A peer-reviewed version of this preprint was published in PeerJ on 20 September 2016.

<u>View the peer-reviewed version</u> (peerj.com/articles/2391), which is the preferred citable publication unless you specifically need to cite this preprint.

Smith TCA, Carr AM, Eyre-Walker AC. 2016. Are sites with multiple single nucleotide variants in cancer genomes a consequence of drivers, hypermutable sites or sequencing errors? PeerJ 4:e2391 https://doi.org/10.7717/peerj.2391

Are sites with multiple single nucleotide variants in cancer genomes a consequence of drivers, hypermutable sites or sequencing errors?

Thomas C A Smith, Antony M Carr, Adam C Eyre-Walker

Across indepedent cancer genomes it has been observed that some sites have been recurrently hit by single nucleotide variants (SNVs). Such recurrently hit sites might be either i) drivers of cancer that are postively selected during oncogenesis, ii) due to mutation rate variation, or iii) due to sequencing and assembly errors. We have investigated the cause of recurrently hit sites in a dataset of >3 million SNVs from 507 complete cancer genome sequences. We find evidence that many sites have been hit significantly more often than one would expect by chance, even taking into account the effect of the adjacent nucleotides on the rate of mutation. We find that the density of these recurrently hit sites is higher in non-coding than coding DNA and hence conclude that most of them are unlikely to be drivers. We also find that most of them are found in parts of the genome that are not uniquely mappable and hence are likly to be due to mapping errors. In support of the error hypothesis, we find that recurently hit sites are not randomly distributed across sequences from different laboratories. We fit a model to the data in which the rate of mutation is constant across sites but the rate of error varies. This model suggests that ~4% of all SNVs are error in this dataset, but that the rate of error varies by thousands-of-fold.

Peer	Preprints NOT PEER-REVIEWED
1	Are sites with multiple single nucleotide variants in cancer genomes a
2	consequence of drivers, hypermutable sites or sequencing errors?
3	
4	
5	Thomas C. A. Smith ¹
6	Antony M. Carr ²
7	Adam Eyre-Walker ¹
8	
9	1. School of Life Sciences, University of Sussex, Falmer, Sussex, BN1 9RQ, United
10	Kingdom.
11	
12	2. Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex, BN1
13	9RQ, United Kingdom.
14	
15	
16	Corresponding Authors:
17	Thomas C A Smith ¹ and Adam Eyre-Walker ¹ .
18	1. School of Life Sciences, University of Sussex, Falmer, Sussex, BN1 9RQ, United
19	Kingdom.
20	
21	Email address: t.c.a.smith@sussex.ac.uk
22	Email address: a.c.eyre-walker@sussex.ac.uk
23	
24	
25	

27

26

Peer Preprints

Abstract.

Across indepedent cancer genomes it has been observed that some sites have been 28 recurrently hit by single nucleotide variants (SNVs). Such recurrently hit sites might 29 be either i) drivers of cancer that are postively selected during oncogenesis, ii) due to 30 mutation rate variation, or iii) due to sequencing and assembly errors. We have 31 32 investigated the cause of recurrently hit sites in a dataset of >3 million SNVs from 507 complete cancer genome sequences. We find evidence that many sites have been 33 34 hit significantly more often than one would expect by chance, even taking into account the effect of the adjacent nucleotides on the rate of mutation. We find that the 35 density of these recurrently hit sites is higher in non-coding than coding DNA and 36 hence conclude that most of them are unlikely to be drivers. We also find that most of 37 them are found in parts of the genome that are not uniquely mappable and hence are 38 likly to be due to mapping errors. In support of the error hypothesis, we find that 39 recurently hit sites are not randomly distributed across sequences from different 40 laboratories. We fit a model to the data in which the rate of mutation is constant across 41 sites but the rate of error varies. This model suggests that ~4% of all SNVs are error 42 in this dataset, but that the rate of error varies by thousands-of-fold. 43 44 45 46 47

- 48
- 49

Peer Preprints

Introduction.

51

50

There is currently huge interest in sequencing cancer genomes with a view to 52 identifying the mutations in somatic tissues that lead to cancer, the so called "driver" 53 mutations. Driver mutations are expected to cluster in particular genes or genomic 54 regions, or to recur at particular sites in the genome, because only a limited number of 55 mutations can cause cancer. For example, the driver mutations in the TERT1 promoter 56 were identified because it had independently occurred in multiple cancers (Huang et 57 58 al., 2013). However, there are two other processes that can potentially lead to the repeated occurrence of an apparent somatic mutation at a site. First, it is known that 59 the mutation rate varies across the genome at a number of different scales in both the 60 germ-line and soma (Hodgkinson & Eyre-Walker, 2011; Hodgkinson, Chen & Eyre-61 Walker, 2012; Michaelson et al., 2012; Francioli et al., 2015). Sites with recurrent 62 SNVs could simply be a consequence of sites with high rates of mutations. And 63 second there is the potential for sequencing error. Although, the average rate of 64 sequencing error is thought to be quite low it is evident that some types of sites, such 65 as those in runs of nucleotides, are difficult to sequence accurately. Furthermore, since 66 the genome contains many similar sequences it can often be difficult to map 67 sequencing reads successfully (Treangen & Salzberg, 2013). 68

69

In the germ-line the density of point mutations varies at a number of different scales
(Hodgkinson & Eyre-Walker, 2011). At the mega-base scale the mutation varies by
about 2-fold, and ~50% of this variance can be explained by correlations with factors
such as replication time, recombination rate and distance from telomeres (as reviewed

