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Are sites with multiple single nucleotide variants in cancer

genomes a consequence of drivers, hypermutable sites or

sequencing errors?

Thomas C A Smith, Antony M Carr, Adam C Eyre-Walker

Across indepedent cancer genomes it has been observed that some sites have been

recurrently hit by single nucleotide variants (SNVs). Such recurrently hit sites might be

either i) drivers of cancer that are postively selected during oncogenesis, ii) due to

mutation rate variation, or iii) due to sequencing and assembly errors. We have

investigated the cause of recurrently hit sites in a dataset of >3 million SNVs from 507

complete cancer genome sequences. We find evidence that many sites have been hit

significantly more often than one would expect by chance, even taking into account the

effect of the adjacent nucleotides on the rate of mutation. We find that the density of

these recurrently hit sites is higher in non-coding than coding DNA and hence conclude

that most of them are unlikely to be drivers. We also find that most of them are found in

parts of the genome that are not uniquely mappable and hence are likly to be due to

mapping errors. In support of the error hypothesis, we find that recurently hit sites are not

randomly distributed across sequences from different laboratories. We fit a model to the

data in which the rate of mutation is constant across sites but the rate of error varies. This

model suggests that ~4% of all SNVs are error in this dataset, but that the rate of error

varies by thousands-of-fold.
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Abstract.

Across indepedent cancer genomes it has been observed that some sites have been 

recurrently hit by single nucleotide variants (SNVs). Such recurrently hit sites might 

be either i) drivers of cancer that are postively selected during oncogenesis, ii) due to 

mutation rate variation, or iii) due to sequencing and assembly errors. We have 

investigated the cause of recurrently hit sites in a dataset of >3 million SNVs from 

507 complete cancer genome sequences. We find evidence that many sites have been 

hit significantly more often than one would expect by chance, even taking into 

account the effect of the adjacent nucleotides on the rate of mutation. We find that the 

density of these recurrently hit sites is higher in non-coding than coding DNA and 

hence conclude that most of them are unlikely to be drivers. We also find that most of 

them are found in parts of the genome that are not uniquely mappable and hence are 

likly to be due to mapping errors. In support of the error hypothesis, we find that 

recurently hit sites are not randomly distributed across sequences from different 

laboratories. We fit a model to the data in which the rate of mutation is constant across

sites but the rate of error varies. This model suggests that ~4% of all SNVs are error 

in this dataset, but that the rate of error varies by thousands-of-fold.
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Introduction.

There is currently huge interest in sequencing cancer genomes with a view to 

identifying the mutations in somatic tissues that lead to cancer, the so called “driver” 

mutations. Driver mutations are expected to cluster in particular genes or genomic 

regions, or to recur at particular sites in the genome, because only a limited number of

mutations can cause cancer. For example, the driver mutations in the TERT1 promoter

were identified because it had independently occurred in multiple cancers (Huang et 

al., 2013). However, there are two other processes that can potentially lead to the 

repeated occurrence of an apparent somatic mutation at a site. First, it is known that 

the mutation rate varies across the genome at a number of different scales in both the 

germ-line and soma (Hodgkinson & Eyre-Walker, 2011; Hodgkinson, Chen & Eyre-

Walker, 2012; Michaelson et al., 2012; Francioli et al., 2015). Sites with recurrent 

SNVs could simply be a consequence of sites with high rates of mutations. And 

second there is the potential for sequencing error. Although, the average rate of 

sequencing error is thought to be quite low it is evident that some types of sites, such 

as those in runs of nucleotides, are difficult to sequence accurately. Furthermore, since

the genome contains many similar sequences it can often be difficult to map 

sequencing reads successfully (Treangen & Salzberg, 2013).

