

A peer-reviewed version of this preprint was published in PeerJ
on 2 January 2017.

View the peer-reviewed version (peerj.com/articles/cs-103), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M,
Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE,
Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry
MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R,
Scopatz A. 2017. SymPy: symbolic computing in Python. PeerJ Computer
Science 3:e103 https://doi.org/10.7717/peerj-cs.103

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

SymPy: Symbolic Computing in Python1

Aaron Meurer1, Christopher P. Smith2, Mateusz Paprocki3, Ondřej Čertı́k4,2

Sergey B. Kirpichev5, Matthew Rocklin6, AMiT Kumar7, Sergiu Ivanov8,3

Jason K. Moore9, Sartaj Singh10, Thilina Rathnayake11, Sean Vig12, Brian4

E. Granger13, Richard P. Muller14, Francesco Bonazzi15, Harsh Gupta16,5

Shivam Vats17, Fredrik Johansson18, Fabian Pedregosa19, Matthew J.6

Curry20, Andy R. Terrel21, Štěpán Roučka22, Ashutosh Saboo23, Isuru7

Fernando24, Sumith Kulal25, Robert Cimrman26, and Anthony Scopatz27
8

1University of South Carolina, Columbia, SC 29201 (asmeurer@gmail.com).9

2Polar Semiconductor, Inc., Bloomington, MN 55425 (smichr@gmail.com).10

3Continuum Analytics, Inc., Austin, TX 78701 (mattpap@gmail.com).11

4Los Alamos National Laboratory, Los Alamos, NM 87545 (certik@lanl.gov).12

5Moscow State University, Faculty of Physics, Leninskie Gory, Moscow, 119991, Russia13

(skirpichev@gmail.com).14

6Continuum Analytics, Inc., Austin, TX 78701 (mrocklin@gmail.com).15

7Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi 110042,16

India (dtu.amit@gmail.com).17

8Université Paris Est Créteil, 61 av. Général de Gaulle, 94010 Créteil, France18

(sergiu.ivanov@u-pec.fr).19

9University of California, Davis, Davis, CA 95616 (jkm@ucdavis.edu).20

10Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India21

(singhsartaj94@gmail.com).22

11University of Moratuwa, Bandaranayake Mawatha, Katubedda, Moratuwa 10400, Sri23

Lanka (thilinarmtb.10@cse.mrt.ac.lk).24

12University of Illinois at Urbana-Champaign, Urbana, IL 61801 (sean.v.775@gmail.com).25

13California Polytechnic State University, San Luis Obispo, CA 9340726

(ellisonbg@gmail.com).27

14Center for Computing Research, Sandia National Laboratories, Albuquerque, NM28

87185 (rmuller@sandia.gov).29

15Max Planck Institute of Colloids and Interfaces, Department of Theory and30

Bio-Systems, Science Park Golm, 14424 Potsdam, Germany31

(francesco.bonazzi@mpikg.mpg.de).32

16Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India33

(hargup@protonmail.com).34

17Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India35

(shivamvats.iitkgp@gmail.com).36

18INRIA Bordeaux-Sud-Ouest – LFANT project-team, 200 Avenue de la Vieille Tour,37

33405 Talence, France (fredrik.johansson@gmail.com).38

19INRIA – SIERRA project-team, 2 Rue Simone IFF, 75012 Paris, France (f@bianp.net).39

20Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM40

87131 (mattjcurry@gmail.com).41

21Fashion Metric, Inc, Austin, TX 78681 (andy.terrel@gmail.com).42

22Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2,43

180 00 Praha, Czech Republic (stepan.roucka@mff.cuni.cz).44

23Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus, NH 17B45

Bypass Road, Zuarinagar, Sancoale, Goa 403726, India46

(ashutosh.saboo96@gmail.com).47

24University of Moratuwa, Bandaranayake Mawatha, Katubedda, Moratuwa 10400, Sri48