Peer	Preprints NOT PEER-RE
74	in (Hodgkinson & Eyre-Walker 2011)). However the greatest variance, reportedly up
75	to \sim 30-fold, has been found at the single nucleotide level (Hodgkinson, Chen & Eyre-
76	Walker, 2012; Kong et al., 2012; Michaelson et al., 2012), whereby the nucleotide
77	context, that is the identity of the bases immediately 5' and 3' of the mutated base, are
78	highly influential on the rate of mutation (Gojobori, Li & Graur, 1982; Bulmer, 1986;
79	Cooper & Krawczak, 1990; Nachman & Crowell, 2000; Hwang & Green, 2004). The
80	most well known example is that of CpG hyper-mutation (Bird, 1980), which is
81	thought to account \sim 20% of all mutations in the human genome (Fryxell & Moon,
82	2005). However there is also variation at the single nucleotide level that cannot be
83	ascribed to the effects of neighbouring nucleotides; this has been termed cryptic
84	variation in the mutation rate and is thought to account for at least as much variation
05	in the mutation rate of deep simple context (Hedglingen, Ledeuleluis & Free Malleer

in the mutation rate as does simple context (Hodgkinson, Ladoukakis & Eyre-Walker, 85

2009; Eyre-Walker & Eyre-Walker, 2014). 86

87

The somatic mutation rate is estimated to be at least an order of magnitude greater 88 than that of the germ line (Lynch, 2010). It has been shown to vary between cancers 89 (Lawrence et al. 2013) and different cancer types are known to vary in their relative 90 contributions of different mutations to their overall mutational compositions 91 (Alexandrov et al., 2013). For a review see (Martinocorena & Campbell, 2015). The 92 93 aforementioned correlates of variation that are found in the germ line are also apparent in the soma (Hodgkinson, Chen & Eyre-Walker, 2012; Schuster-Bockler & 94 Lehner, 2012; Lawrence et al., 2013; Liu, De & Michor, 2013), for example 95 replication time correlates strongly with single nucleotide variant (SNV) density at the 96 1Mb base scale and can vary by up to 3-fold along the genome (Hodgkinson & Eyre-97

Peer	Preprints NOT PEER-RE
98	Walker, 2011; Woo & Li, 2012). However, as yet there has been no attempt to
99	quantify the level of cryptic variation in the mutation rate at the single nucleotide
100	level in the somatic genome. This is an important property to understand; for example
101	a site which experiences a recurrence of SNVs across many cancer genomes would be
102	of interest as a potential driver of cancer (Lawrence et al., 2013), however, this site
103	might simply be cryptically hypermutable (Hodgkinson, Ladoukakis & Eyre-Walker,
104	2009; Eyre-Walker & Eyre-Walker, 2014; Smith et al., 2016). Here we examine the
105	distribution of recurrent SNVs taken from 507 whole genome sequences made
106	publicly available by Alexandrov et al. (2013) to investigate the level of cryptic
107	variation in the mutation rate for somatic tissues. We show that there is a large excess
108	of sites that have been hit by recurrent SNVs. Since the density of these is greater in
109	the non-coding, than the coding fraction of the genome, we conclude that most of
110	them are unlikely to be drivers. We therefore investigate whether they are due to
111	mutational heterogeneity or sequencing errors. In particular we investigate whether
112	there might be cryptic variation in the mutation rate in cancer genomes.
113	Unfortunately, the available evidence suggests that most sites with recurrent SNVs are
114	likely to be due to sequencing error or errors in post-sequencing processing.
115	
116	
117	Methods.
118	
119	Genome and data filtering.
120	The human genome (hg19/GRCh37) was masked to remove simple sequence repeats
121	(SSR) as defined by Tandem Repeat Finder (Benson, 1999). The remaining regions

Peer Preprints

NOT PEER-REVIEWED

122	were separated into three genomic fractions, consisting of 1,346,629,686 bp of non-
123	coding transposable element DNA (TE), defined as LINEs, SINEs, LTRs and DNA
124	transposons as identified by repeat masker (Smit et al. 1996), 1,322,985,768 bp of
125	non-coding non-transposable element DNA (NTE), and 119,806,141 bp of exonic
126	non-transposable element DNA (EX) defined by Ensemble (Flicek et al., 2011). From
127	the supplementary data of Alexandrov et al. (2013) we collated 3,382,737 single
128	nucleotide variants (SNV), classified as "somatic-for-signature-analysis" (see
129	(Alexandrov et al., 2013) for SNV filtering methods). These can be downloaded from
130	ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl/. These came from 507 whole
131	genome sequenced cancers and represent 10 different cancer types and were reduced
132	to 3,299,881 SNVs when excluding SNVs in SSRs; 1,666,759 in TE and 1,535,069 in
133	NTE and 98053 in EX.
134	
135	Testing for mutation rate heterogeneity.
136	We were interested in whether some sites have more SNVs than expected by chance.
137	Since the mutation rate is affected by the identity of the neighbouring nucleotides we

categories based upon the triplet to which it was the central base. This was reduced to

need to control for those effects. To do this we separated each SNV into one of 64

140 32 triplets when accounting for base complementarity with the pyrimidine (C/T) taken

141 as the central base. If the total number of triplets of type *i* (e.g. CTC in the non-TE

142 fraction) is l_i and the number SNVs at that triplet is m_i then the expected number of

sites hit *x* times can be calculated using a Poisson distribution:

144

¹⁴⁵
$$P_i(x) = I_i \frac{e^{-\mu_i} \mu_i^x}{x!}$$
 (1)

Peer	Preprints NOT PEER-REVIEWED
146	where $\mu_i = m_i/l_i$ is the mean number of SNVs per site, The expected number of sites
147	with <i>x</i> SNVs across all triplets was calculated by summing the values of $P_i(x)$.
148	Whether the observed distribution deviated from the expected was tested using a
149	chisquare test.
150	
151	Model fitting
152	As well as testing whether there was significant hetereogeneity we were also
153	interested in quantifying the level of variation. We fit two basic models. In the first we
154	allowed the density of SNVs to follow a gamma distribution. Let the expected density
155	of SNVs at a site be $\mu\alpha$ where μ is the mean density of SNVs for a particular triplet
156	and α is the deviation from this mean which is gamma distributed, parameterised such
157	that the gamma has a mean of one. Under this model the expected number of sites
158	with <i>x</i> SNVs is

¹⁶⁰
161
$$P(x) = I \int_{0}^{\infty} \frac{e^{-\mu \alpha} (\mu \alpha)^{x}}{x!} D(\alpha) d\alpha$$
⁽²⁾