In the germ-line the density of point mutations varies at a number of different scales 

(Hodgkinson & Eyre-Walker, 2011). At the mega-base scale the mutation varies by 

about 2-fold, and ~50% of this variance can be explained by correlations with factors 

such as replication time, recombination rate and distance from telomeres (as reviewed
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in (Hodgkinson & Eyre-Walker 2011)). However the greatest variance, reportedly up 

to ~30-fold, has been found at the single nucleotide level (Hodgkinson, Chen & Eyre-

Walker, 2012; Kong et al., 2012; Michaelson et al., 2012), whereby the nucleotide 

context, that is the identity of the bases immediately 5’ and 3’ of the mutated base, are 

highly influential on the rate of mutation (Gojobori, Li & Graur, 1982; Bulmer, 1986; 

Cooper & Krawczak, 1990; Nachman & Crowell, 2000; Hwang & Green, 2004). The 

most well known example is that of CpG hyper-mutation (Bird, 1980), which is 

thought to account ~20% of all mutations in the human genome (Fryxell & Moon, 

2005). However there is also variation at the single nucleotide level that cannot be 

ascribed to the effects of neighbouring nucleotides; this has been termed cryptic 

variation in the mutation rate and is thought to account for at least as much variation 

in the mutation rate as does simple context (Hodgkinson, Ladoukakis & Eyre-Walker, 

2009; Eyre-Walker & Eyre-Walker, 2014).

The somatic mutation rate is estimated to be at least an order of magnitude greater 

than that of the germ line (Lynch, 2010). It has been shown to vary between cancers 

(Lawrence et al. 2013) and different cancer types are known to vary in their relative 

contributions of different mutations to their overall mutational compositions 

(Alexandrov et al., 2013). For a review see (Martinocorena & Campbell, 2015). The 

aforementioned correlates of variation that are found in the germ line are also 

apparent in the soma (Hodgkinson, Chen & Eyre-Walker, 2012; Schuster-Bockler & 

Lehner, 2012; Lawrence et al., 2013; Liu, De & Michor, 2013), for example 

replication time correlates strongly with single nucleotide variant (SNV) density at the

1Mb base scale and can vary by up to 3-fold along the genome (Hodgkinson & Eyre-
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Walker, 2011; Woo & Li, 2012). However, as yet there has been no attempt to 

quantify the level of cryptic variation in the mutation rate at the single nucleotide 

level in the somatic genome. This is an important property to understand; for example

a site which experiences a recurrence of SNVs across many cancer genomes would be

of interest as a potential driver of cancer (Lawrence et al., 2013), however, this site 

might simply be cryptically hypermutable (Hodgkinson, Ladoukakis & Eyre-Walker, 

2009; Eyre-Walker & Eyre-Walker, 2014; Smith et al., 2016). Here we examine the 

distribution of recurrent SNVs taken from 507 whole genome sequences made 

publicly available by Alexandrov et al. (2013) to investigate the level of cryptic 

variation in the mutation rate for somatic tissues. We show that there is a large excess 

of sites that have been hit by recurrent SNVs. Since the density of these is greater in 

the non-coding, than the coding fraction of the genome, we conclude that most of 

them are unlikely to be drivers. We therefore investigate whether they are due to 

mutational heterogeneity or sequencing errors. In particular we investigate whether 

there might be cryptic variation in the mutation rate in cancer genomes. 

Unfortunately, the available evidence suggests that most sites with recurrent SNVs are

likely to be due to sequencing error or errors in post-sequencing processing. 

Methods.

Genome and data filtering.

The human genome (hg19/GRCh37) was masked to remove  simple sequence repeats 

(SSR) as defined by Tandem Repeat Finder (Benson, 1999). The remaining regions 
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were separated into three genomic fractions, consisting of 1,346,629,686 bp of non-

coding transposable element DNA (TE), defined as LINEs, SINEs, LTRs and DNA 

transposons as identified by repeat masker (Smit et al. 1996), 1,322,985,768 bp of 

non-coding non-transposable element DNA (NTE), and 119,806,141 bp of exonic 

non-transposable element DNA (EX) defined by Ensemble (Flicek et al., 2011). From 

the supplementary data of Alexandrov et al. (2013) we collated 3,382,737 single 

nucleotide variants (SNV), classified as “somatic-for-signature-analysis” (see 

(Alexandrov et al., 2013) for SNV filtering methods). These can be downloaded from 

ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/. These came from 507 whole 

genome sequenced cancers and represent 10 different cancer types and were reduced 

to 3,299,881 SNVs when excluding SNVs in SSRs; 1,666,759 in TE and 1,535,069 in 

NTE and 98053 in EX. 

Testing for mutation rate heterogeneity.

We were interested in whether some sites have more SNVs than expected by chance. 

