take the regulatory free energy intensity MY as repre-
senting a pseudo-temperature index T . For large T , it be-
comes possible to apply a statistical mechanics analog, and
to use Landau’s spontaneous symmetry breaking/lifting ap-
proach via a Morse Theory argument (Wallace, 2012; Pettini,
2007). Typically, very many Morse functions are possible un-
der a given circumstance, and it is possible to construct what
is perhaps the simplest using representations of the appropri-
ate generalized groupoids and/or groups. Although represen-
tations of groupoids are, broadly, similar to those of groups,
there are necessary modifications that we do not pursue here
(Bos, 2007).

Taking an appropriate group (or groupoid) representation
in a particular matrix algebra, now construct a ‘pseudo prob-
ability’ P for nonrigid group element ω as

P[ω] =
exp[−|χω|/κT ]∑
ν exp[−|χν |/κT ]

. (5)

χφ is the character of the group element φ in that repre-
sentation, i.e., the trace of the matrix assigned to φ, and |...|
is the norm of the character, a real number. For systems
that include compact groups, the sum may be a generalized
integral.

The central idea is that F in the construct

exp[−F/κT ] =
∑
ν

exp[−|χν |/κT ] (6)

is a Morse Function in the signaling temperature-analog T to
which Landau’s spontaneous symmetry breaking arguments
apply (Wallace, 2012; Pettini, 2007; Landau and Lifshitz,
2007). This leads to the expectation of empirically observ-
able highly punctuated structure and reaction dynamics in
the index T that are the analog to phase transitions in ‘sim-
ple’ physical systems.

Recall Landau’s central insight: for many physical phenom-
ena, raising the temperature makes accessible higher energy
states of the system Hamiltonian, the quantum mechanical
energy operator, and the inherent symmetry changes are nec-
essarily be punctuated. Here the focus is directly on a Morse
Function constructed from a representation of underlying non-
rigid groupoid wreath product tiling symmetries.

However, a distinctly different approach is also possible to
FLK reaction mechanism. The basic assumption is that the
group or groupoid tiling symmetries of the fuzzy lock must
be matched by an appropriate set of keys in a dynamic man-
ner. Thus the statistical mechanics of interaction symme-
tries becomes central to reaction trajectories, according to an
Onsager-like nonequilibrium thermodynamics formulation.
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Define, then, a ‘symmetry entropy’ based on the Morse
Function F of equation (6) over a set of underlying struc-
tural or other parameters Q = [Q1, ..., Qn] as the Legendre
transform

S = F (Q)−
∑
i

Qi∂F (Q)/∂Qi . (7)

The time behavior of such a system will be driven, at least
in first approximation, by standard Onsager-like nonequilib-
rium thermodynamics relations (de Groot and Mazur, 1984):

dQi/dt =
∑
j

Ki,j∂S/∂Qj , (8)

where the Ki,j are appropriate empirical parameters and t
is the time. The system may, or may not, have local time
reversibility. If not, then Ki,j 6= Kj,i.

Since, however, this is essentially a ‘fuzzy’ system, a more
fitting approach is through a set of stochastic differential
equations having the form:

dQit = Ki(t,Q)dt+
∑
j

σi,j(t,Q)dBj , (9)

where the Ki and σi,j are appropriate functions.
Different kinds of ‘noise’ dBj will have particular forms of

quadratic variation affecting dynamics.
Setting the expectation of this equation to zero and solving

for stationary points gives attractor states, since noise pre-
cludes unstable equilibria, although the solution may, in fact,
be a highly dynamic strange attractor set.

But setting the expectation of equation (9) to zero also
generates an index theorem (Hazewinkel, 2002) in the sense
of Atiyah and Singer (1963) that relates analytic results – the
solutions of the equations – to an underlying set of topolog-
ical structures representing the eigenmodes of a complicated
‘nonrigid molecule’ geometric operator whose group/groupoid
spectrum represents the symmetries of the possible FLK reac-
tions that must take place for information to be transmitted,
i.e., for the chemical logic gate to be triggered.

A one-dimensional model, however, raises significant ques-
tions regarding the stability of the dynamics of the fuzzy
lock-and-key in the presence of noise. This will be a spe-
cific example of a well-known general phenomenon: systems
described by stochastic differential equations can be stable
in the expectation of the first moment, the mean, but may
be unstable in the expectation of some higher moment, trig-
gering a catastrophe (Khasminskii, 2010). That catastrophe
appears analogous to spontaneous symmetry breaking in the
metabolic free energy rate index T .