In a second model we imagine that the production of SNVs depends upon two
processes, one of which is constant across sites, and one which varies across sites with
the rate drawn from a gamma distribution. Let the proportion of SNVs due to the first
process be *ε*. Under this model the expected number of sites with *x* SNVs is

¹⁶⁸
$$P(x) = I \int_{0}^{\infty} \frac{e^{-\mu(\varepsilon + (1-\varepsilon)\alpha)} (\mu(\varepsilon + (1-\varepsilon)\alpha))^{x}}{x!} D(\alpha) d\alpha$$
(3)

Peer	Preprints NOT PEER-REVIEWED
169	Given the expected number of sites, the likelihood of observing $\hat{P}(x)$ sites with <i>x</i>
170	SNVs is itself Poisson distributed
171	
172	$L(x) = \frac{e^{-P(x)}P(x)^{P(x)}}{\hat{P}(x)!} $ (4)
173	
174	These likelihoods can be multiplied across triplets to obtain the overall likelihood. We
175	estimated the maximum likelihood values of the model parameters using the
176	Maximize function of Mathematica which implements the Nelder-Mead algorithm
177	(Nelder et al., 1965).
178	
179	Privacy analysis
180	To investigate whether the SNVs at some sites tended to be produced by a particular
181	research group we took all sites with 3 or more SNVs from the same cancer type and
182	then performed Fishers exact test on a 2 x 30 matrix using the the R stats package,
183	version 3.2.4 (R Core Team, 2016).
184	
185	Mappability.
186	Each nucleotide in genome was assigned a mappability score, as determined by the
187	Mappability track (Derrien et al., 2012) downloaded from the UCSC table browser at
188	http://genome.ucsc.edu/ (Karolchik et al., 2004). This feature assigns a value of 1 to
189	unique k -mer sequences in the genome, 0.5 to those that occur twice, 0.33 to those
190	that occur thrice etc. This is computed for every base in the human genome with the
191	value being assigned to the first position of the k-mer. We used <i>k</i> -mers of 100 and 20
192	bases.

Peer Preprints

Results.

193 194

195 *The distribution of recurrent SNVs.*

If there is no variation in the density of single nucleotide variants (SNVs) then we 196 should find them to be distributed randomly across the genome. To investigate 197 whether this was the case we calculated the expected number of sites with 1,2,3...etc 198 199 SNVs, taking into account the fact that some triplets have higher mutation rates than others. We found that there are some sites that have 7 SNVs whereas we expect very 200 201 few sites to have more than 3 SNVs – the difference is highly significant using the Chi-square goodness of fit test (p < 0.0001) for both the whole genome (Total) and 202 when separating the genome into non-coding transposable elements (TE), non-coding 203 non-transposable elements and (NTE) and exons (EX) (Table 1). We refer to sites 204 with 3 or more SNVs as excess sites. In total we observed 1187 excess sites (Table 1) 205 with the density of excess sites in TE being 3.9 and 3.4 fold greater than in NTE and 206 EX respectively. The probability of this level of SNV recurrence is so low (Chi-207 squared goodness of fit test, p > 0.0001) that these excess sites must either be (i) 208 drivers, (ii) the result of mutation rate heterogeneity across the genome or, (iii) the 209 consequence of next generation sequencing (NGS) pipeline errors. 210

Site Type	0 hits	1 hit	2 hits	3 hits	4 hits	5 hits	6 hits	7 hits
Non-Exon TE obs (TE)	1.34E+9	1.65E+6	7034	762	130	26	9	3
Non-Exon TE exp (TE)	1.34E+9	1.66E+6	1430	1.14	9E-4	7E-7	5E-10	4E-13
Non-Exon Non-TE obs (NTE)	1 32F±0	1 53F+6	3171	188	35	6	2	2
Non-Exon Non-TE exp (NTE)				0.86	6E-4	4E-7	2 3E-10	2E-13
Non-Exon Non-LE exp (NTE)	1.520+9	1.556+0	1200	0.80	06-4	46-7	3E-10	26-12
Exon obs (EX)	1.20E+8	9.75E+4	245	23	0	0	1	0
Exon exp (EX)	1.20E+8	9.79E+4	57	0.03	2E-5	7E-9	3E-12	1E-15
Tatal aba	1.44F+9	1.63E+6	10450	973	165	22	10	F
Total obs			10450			32	12	5
Total exp	1.44E+9	1.63E+6	2692	2.04	2E-3	1E-6	8E-10	5E-13

B) - Mappable 100

Site Type	0 hits	1 hit	2 hits	3 hits	4 hits	5 hits	6 hits	7 hits
Non-Exon TE obs (TE)	1.22E+9	1.52E+6	3927	266	25	11	5	1
Non-Exon TE exp (TE)	1.22E+9	1.52E+6	1322	1.07	9E-4	7E-7	5E-10	4E-13
Non-Exon Non-TE obs (NTE)	1.28E+9	1.50E+6	2698	97	16	2	0	1
Non-Exon Non-TE exp (NTE)	1.28E+9	1.50E+6	1201	0.88	6E-4	5E-7	3E-10	2E-13
Exon obs (EX)	1.12E+8	9.31E+4	185	16	0	0	0	0
Exon exp (EX)	1.12E+8	9.34E+4		0.03	2E-5	7E-9	3E-12	1E-15
Total obs	1.39E+9	1.59E+6	6810	379	41	13	5	2
Total exp	1.39E+9	1.60E+6	2578	2	2E-3	1E-6	8E-10	6E-13

C) - Mappable 20 Site Type 0 hits 1 hit 2 hits 3 hits 4 hits 5 hits 6 hits 7 hits Non-Exon TE obs (TE) 3.89E+8 4.81E+5 741 9 0 0 0 0 2E-7 Non-Exon TE exp (TE) 0.34 2E-10 1E-13 3.89E+8 4.81E+5 417 3E-4 Non-Exon Non-TE obs (NTE) 8.92E+8 1.06E+6 1621 31 4 1 0 1 3E-7 2E-10 2E-13 Non-Exon Non-TE exp (NTE) 8.92E+8 1.06E+6 868 0.65 5E-4 6.00 Exon obs (EX) 7.47E+7 6.10E+4 103 0 0 0 0 Exon exp (EX) 7.47E+7 6.12E+4 36 0.02 9E-6 4E-9 2E-12 7E-16 Total obs 9.67E+8 1.12E+6 2465 46 4 1 0 1 Total exp 9.67E+8 1.12E+6 1321 8E-4 6E-7 4E-10 3E-13 1

211Table 1. Observed and expected values for the distribution of SNVs for sites hit from 0-7 times. A)212shows data for the whole interrogable human genome, excluding simple sequence repeats. B) shows213data for all bases in the genome that are uniquely mappable at 100 base pairs. C) the same as B but for21420 base pairs. P < 0.001 for observing >7 sites with 3 SNVs in A),B) and C) if SNVs were randomly215distributed throughout the genome.