Since the mutation rate is affected by the identity of the neighbouring nucleotides we 

need to control for those effects. To do this we separated each SNV into one of 64 

categories based upon the triplet to which it was the central base. This was reduced to 

32 triplets when accounting for base complementarity with the pyrimidine (C/T) taken

as the central base. If the total number of triplets of type i (e.g. CTC in the non-TE 

fraction) is li and the number SNVs at that triplet is mi then the expected number of 

sites hit x times can be calculated using a Poisson distribution:

(1)
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where  μi = mi/li is the mean number of SNVs per site, The expected number of sites 

with x SNVs across all triplets was calculated by summing the values of Pi(x). 

Whether the observed distribution deviated from the expected was tested using a 

chisquare test.

Model fitting

As well as testing whether there was significant hetereogeneity we were also 

interested in quantifying the level of variation. We fit two basic models. In the first we

allowed the density of SNVs to follow a gamma distribution. Let the expected density

of SNVs at a site be μα where μ is the mean density of SNVs for a particular triplet 

and α is the deviation from this mean which is gamma distributed, parameterised such

that the gamma has a mean of one. Under this model the expected number of sites 

with x SNVs is 

(2)

In a second model we imagine that the production of SNVs depends upon two 

processes, one of which is constant across sites, and one which varies across sites with

the rate drawn from a gamma distribution. Let the proportion of SNVs due to the first 

process be ε. Under this model the expected number of sites with x SNVs is

(3)
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Given the expected number of sites, the likelihood of observing   sites with x 

SNVs is itself Poisson distributed

(4)

These likelihoods can be multiplied across triplets to obtain the overall likelihood. We

estimated the maximum likelihood values of the model parameters using the 

Maximize function of Mathematica which implements the Nelder-Mead algorithm 

(Nelder et al., 1965).

.

Privacy analysis

To investigate whether the SNVs at some sites tended to be produced by a particular 

research group we took all sites with 3 or more SNVs from the same cancer type and 

then performed Fishers exact test on a 2 x 30 matrix using the the R stats package, 

version 3.2.4 (R Core Team, 2016). 

Mappability.

Each nucleotide in genome was assigned a mappability score, as determined by the 

Mappability track (Derrien et al., 2012) downloaded from the UCSC table browser at 

http://genome.ucsc.edu/ (Karolchik et al., 2004). This feature assigns a value of 1 to 

unique k-mer sequences in the genome, 0.5 to those that occur twice, 0.33 to those 

that occur thrice etc. This is computed for every base in the human genome with the 

value being assigned to the first position of the k-mer. We used k-mers of 100 and 20 

bases.
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Results.

The distribution of recurrent SNVs.

If there is no variation in the density of single nucleotide variants (SNVs) then we 

should find them to be distributed randomly across the genome. To investigate 

whether this was the case we calculated the expected number of sites with 1,2,3…etc 

SNVs, taking into account the fact that some triplets have higher mutation rates than 

others. We found that there are some sites that have 7 SNVs whereas we expect very 

few sites to have more than 3 SNVs – the difference is highly significant using the 

Chi-square goodness of fit test (p < 0.0001) for both the whole genome (Total) and 

when separating the genome into non-coding transposable elements (TE), non-coding 

non-transposable elements and (NTE) and exons (EX) (Table 1).  We refer to sites 

with 3 or more SNVs as excess sites. In total we observed 1187 excess sites (Table 1) 

with the density of excess sites in TE being 3.9 and 3.4 fold greater than in NTE and 

EX respectively. The probability of this level of SNV recurrence is so low (Chi-

squared goodness of fit test, p > 0.0001) that these excess sites must either be (i) 

drivers, (ii) the result of mutation rate heterogeneity across the genome or, (iii) the 

consequence of next generation sequencing (NGS) pipeline errors.
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Table 1. Observed and expected values for the distribution of SNVs for sites hit from 0-7 times. A)

shows data for the whole interrogable human genome, excluding simple sequence repeats. B) shows

data for all bases in the genome that are uniquely mappable at 100 base pairs. C) the same as B but for

20 base pairs. P < 0.001 for observing >7 sites with 3 SNVs in A),B) and C) if SNVs were randomly

distributed throughout the genome.