5 An example

The motivation for this approach is as follows. Regulation
can be viewed in terms of the average distortion between sig-
nals sent by the regulating agent and the observed impact on
the regulated system. The Rate Distortion Function (RDF),
R(D), measures the minimum signal channel capacity – a

free energy index – needed to keep the average distortion less
than or equal to some value D, using a particular distortion
measure (Cover and Thomas, 2006). For a Gaussian channel
under the squared measure, R(D) = 1/2 log[σ2/D], where σ2

is the variance of the inherent channel noise. Define an ‘RDF
entropy’ as

SR = R(D)−DdR/dD = 1/2 log[σ2/D] + 1/2 . (10)

The simplest nonequilibrium Onsager equation is just

dD/dt = −µdSR/dD = µ/2D , (11)

where t is the time and µ the diffusion coefficient. By inspec-
tion,

D(t) =
√
µt . (12)

This is the classic solution to the diffusion equation, a cor-
respondence reduction to a well-known result that can serve
as a basis for arguing upward in complexity.

Regulation does not involve diffusive drift, but rather con-
sumes massive amounts of free energy at high rates to ensure
that target systems operate within characteristic limits. Let
G(T ) represent a monotonic increasing function of the rate
of free energy consumption T , then a plausible form of equa-
tion (9), in the presence of an added regulatory system noise
indexed by β/2, is

dQt = [f(Qt)−G(T )]dt+
β

2
QtdWt , (13)

where dWt is standard white noise, G(T ) is as above, and the
last term represents a volatility effect.

This has the simple equilibrium expectation

Qequlib = f−1(G(T )) . (14)

However, the presence of the noise term can introduce se-
rious complications. Suppose, following the example of equa-
tion (11), f = α/Q. Then determining the variance of Q
involves using the Ito chain rule on the variate Y = Q2. This
leads to the stochastic differential equation

dYt = [2
√
Yt(

α√
Yt
−G(T )) +

β2

4
Yt]dt+ βYtdWt , (15)

where (β2/4)Yt in the time term is the Ito correction.
Taking the expectation at equilibrium gives a condition for

a real solution for the variance of Q involving the discriminant
of a quadratic equation:

G(T ) > β
√
α/2 . (16)

If this condition is not satisfied, then there can be no real
expectation in the second moment of Q.

Note that if f ∝ 1/An(Q), where An is a polynomial of
degree n, then the equivalent of equation (16) will involve the
discriminant of a polynomial of degree n+ 1.
G(T ) determines the metabolic free energy needed to acti-

vate FLK dynamics, in this model. Solving for T gives

T > G−1(β
√
α/2) . (17)
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Taking a Landau spontaneous symmetry breaking perspec-
tive, T in equation (17) represents the minimum rate of free
energy expenditure needed to maintain a high state of symme-
try in the FLK system. Lowering T under that limit triggers
a phase transition to a simpler, disjointed, nonfunctional – or
at least differently functional – structure, potentially a catas-
trophe, but at the very least, a different reaction regime.

Depending on the form of G−1, small increase in β may
cause significant increase in the free energy needed to prop-
erly control FLK dynamics, according to the model. Such
an event could represent a kind of generalized inflammation,
a persistent overdrive, that could cause long-term physiolog-
ical damage, as does chronic activation of the immune sys-
tem (e.g., Wallace and Wallace, 2010, 2013, and references
therein).

More generally, however, the rich stability criteria associ-
ated with systems described by equation (9) may provide tools
for understanding a broad class of symmetry changes across
the dynamics of the FLK, not just those of catastrophic fail-
ure. This could give a method for exploring the spectrum
determined by the underlying Atiyah/Singer index theorem
associated with equation (9).

6 Discussion and conclusions

The fuzzy lock-and-key drives a vast array of elaborate logic
gates at inter- and intra-cellular levels of biological structure.
Indeed, the glycan kelp bed that coats the cell surface pro-
vides one of the most information-rich of biological environ-
ments (Gupta et al., 2010), one that Cohen and Varki (2010)
characterize in terms of a ‘glycosynapse’ that apparently ri-
vals the neural synapse in sophistication. While there may be
some 1011 active neurons in humans, virtually all living cells
within an organism may have numerous glycosynapses engag-
ing in complicated information switching. Within cells there
are even more FLK logic gates using IDP, or using regions of
structured proteins that are intrinsically disordered. Thus the
numbers of FLK logic gates within an organism are literally
astronomical, far more numerous than neural synapses. This
might well be called the Maturana world of the organism.

Here, we have used representations of groupoid tiling
wreath products, or other possible symmetry descriptions
associated with the FLK, to construct a Morse Function
that can describe both spontaneous symmetry breaking phase
transitions driven by information catalysis, and can be used
to construct an Onsager-like stochastic dynamics. The two
approaches appear linked by the rich instability structure pos-
sible to stochastic differential equations.

The limit condition of equation (17) may, in addition, give
insight into a cellular ‘generalized inflammation’ requiring
higher and higher commitment of metabolic free energy for
maintenance of basic FLK processes, leading to pathologies
analogous to those resulting from overactive immune or HPA
axis systems (e.g., Wallace and Wallace, 2010). A more com-
plete study may provide a deeper understanding of the broad
array of serious dysfunctions that must inevitably be associ-

ated with failures of the FLK’s, since these are among the
most basic phenomena of the living state.
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