Peer Preprints It seems unlikely that the majority of the excess sites are due to drivers since the 216 density of excess sites is higher in the TE and NTE parts of the genome than in EX 217 (Table 1A). Furthermore, to date only one intergenic driver of cancer – an activating 218 C>T mutation in the *TERT* promoter (Huang et al. 2013) at chr5:1,295,228 – has been 219 confirmed, and although this is included in the excess sites with 7 SNVs, the 220 remaining 1186 excess sites are unlikely to be under such selection. It therefore seems 221 222 likely that the excess sites are either due to mutation rate variation or problems with sequencing. 223

224

Excess sites are enriched in non-unique sequences. 225

The human genome contains many duplicated sequences particularly within 226 transposable elements, and these pose challenges for accurate alignment of the short 227 ~100bp reads produced from NGS (Zhuang et al., 2014). If the excess sites were the 228 result of NGS mapping errors then we might expect them to occur in regions of the 229 genome that were hard to align. Using the mappability scores (Derrien et al., 2012) 230 we excluded all bases that were not uniquely mappable at 100bp. This only reduced 231 the interrogable genome by 6%, but the number of excess sites was reduced by 64% 232 (Table 1B), demonstrating that a large proportion of the excess sites were in 233 duplicated sequences and therefore likely originate from mapping errors. However, 234 even with this large reduction in excess sites we still observed many excess sites far 235 greater than chance expectation (Chi-squared goodness of fit test, p > 0.0001) (Table 236 1B & Figure 1). 237

Peer Preprints

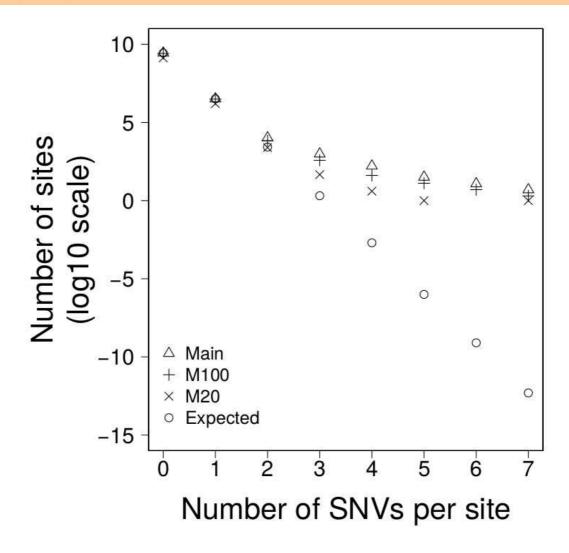


Figure 1. The number of site with 0-7 SNVs per sites for: **Main** = all data, **M100** = sites that are uniquely mappable at 100 base-pairs, **M20** = sites that are uniquely mappable at base-pairs and the expected number drawn from a poisson distribution.

241

The SNVs in this data were all called from >100bp reads. If the excess sites were errors of read mapping, they should not be affected by the uniqueness of shorter sequences (i.e. there is no reason why 100bp sequences that map uniquely to the genome should be mis-mapped if it contains a non-unique 20bp sequence), however if the SNVs were the product of a biological process that was more prevalent in non-

Peer Preprints

unique or repetitive sequences, then we might expect to see a reduction of excess sites 247 when we exclude all bases that do not map uniquely at 20bp. When we excluded all 248 bases that were not unique at 20bp we found that the interrogable genome was 249 reduced by 52% and the excess sites were reduced by 96% (Table 1C & Figure 1). It 250 is worth noting that, due to their proliferative nature throughout the genome, this 251 reduction disproportionately affects TEs where the interrogable genome is reduced by 252 253 71% and the excess sites by >99%. This would suggest that the excess sites existing in sequences that were unique at 100bp but not unique at 20bp likely represent some 254 255 biological process and not error. Furthermore, the TERT promoter, whose recurrence is the result of positive selection, and is therefore the only excess site that that we can 256 confidently say is not a product of error, remains in this most conservative of 257 analyses. Despite this large reduction in excess sites, significant heterogeneity still 258 remains; the probability of observing the 52 excess sites in the part of the genome 259 uniquely mappable at 20 bases is still extremely low (Chi-squared goodness of fit test, 260 p < 0.0001). 261

262

263 *Privacy of mutations.*

To further investigate the origin of excess sites we exploited the fact that some types of cancer were sequenced by different laboratories using different technologies and NGS pipelines. If the SNVs at excess sites found in a particular cancer are due to hypermutable sites then we would expect them to be randomly distributed across research groups (i.e. all research groups should identify the same hypermutable sites). If however the SNVs at excess sites are due to error then we might expect them to be heterogeneously distributed across research groups (i.e. the calling of recurrent false