10

A) – All Sites

Site Type 0 hits 1 hit 2 hits 3 hits 4 hits 5 hits 6 hits 7 hits

Non-Exon TE obs (TE) 1.34E+9 1.65E+6 7034 762 130 26 9 3

Non-Exon TE exp (TE) 1.34E+9 1.66E+6 1430 1.14 9E-4 7E-7 5E-10 4E-13

Non-Exon Non-TE obs (NTE) 1.32E+9 1.53E+6 3171 188 35 6 2 2

Non-Exon Non-TE exp (NTE) 1.32E+9 1.53E+6 1206 0.86 6E-4 4E-7 3E-10 2E-13

Exon obs (EX) 1.20E+8 9.75E+4 245 23 0 0 1 0

Exon exp (EX) 1.20E+8 9.79E+4 57 0.03 2E-5 7E-9 3E-12 1E-15

Total obs 1.44E+9 1.63E+6 10450 973 165 32 12 5

Total exp 1.44E+9 1.63E+6 2692 2.04 2E-3 1E-6 8E-10 5E-13

B) – Mappable 100

Site Type 0 hits 1 hit 2 hits 3 hits 4 hits 5 hits 6 hits 7 hits

Non-Exon TE obs (TE) 1.22E+9 1.52E+6 3927 266 25 11 5 1

Non-Exon TE exp (TE) 1.22E+9 1.52E+6 1322 1.07 9E-4 7E-7 5E-10 4E-13

Non-Exon Non-TE obs (NTE) 1.28E+9 1.50E+6 2698 97 16 2 0 1

Non-Exon Non-TE exp (NTE) 1.28E+9 1.50E+6 1201 0.88 6E-4 5E-7 3E-10 2E-13

Exon obs (EX) 1.12E+8 9.31E+4 185 16 0 0 0 0

Exon exp (EX) 1.12E+8 9.34E+4 55 0.03 2E-5 7E-9 3E-12 1E-15

Total obs 1.39E+9 1.59E+6 6810 379 41 13 5 2

Total exp 1.39E+9 1.60E+6 2578 2 2E-3 1E-6 8E-10 6E-13

C) – Mappable 20

Site Type 0 hits 1 hit 2 hits 3 hits 4 hits 5 hits 6 hits 7 hits

Non-Exon TE obs (TE) 3.89E+8 4.81E+5 741 9 0 0 0 0

Non-Exon TE exp (TE) 3.89E+8 4.81E+5 417 0.34 3E-4 2E-7 2E-10 1E-13

Non-Exon Non-TE obs (NTE) 8.92E+8 1.06E+6 1621 31 4 1 0 1

Non-Exon Non-TE exp (NTE) 8.92E+8 1.06E+6 868 0.65 5E-4 3E-7 2E-10 2E-13

Exon obs (EX) 7.47E+7 6.10E+4 103 6.00 0 0 0 0

Exon exp (EX) 7.47E+7 6.12E+4 36 0.02 9E-6 4E-9 2E-12 7E-16

Total obs 9.67E+8 1.12E+6 2465 46 4 1 0 1

Total exp 9.67E+8 1.12E+6 1321 1 8E-4 6E-7 4E-10 3E-13
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It seems unlikely that the majority of the excess sites are due to drivers since the 

density of excess sites is higher in the TE and NTE parts of the genome than in EX 

(Table 1A). Furthermore, to date only one intergenic driver of cancer – an activating 

C>T mutation in the TERT promoter (Huang et al. 2013) at chr5:1,295,228 – has been

confirmed, and although this is included in the excess sites with 7 SNVs, the 

remaining 1186 excess sites are unlikely to be under such selection. It therefore seems

likely that the excess sites are either due to mutation rate variation or problems with 

sequencing.

Excess sites are enriched in non-unique sequences.

The human genome contains many duplicated sequences particularly within 

transposable elements, and these pose challenges for accurate alignment of the short 

~100bp reads produced from NGS (Zhuang et al., 2014). If the excess sites were the 

result of NGS mapping errors then we might expect them to occur in regions of the 

genome that were hard to align. Using the mappability scores (Derrien et al., 2012) 

we excluded all bases that were not uniquely mappable at 100bp. This only reduced 

the interrogable genome by 6%, but the number of excess sites was reduced by 64% 

(Table 1B), demonstrating that a large proportion of the excess sites were  in 

duplicated sequences and therefore likely originate from mapping errors. However, 

even with this large reduction in excess sites we still observed many excess sites far 

greater than chance expectation (Chi-squared goodness of fit test, p > 0.0001) (Table 

1B & Figure 1).
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Figure 1.  The number of site with 0-7 SNVs per sites for: Main = all data, M100 = sites that are 

uniquely mappable at 100 base-pairs, M20 = sites that are uniquely mappable at base-pairs and the 

expected number drawn from a poisson distribution.

The SNVs in this data were all called from >100bp reads. If the excess sites were 

errors of read mapping, they should not be affected by the uniqueness of shorter 

sequences (i.e. there is no reason why 100bp sequences that map uniquely to the 

genome should be mis-mapped if it contains a non-unique 20bp sequence), however if

the SNVs were the product of a biological process that was more prevalent in non-
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unique or repetitive sequences, then we might expect to see a reduction of excess sites

when we exclude all bases that do not map uniquely at 20bp. When we excluded all 

bases that were not unique at 20bp we found that the interrogable genome was 

reduced by 52% and the excess sites were reduced by 96% (Table 1C & Figure 1). It 

is worth noting that, due to their proliferative nature throughout the genome, this 

reduction disproportionately affects TEs where the interrogable genome is reduced by 

71% and the excess sites by >99%. This would suggest that the excess sites existing in

sequences that were unique at 100bp but not unique at 20bp likely represent some 

biological process and not error. Furthermore, the TERT promoter, whose recurrence 

is the result of positive selection, and is therefore the only excess site that that we can 

confidently say is not a product of error, remains in this most conservative of 

analyses. Despite this large reduction in excess sites, significant heterogeneity still 

remains; the probability of observing the 52 excess sites in the part of the genome 

uniquely mappable at 20 bases is still extremely low (Chi-squared goodness of fit test,

p < 0.0001).

Privacy of mutations.

To further investigate the origin of excess sites we exploited the fact that some types 

of cancer were sequenced by different laboratories using different technologies and 

NGS pipelines. If the SNVs at excess sites found in a particular cancer are due to 

hypermutable sites then we would expect them to be randomly distributed across 

research groups (i.e. all research groups should identify the same hypermutable sites). 

If however the SNVs at excess sites are due to error then we might expect them to be 

heterogeneously distributed across research groups (i.e. the calling of recurrent false 
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positive SNVs should be systematic of individual research group NGS pipelines). The

liver cancers, which were all virus associated hepatocellular carcinomas, , were 

sequenced by two different groups; 66 from the RIKEN group using the Illumina 

Genome Analyser (https://dcc.icgc.org/projects/LIRI-JP) and 22 from the National 

Cancer Centre in Japan using the IIlumina HiSeq platform 

(https://dcc.icgc.org/projects/LINC-JP). We found that the SNVs were 

heterogeneously distributed amongst research groups (Fisher's exact test, P = 4x10-6) 

suggesting that the 30 excess sites from liver cancers were predominantly errors 

(Supplementary Table 1). 

Parameter estimation

To gauge how much variation there is in the density of SNVs across the genome we 

fit two models to the data using maximum likelihood. In model 1 we allowed the 

density of SNVs to vary between sites according to a gamma distribution, estimating 

the shape parameter, and hence the amount of variation there was between sites. We 

fitted two versions of this model. In the first version, 1a, we constrained the model 

such that the mean SNV density, shape parameter, and hence the level of variation, 

was the same for all triplets. In the second version, 1b, we allowed the mean SNV 

density and shape parameter to vary between triplets. The second of these models fits 

the data significantly better than the first according to a likelihood ratio test 

suggesting that the level of variation differs between triplets (Table 2). However, a 

goodness of fit test, comparing the number of sites predicted to have 1, 2, 3…etc 

SNVs per site to the observed data, suggests the model fits the data poorly. We 

therefore fit a second pair of models in which we allowed the rate of SNVs to be due 
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to two processes. The first process, is constant across sites whereas the second process

is variable and drawn from a gamma distribution. There are two parameters in the 

model, the proportion of SNVs at a site produced by the first process and the level of 

variation in the second process. This model might represent a situation where the rate 

of mutation is constant across sites but the rate of sequencing error is variable. As 

with the first model we fit two versions of this model; in Model 2a we constrained the

model such that the parameters of the two processes were the same for all triplets. In 