Peer	Preprints NOT PEER-RE
271	positive SNVs should be systematic of individual research group NGS pipelines). The
272	liver cancers, which were all virus associated hepatocellular carcinomas, , were
273	sequenced by two different groups; 66 from the RIKEN group using the Illumina
274	Genome Analyser (https://dcc.icgc.org/projects/LIRI-JP) and 22 from the National
275	Cancer Centre in Japan using the IIlumina HiSeq platform
276	(https://dcc.icgc.org/projects/LINC-JP). We found that the SNVs were
277	heterogeneously distributed amongst research groups (Fisher's exact test, $P = 4x10^{-6}$)
278	suggesting that the 30 excess sites from liver cancers were predominantly errors
279	(Supplementary Table 1).
280	
281	Parameter estimation
282	To gauge how much variation there is in the density of SNVs across the genome we
283	fit two models to the data using maximum likelihood. In model 1 we allowed the
284	density of SNVs to vary between sites according to a gamma distribution, estimating
285	the shape parameter, and hence the amount of variation there was between sites. We
286	fitted two versions of this model. In the first version, 1a, we constrained the model
287	such that the mean SNV density, shape parameter, and hence the level of variation,
288	was the same for all triplets. In the second version, 1b, we allowed the mean SNV
289	density and shape parameter to vary between triplets. The second of these models fits
290	the data significantly better than the first according to a likelihood ratio test
291	suggesting that the level of variation differs between triplets (Table 2). However, a
292	goodness of fit test, comparing the number of sites predicted to have 1, 2, 3etc
293	SNVs per site to the observed data, suggests the model fits the data poorly. We
294	therefore fit a second pair of models in which we allowed the rate of SNVs to be due

Peer Preprints

to two processes. The first process, is constant across sites whereas the second process 295 is variable and drawn from a gamma distribution. There are two parameters in the 296 model, the proportion of SNVs at a site produced by the first process and the level of 297 variation in the second process. This model might represent a situation where the rate 298 of mutation is constant across sites but the rate of sequencing error is variable. As 299 with the first model we fit two versions of this model; in Model 2a we constrained the 300 301 model such that the parameters of the two processes were the same for all triplets. In Model 2b they were allowed to vary between triplets. Both models 2a and 2b fit the 302 303 data significantly better than models 1a and 1b, and of this second pair of models, model 2b, which allows the parameters to vary between triplets fits the data 304 significantly better than model 2a, in which the parameters are shared across triplets 305 (Table 2). The best fitting model is therefore one in which we have two processes 306 307 contributing to the production of SNVs, one that is constant across sites, although it differs between triplets, and one which is variable across sites. Although, we can 308 formally reject this model using a goodness-of-fit test (Chi-square p < 0.0001), 309 because we have so much data, it is clear that the model fits the data fairly well 310 (Figure 2). Under this model we estimate that approximately 4.1%, 2.8% and 4.3% of 311 SNVs are due to the process that varies across sites in the TE and NTE, and EX 312 sequences respectively. However, the variation in the density between sites due to the 313 314 variable process is extremely large. The median shape parameters are 0.0013, 0.0011 and 0.00075 for the TE and NTE, and EX sequences respectively. Under a gamma 315 distribution with a shape parameter of 0.0004 we would expect more than 99% of 316 sites to have no SNVs generated by this variable process, but some sites to have a 317 density of SNVs that is 30,000-fold above the average rate. 318

Ν	Log-likelihood	Shape	Median ε
2	-269283	0.13	
64	-2936	0.12	
3	-266889	0.00021	0.044
96	-1302	0.0013	0.041
Ν	Log-likelihood	Shape	Median ε
2	-227728	0.31	
64	-1207	0.37	
3	-227026	0.0012	0.037
96	-566	0.0011	0.028
Ν	Log-likelihood	Shape	Median ε
2	-13878	0.18	
64	-270	0.22	
3	-13842	0.00081	0.034
96	-240	0.00076	0.043
	2 64 3 96 N 2 64 3 96 N 2 64 3	2 -269283 64 -2936 3 -266889 96 -1302 N Log-likelihood 2 -227728 64 -1207 3 -227026 96 -566 N Log-likelihood 2 -227026 96 -566 1207 3 3 -227026 96 -566 1207 3 1207 3 1207 3 1207 3 1207 3 1207 3 1207 3 1207 3 1207 3 1207 3 3 -13878 1207 3 13842 -13842	2 -269283 0.13 64 -2936 0.12 3 -266889 0.00021 96 -1302 0.0013 N Log-likelihood Shape 2 -227728 0.31 64 -1207 0.37 3 -227026 0.0012 96 -566 0.0011 N Log-likelihood Shape 2 -227026 0.0012 96 -566 0.0011 96 -566 0.0011 97 0.22 0.22 3 -13878 0.18 64 -270 0.22 3 -13842 0.00081

320 Table 2. The fit of 4 models to the observed distribution of recurrent SNVs in the three different

321 genomic fractions A) TE, B) NTE and C) EX. **N** = number of parameters. *Italics* indicate the best fit as

322 determined by a liklihood ratio test.

323

324

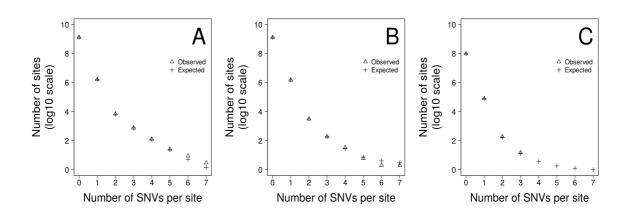


Figure 2. The fit of the observed recurrent SNV distribution to expected distribution under the favoured
model, 2b, for A) TE, B) NTE and C) EX genomic fractions.

Peer Preprints Discussion.