Model 2b they were allowed to vary between triplets. Both models 2a and 2b fit the 

data significantly better than models 1a and 1b, and of this second pair of models, 

model 2b, which allows the parameters to vary between triplets fits the data 

significantly better than model 2a, in which the parameters are shared across triplets 

(Table 2). The best fitting model is therefore one in which we have two processes 

contributing to the production of SNVs, one that is constant across sites, although it 

differs between triplets, and one which is variable across sites. Although, we can 

formally reject this model using a goodness-of-fit test (Chi-square p < 0.0001), 

because we have so much data, it is clear that the model fits the data fairly well 

(Figure 2). Under this model we estimate that approximately 4.1%, 2.8% and 4.3% of 

SNVs are due to the process that varies across sites in the TE and NTE, and EX 

sequences respectively. However, the variation in the density between sites due to the 

variable process is extremely large. The median shape parameters are 0.0013, 0.0011 

and 0.00075 for the TE and NTE, and EX sequences respectively. Under a gamma 

distribution with a shape parameter of 0.0004 we would expect more than 99% of 

sites to have no SNVs generated by this variable process, but some sites to have a 

density of SNVs that is 30,000-fold above the average rate. 
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Table 2. The fit of 4 models to the observed distribution of recurrent SNVs in the three different 

genomic fractions A) TE, B) NTE and C) EX. N = number of parameters. Italics indicate the best fit as 

determined by a liklihood ratio test.

Figure 2. The fit of the observed recurrent SNV distribution to expected distribution under the favoured

model, 2b, for A) TE, B) NTE and C) EX genomic fractions.
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Non-Exon TE (TE)

Model N Log-likelihood Shape

1a 2 -269283 0.13

1b 64 -2936 0.12

2a 3 -266889 0.00021 0.044

2b 96 -1302 0.0013 0.041

Non-Exon Non-TE (NTE)

Model N Log-likelihood Shape

1a 2 -227728 0.31

1b 64 -1207 0.37

2a 3 -227026 0.0012 0.037

2b 96 -566 0.0011 0.028

Exon (EX)

Model N Log-likelihood Shape

1a 2 -13878 0.18

1b 64 -270 0.22

2a 3 -13842 0.00081 0.034

2b 96 -240 0.00076 0.043
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Median ε
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Discussion.

Through our analysis of ~3 million SNVs from whole cancer genomes we have 

shown that there are many sites at which there is a significant excess of SNVs. The 

majority of these are unlikely to be drivers because the density of sites with an excess 

of SNVs is greater in the non-coding part of the genome than in the exons. It therefore

seems likely that the majority of the excess sites are either due to hypermutation or 

problems with sequencing or the processing of the sequences. Several lines of 

evidence point to sequencing problems being the chief culprit. First, many of the 

excess sites disappear when regions of the genome with low mappability are removed.

Second, SNVs at a particular excess site tend to be found within the sequences from a 

particular laboratory; for example, site 85,091,895 on chromosome 5 has 5 SNVs in 

liver cancers, but all of these are found in the sequences from RIKEN not the 

sequences from the NCC. Third, the level of variation in the density of SNVs is much 

greater than has been observed or suggested for variation in the mutation rate 

(Hodgkinson & Eyre-Walker, 2011; Kong et al., 2012; Michaelson et al., 2012) 

though see a recent analysis of de novo germ-line mutations which suggests there 

could be extreme mutational heterogeneity (Smith et al., 2016); some sites are 

estimated to have rates of SNV production that are tens of thousands of times faster 

than the genomic average. 

Only one line of evidence suggests that there might also be substantial variation in the

mutation rate as well as variation in the error rate. When we eliminate sites that are 

not uniquely mappable at 20bp we find a great reduction in the number of excess sites
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relative to the case when we remove sites that are not uniquely mappable at 100bp, 

and yet the read length is greater than 100bp in the data that we have used. This might

suggest that there are some repetitive sequences that are prone to a process of hyper-

mutation. However, it might also be that mappability at 100bp is not a good guide to 

mappability during sequence processing. First, some level of mismatch must be 

allowed during the mapping of reads to the reference because there are single 

nucleotide variants segregating in the population and there are somatic mutations in 

cancer genomes. Second, the mappability score is assigned to the first nucleotide of 

the k-mer that can be mapped; in reality what we really need is the average 

mappability of all k-mers that overlap a site. Third, although the read length was 

greater than 100bp, some shorter reads may have been used. Next generation 

sequencing involves a number of biological processes, such as the polymerase chain 

reactions in the pre-sequencing creation of libraries and the polymerization of 

nucleotides during sequencing by synthesis, any one of which can result in 

technology-specific sequencing artefacts (Quail et al., 2008; Nazarian et al., 2010), In 

addition to the considerable post-sequencing processing, such as filtering and 

mapping, which can also generate errors (Harismendy & Frazer, 2009; Minoche, 

Dohm & Himmelbauer, 2011). Unfortunately it is not possible to say which of these 

factors is most important. 

We have fit two models to the data in which the density of SNVs varies across sites. 

In the first we imagine that the variation is due to a single variable process and in the 

second we imagine it is due to two processes, one of which is constant across sites 
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and one which is variable. We find that this second model fits the data much better 

than the first model, although it can be formally rejected by a goodness-of-fit test. In 

this second model we estimate the proportion of SNVs that are due to the two 

processes and the level of variation. We estimate that approximately 2.8-4.3% of 

SNVs are due to the second process and that this second process is highly variable 

between sites, such that a few sites have a density of SNVs that is ten of thousands 

higher than the average density. It is possible that the first process is mutation and the 

second is sequencing error, but we cannot rule out the possibility that the second 

process includes variation in the mutation rate as well. Studies of germ-line 

(Hodgkinson & Eyre-Walker, 2011; Michaelson et al., 2012) and somatic 

(Hodgkinson, Chen & Eyre-Walker, 2012; Woo & Li, 2012; Lawrence et al., 2013; 

Liu, De & Michor, 2013; Polak et al., 2015) mutations have indicated that the 

mutation rate varies between sites on a number of different scales. However, 

indications are that the variation is probably fairly modest (Hodgkinson, Chen & 

Eyre-Walker, 2012; Michaelson et al., 2012).

In conclusion it seems likely that many sites in somatic tissues that have experienced 

recurrent SNVs are due to sequencing errors or artefacts of post-sequencing 

processing and there seems to be little evidence of cryptic variation in the somatic 

mutation rate. However, this not necessarily mean that such variation does not exist – 

it would be extremely difficult to detect it given the high level of site-specific 

sequencing error. As sequencing technology and processing pipelines improve in 

accuracy, we would expect similar future analyses to be able to confidently estimate 

the true underlying variation in the somatic mutation rate. Accompanied by the flow 
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of data from projects such as the 100k genomes project, it should soon be possible to 

achieve per triplet mutation rate variation map for individual cancer types and not just

pooled across multiple cancers.
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Supplementary table 1. 

Excess SNVs from liver cancers split between the two labs of origin. RK indicates SNVs from the 

RIKEN lab and HX from the NCC. Significant heterogeneity of excess sites originating from different 

labs was tested using fishers exact test (see methods).
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locus RK HX sum

chrX:56209339 6 0 6

chr10:96652829 6 0 6

chr10:96652827 6 0 6

chrX:56209340 5 0 5

chr5:85091859 5 0 5

chr5:1295228 0 5 5

chr9:121267366 4 0 4

chr8:119547627 4 0 4

chr19:22314552 1 2 3

chr14:95832895 1 2 3

chr9:16932821 2 1 3

chr7:27901228 2 1 3

chr4:162437670 2 1 3

chr3:164903710 2 1 3

chrY:4796240 3 0 3

chrX:84996701 3 0 3

chr7:11432162 3 0 3

chr7:11432157 3 0 3

chr3:174306603 3 0 3

chr2:49173787 3 0 3

chr2:139556678 3 0 3

chr19:8673262 3 0 3

chr1:190881448 3 0 3

chrX:79125571 0 3 3

chr6:78532352 0 3 3

chr5:97912191 0 3 3

chr4:190837614 0 3 3

chr19:44959650 0 3 3

chr15:73206445 0 3 3

chr14:74659965 0 3 3
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