329

330

Through our analysis of ~3 million SNVs from whole cancer genomes we have 331 shown that there are many sites at which there is a significant excess of SNVs. The 332 majority of these are unlikely to be drivers because the density of sites with an excess 333 of SNVs is greater in the non-coding part of the genome than in the exons. It therefore 334 335 seems likely that the majority of the excess sites are either due to hypermutation or problems with sequencing or the processing of the sequences. Several lines of 336 337 evidence point to sequencing problems being the chief culprit. First, many of the excess sites disappear when regions of the genome with low mappability are removed. 338 Second, SNVs at a particular excess site tend to be found within the sequences from a 339 particular laboratory; for example, site 85,091,895 on chromosome 5 has 5 SNVs in 340 liver cancers, but all of these are found in the sequences from RIKEN not the 341 sequences from the NCC. Third, the level of variation in the density of SNVs is much 342 greater than has been observed or suggested for variation in the mutation rate 343 (Hodgkinson & Eyre-Walker, 2011; Kong et al., 2012; Michaelson et al., 2012) 344 though see a recent analysis of de novo germ-line mutations which suggests there 345 could be extreme mutational heterogeneity (Smith et al., 2016); some sites are 346 estimated to have rates of SNV production that are tens of thousands of times faster 347 than the genomic average. 348 349

Only one line of evidence suggests that there might also be substantial variation in the 350 mutation rate as well as variation in the error rate. When we eliminate sites that are 351 not uniquely mappable at 20bp we find a great reduction in the number of excess sites 352

Peer Preprints 353 relative to the case when we remove sites that are not uniquely mappable at 100bp, 354 and yet the read length is greater than 100bp in the data that we have used. This min

and yet the read length is greater than 100bp in the data that we have used. This might 354 suggest that there are some repetitive sequences that are prone to a process of hyper-355 mutation. However, it might also be that mappability at 100bp is not a good guide to 356 mappability during sequence processing. First, some level of mismatch must be 357 allowed during the mapping of reads to the reference because there are single 358 359 nucleotide variants segregating in the population and there are somatic mutations in cancer genomes. Second, the mappability score is assigned to the first nucleotide of 360 361 the *k*-mer that can be mapped; in reality what we really need is the average mappability of all *k*-mers that overlap a site. Third, although the read length was 362 greater than 100bp, some shorter reads may have been used. Next generation 363 sequencing involves a number of biological processes, such as the polymerase chain 364 reactions in the pre-sequencing creation of libraries and the polymerization of 365 nucleotides during sequencing by synthesis, any one of which can result in 366 technology-specific sequencing artefacts (Quail et al., 2008; Nazarian et al., 2010), In 367 addition to the considerable post-sequencing processing, such as filtering and 368 mapping, which can also generate errors (Harismendy & Frazer, 2009; Minoche, 369 Dohm & Himmelbauer, 2011). Unfortunately it is not possible to say which of these 370 factors is most important. 371 372

3/2

373

We have fit two models to the data in which the density of SNVs varies across sites. In the first we imagine that the variation is due to a single variable process and in the second we imagine it is due to two processes, one of which is constant across sites

Peer Preprints and one which is variable. We find that this second model fits the data much better 377 than the first model, although it can be formally rejected by a goodness-of-fit test. In 378

this second model we estimate the proportion of SNVs that are due to the two 379 processes and the level of variation. We estimate that approximately 2.8-4.3% of 380 SNVs are due to the second process and that this second process is highly variable 381 between sites, such that a few sites have a density of SNVs that is ten of thousands 382 383 higher than the average density. It is possible that the first process is mutation and the second is sequencing error, but we cannot rule out the possibility that the second 384 385 process includes variation in the mutation rate as well. Studies of germ-line (Hodgkinson & Eyre-Walker, 2011; Michaelson et al., 2012) and somatic 386 (Hodgkinson, Chen & Eyre-Walker, 2012; Woo & Li, 2012; Lawrence et al., 2013; 387 Liu, De & Michor, 2013; Polak et al., 2015) mutations have indicated that the 388 mutation rate varies between sites on a number of different scales. However, 389

indications are that the variation is probably fairly modest (Hodgkinson, Chen & 390

Evre-Walker, 2012; Michaelson et al., 2012). 391

392

In conclusion it seems likely that many sites in somatic tissues that have experienced 393 recurrent SNVs are due to sequencing errors or artefacts of post-sequencing 394 processing and there seems to be little evidence of cryptic variation in the somatic 395 mutation rate. However, this not necessarily mean that such variation does not exist -396 it would be extremely difficult to detect it given the high level of site-specific 397 sequencing error. As sequencing technology and processing pipelines improve in 398 accuracy, we would expect similar future analyses to be able to confidently estimate 399 the true underlying variation in the somatic mutation rate. Accompanied by the flow 400

Peer	Preprints NOT PEER-REVIEWED
401	of data from projects such as the 100k genomes project, it should soon be possible to
402	achieve per triplet mutation rate variation map for individual cancer types and not just
403	pooled across multiple cancers.
404	
405	
406	References.
407	
408	Alexandrov LB., Nik-Zainal S., Wedge DC., Aparicio S a JR., Behjati S., Biankin A
409	V., Bignell GR., Bolli N., Borg A., Børresen-Dale A-L., Boyault S., Burkhardt
410	B., Butler AP., Caldas C., Davies HR., Desmedt C., Eils R., Eyfjörd JE., Foekens
411	J a., Greaves M., Hosoda F., Hutter B., Ilicic T., Imbeaud S., Imielinski M.,
412	Imielinsk M., Jäger N., Jones DTW., Jones D., Knappskog S., Kool M., Lakhani
413	SR., López-Otín C., Martin S., Munshi NC., Nakamura H., Northcott P a., Pajic
414	M., Papaemmanuil E., Paradiso A., Pearson J V., Puente XS., Raine K.,
415	Ramakrishna M., Richardson AL., Richter J., Rosenstiel P., Schlesner M.,
416	Schumacher TN., Span PN., Teague JW., Totoki Y., Tutt ANJ., Valdés-Mas R.,
417	van Buuren MM., van 't Veer L., Vincent-Salomon A., Waddell N., Yates LR.,
418	Zucman-Rossi J., Futreal PA., McDermott U., Lichter P., Meyerson M.,
419	Grimmond SM., Siebert R., Campo E., Shibata T., Pfister SM., Campbell PJ.,
420	Stratton MR. 2013. Signatures of mutational processes in human cancer. Nature
421	500:415–21. DOI: 10.1038/nature12477.
422	Benson G. 1999. Tandem repeats finder: A program to analyze DNA sequences.
423	Nucleic Acids Research 27:573–580. DOI: 10.1093/nar/27.2.573.

Peer	Preprints NOT PEER-REVIEWED
424	Bird AP. 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic
425	Acids Research 8:1499–1504. DOI: 10.1093/nar/8.7.1499.
426	Bulmer M. 1986. Neighboring base effects on substitution rates in pseudogenes.
427	Molecular biology and evolution 3:322–329.
428	Cooper DN., Krawczak M. 1990. The mutational spectrum of single base-pair
429	substitutions causing human genetic disease: patterns and predictions. Human
430	Genetics 85:55–74. DOI: 10.1007/BF00276326.
431	Derrien T., Estell?? J., Sola SM., Knowles DG., Raineri E., Guig?? R., Ribeca P.
432	2012. Fast computation and applications of genome mappability. PLoS ONE 7.
433	DOI: 10.1371/journal.pone.0030377.
434	Eyre-Walker A., Eyre-Walker YC. 2014. How much of the variation in the mutation
435	rate along the human genome can be explained? G3 4:1667–70. DOI:
436	10.1534/g3.114.012849.
437	Flicek P., Amode MR., Barrell D., Beal K., Brent S., Carvalho-Silva D., Clapham P.,
438	Coates G., Fairley S., Fitzgerald S. 2011. Ensembl 2012. Nucleic acids
439	research:gkr991.
440	Francioli LC., Polak PP., Koren A., Menelaou A., Chun S., Renkens I., van Duijn
441	CM., Swertz M., Wijmenga C., van Ommen G., Slagboom PE., Boomsma DI.,
442	Ye K., Guryev V., Arndt PF., Kloosterman WP., de Bakker PIW., Sunyaev SR.
443	2015. Genome-wide patterns and properties of de novo mutations in humans.
444	Nature Genetics 47:822–826. DOI: 10.1038/ng.3292.

)

Peer	Preprints NOT PEER-REVIEWER
445	Fryxell KJ., Moon WJ. 2005. CpG mutation rates in the human genome are highly
446	dependent on local GC content. Molecular Biology and Evolution 22:650–658.
447	DOI: 10.1093/molbev/msi043.
448	Gojobori T., Li WH., Graur D. 1982. Patterns of nucleotide substitution in
449	pseudogenes and functional genes. Journal of Molecular Evolution 18:360–369.
450	DOI: 10.1007/BF01733904.Harismendy O., Frazer KA. 2009. Method for im
451	proving sequence coverage uniformity of targeted genomic intervals amplified by LR-
452	PCR using Illumina GA sequencing-by-synthesis technology. BioTechniques
453	46:229–231. DOI: 10.2144/000113082.
454	Hodgkinson A., Chen Y., Eyre-Walker A. 2012. The large-scale distribution of
455	somatic mutations in cancer genomes. Human Mutation 33:136–143. DOI:
456	10.1002/humu.21616.
457	Hodgkinson A., Eyre-Walker A. 2011. Variation in the mutation rate across
458	mammalian genomes. Nature Reviews Genetics 12:756–766. DOI:
459	10.1038/nrg3098.
460	Hodgkinson A., Ladoukakis E., Eyre-Walker A. 2009. Cryptic variation in the human
461	mutation rate. PLoS Biology 7:0226–0232. DOI: 10.1371/journal.pbio.1000027.
462	Huang FW., Hodis E., Xu MJ., Kryukov G V., Chin L., Garraway LA. 2013. Highly
463	Recurrent TERT Promoter Mutations in Human Melanoma. Science 339:957–
464	959. DOI: 10.1126/science.1229259.
465	Hwang DG., Green P. 2004. Bayesian Markov chain Monte Carlo sequence analysis
466	reveals varying neutral substitution patterns in mammalian evolution.

Peer	Preprints NOT PEER-REVIEWED
467	Proceedings of the National Academy of Sciences of the United States of
468	America 101:13994–14001. DOI: 10.1073/pnas.0404142101.
469	Karolchik D., Hinrichs AS., Furey TS., Roskin KM., Sugnet CW., Haussler D., Kent
470	WJ. 2004. The UCSC Table Browser data retrieval tool. Nucleic acids research
471	32:D493–D496. DOI: 10.1093/nar/gkh103.
472	Kong A., Frigge ML., Masson G., Besenbacher S., Sulem P., Magnusson G.,
473	Gudjonsson S a., Sigurdsson A., Jonasdottir AA., Jonasdottir AA., Wong WSW.,
474	Sigurdsson G., Walters GB., Steinberg S., Helgason H., Thorleifsson G.,
475	Gudbjartsson DF., Helgason A., Magnusson OT., Thorsteinsdottir U., Stefansson
476	K. 2012. Rate of de novo mutations and the importance of father's age to disease
477	risk. Nature 488:471–475. DOI: 10.1038/nature11396.
478	Lawrence MS., Stojanov P., Polak P., Kryukov G V., Cibulskis K., Sivachenko A.,
479	Carter SL., Stewart C., Mermel CH., Roberts S a., Kiezun A., Hammerman PS.,
480	McKenna A., Drier Y., Zou L., Ramos AH., Pugh TJ., Stransky N., Helman E.,
481	Kim J., Sougnez C., Ambrogio L., Nickerson E., Shefler E., Cortés ML., Auclair
482	D., Saksena G., Voet D., Noble M., DiCara D., Lin P., Lichtenstein L., Heiman
483	DI., Fennell T., Imielinski M., Hernandez B., Hodis E., Baca S., Dulak AM.,
484	Lohr J., Landau D-A., Wu CJ., Melendez-Zajgla J., Hidalgo-Miranda A., Koren
485	A., McCarroll S a., Mora J., Lee RS., Crompton B., Onofrio R., Parkin M.,
486	Winckler W., Ardlie K., Gabriel SB., Roberts CWM., Biegel J a., Stegmaier K.,
487	Bass AJ., Garraway L a., Meyerson M., Golub TR., Gordenin D a., Sunyaev S.,
488	Lander ES., Getz G. 2013. Mutational heterogeneity in cancer and the search for
489	new cancer-associated genes. Nature 499:214–8. DOI: 10.1038/nature12213.
490	Liu L., De S., Michor F. 2013. DNA replication timing and higher-order nuclear

)

Peer	Preprints NOT PEER-REVIEWED
491	organization determine single-nucleotide substitution patterns in cancer
492	genomes. Nature communications 4:1502. DOI: 10.1038/ncomms2502.
493	Lynch M. 2010. Evolution of the mutation rate. Trends in Genetics 26:345–352. DOI:
494	10.1016/j.tig.2010.05.003.
495	Martinocorena I., Campbell PJ. 2015. Somatic mutation in cancer and normal cells.
496	Science 349:1483–1489. DOI: 10.1126/science.aab4082.
497	Michaelson JJ., Shi Y., Gujral M., Zheng H., Malhotra D., Jin X., Jian M., Liu G.,
498	Greer D., Bhandari A., Wu W., Corominas R., Peoples Á., Koren A., Gore A.,
499	Kang S., Lin GN., Estabillo J., Gadomski T., Singh B., Zhang K., Akshoomoff
500	N., Corsello C., McCarroll S., Iakoucheva LM., Li Y., Wang J., Sebat J. 2012.
501	Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo
502	Germline Mutation. Cell 151:1431–1442. DOI:
503	http://dx.doi.org/10.1016/j.cell.2012.11.019.
504	Minoche AE., Dohm JC., Himmelbauer H. 2011. Evaluation of genomic high-
505	throughput sequencing data generated on Illumina HiSeq and Genome Analyzer
506	systems. Genome Biology 12:R112. DOI: 10.1186/gb-2011-12-11-r112.
507	Nachman MW., Crowell SL. 2000. Estimate of the mutation rate per nucleotide in
508	humans. Genetics 156:297–304. DOI: papers2://publication/uuid/E46268CF-
509	E7EF-4A7D-A85A-821D27B7F178.
510	Nazarian R., Shi H., Wang Q., Kong X., Koya RC., Lee H., Chen Z., Lee M-K., Attar
511	N., Sazegar H., Chodon T., Nelson SF., McArthur G., Sosman JA., Ribas A., Lo
512	RS. 2010. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK
513	or N-RAS upregulation. Nature 468:973–7. DOI: 10.1038/nature09626.

)

	Preprints NOT PEER-REVIEWED
514	Nelder JA., Mead R., Nelder BJA., Mead R. 1965. A Simplex Method for Function
515	Minimization. The Computer Journal 7:308–313. DOI: 10.1093/comjnl/7.4.308.
516	Polak P., Karlic R., Koren A., Thurman R., Sandstrom R., Lawrence MS., Reynolds
517	A., Rynes E., Vlahovic ek K., Stamatoyannopoulos JA., Sunyaev SR. 2015. Cell-
518	of-origin chromatin organization shapes the mutational landscape of cancer.
519	Nature 518:360–364. DOI: 10.1038/nature14221.
520	Quail MA., Kozarewa I., Smith F., Scally A., Stephens PJ., Durbin R., Swerdlow H.,
521	Turner DJ. 2008. A large genome center's improvements to the Illumina
522	sequencing system. Nature methods 5:1005–10. DOI: 10.1038/nmeth.1270.
523	Schuster-Bockler B., Lehner B. 2012. Chromatin organization is a major
524	influence on regional mutation rates in human cancer cells. Nature 488:504–507.
525	DOI: 10.1038/nature11273.
526	Smith T., Ho G., Christodoulou J., Price EA., Onadim Z., Gauthier-Villars M.,
527	Dehainault C., Houdayer C., Parfait B., van Minkelen R., Lohman D., Eyre-
528	Walker A. 2016. Extensive Variation in the Mutation Rate Between and Within
529	Human Genes Associated with Mendelian Disease. Human mutation:n/a–n/a.
530	DOI: 10.1002/humu.22967.
531	R Core Team. 2016. R: A Language and Environment for Statistical Computing.
532	Treangen TJ., Salzberg SL. 2013. Repetitive DNA and next-generation
533	sequencing: computational challenges and solutions. Nat Rev Genet. 13:36–46.
534	DOI: 10.1038/nrg3117.Repetitive.

Peer	Preprints NOT PEER-REVIEWED
535	Woo YH., Li W-H. 2012. DNA replication timing and selection shape the landscape of
536	nucleotide variation in cancer genomes. Nature Communications 3:1004. DOI:
537	10.1038/ncomms1982.
538	Zhuang J., Wang J., Theurkauf W., Weng Z. 2014. TEMP: A computational method
539	for analyzing transposable element polymorphism in populations. Nucleic Acids
540	Research 42:6826–6838. DOI: 10.1093/nar/gku323.
541	

542 **Supplementary table 1.**

543 Excess SNVs from liver cancers split between the two labs of origin. RK indicates SNVs from the

544 RIKEN lab and HX from the NCC. Significant heterogeneity of excess sites originating from different

545 labs was tested using fishers exact test (see methods).

546	locus	RK	HX	sum
- 4 -	chrX:56209339	6	0	6
547	chr10:96652829		0	6
548	chr10:96652827	6	0	6
5-0	chrX:56209340	5	0	5
549	chr5:85091859	5	0	5
	chr5:1295228	0	5	5
550	chr9:121267366	4	0	4
	chr8:119547627	4	0	4
551	chr19:22314552	1	2	3
FF0	chr14:95832895	1	2	3
552	chr9:16932821	2	1	3
553	chr7:27901228	2	1	3
555	chr4:162437670		1	3
554	chr3:164903710		1	3
	chrY:4796240	3	0	3
555	chrX:84996701	3	0	3 3
	chr7:11432162	3	0	
556	chr7:11432157	3	0	3 3
	chr3:174306603	3	0	3
557	chr2:49173787	3	0	3
558	chr2:139556678		0	3 3
550	chr19:8673262	3	0	
559	chr1:190881448		0	3 3
	chrX:79125571	0	3	
560	chr6:78532352	0	3	3 3
	chr5:97912191	0	3	3
561	chr4:190837614		3	3 3
	chr19:44959650	0	3	
	chr15:73206445	0	3	3
	chr14:74659965	0	3	3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2089v1 | CC-BY 4.0 Open Access | rec: 30 May 2016, publ: 30 May 2016