Lanka (isuru.11@cse.mrt.ac.lk).49

25Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India50

(sumith@cse.iitb.ac.in).51

26New Technologies – Research Centre, University of West Bohemia, Univerzitnı́ 8, 30652

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

mailto:asmeurer@gmail.com
mailto:smichr@gmail.com
mailto:mattpap@gmail.com
mailto:certik@lanl.gov
mailto:skirpichev@gmail.com
mailto:mrocklin@gmail.com
mailto:dtu.amit@gmail.com
mailto:sergiu.ivanov@u-pec.fr
mailto:jkm@ucdavis.edu
mailto:singhsartaj94@gmail.com
mailto:thilinarmtb.10@cse.mrt.ac.lk
mailto:sean.v.775@gmail.com
mailto:ellisonbg@gmail.com
mailto:rmuller@sandia.gov
mailto:francesco.bonazzi@mpikg.mpg.de
mailto:hargup@protonmail.com
mailto:shivamvats.iitkgp@gmail.com
mailto:fredrik.johansson@gmail.com
mailto:f@bianp.net
mailto:mattjcurry@gmail.com
mailto:andy.terrel@gmail.com
mailto:stepan.roucka@mff.cuni.cz
mailto:ashutosh.saboo96@gmail.com
mailto:isuru.11@cse.mrt.ac.lk
mailto:sumith@cse.iitb.ac.in

14 Plzeň, Czech Republic (cimrman3@ntc.zcu.cz).53

27University of South Carolina, Columbia, SC 29201 (scopatz@cec.sc.edu).54

ABSTRACT55

SymPy is an open source computer algebra system written in pure Python. It is built with a focus on

extensibility and ease of use, through both interactive and programmatic applications. These characteristics

have led SymPy to become a popular symbolic library for the scientific Python ecosystem. This paper

presents the architecture of SymPy, a description of its features, and a discussion of select domain specific

submodules. The supplementary materials provide additional examples and further outline details of the

architecture and features of SymPy.

56

57

58

59

60

61

Keywords: symbolic, Python, computer algebra system62

1 INTRODUCTION63

SymPy is a full featured computer algebra system (CAS) written in the Python programming64

language [25]. It is free and open source software, licensed under the 3-clause BSD license [37].65

The SymPy project was started by Ondřej Čertík in 2005, and it has since grown to over 50066

contributors. Currently, SymPy is developed on GitHub using a bazaar community model [33].67

The accessibility of the codebase and the open community model allow SymPy to rapidly respond68

to the needs of users and developers.69

Python is a dynamically typed programming language that has a focus on ease of use and70

readability. Due in part to this focus, it has become a popular language for scientific computing71

and data science, with a broad ecosystem of libraries [28]. SymPy is itself used by many libraries72

and tools to support research within a variety of domains, such as Sage [40] (pure mathematics),73

yt [45] (astronomy and astrophysics), PyDy [15] (multibody dynamics), and SfePy [10] (finite74

elements).75

Unlike many CASs, SymPy does not invent its own programming language. Python itself76

is used both for the internal implementation and end user interaction. By using the operator77

overloading functionality of Python, SymPy follows the embedded domain specific language78

paradigm proposed by Hudak [20]. The exclusive usage of a single programming language makes79

it easier for people already familiar with that language to use or develop SymPy. Simultaneously,80

it enables developers to focus on mathematics, rather than language design.81

SymPy is designed with a strong focus on usability as a library. Extensibility is important in82

its application program interface (API) design. Thus, SymPy makes no attempt to extend the83

Python language itself. The goal is for users of SymPy to be able to include SymPy alongside84

other Python libraries in their workflow, whether that be in an interactive environment or as a85

programmatic part in a larger system.86

As a library, SymPy does not have a built-in graphical user interface (GUI). However, SymPy87

exposes a rich interactive display system, and supports registering printers with Jupyter [30]88

frontends, including the Notebook and Qt Console, which will render SymPy expressions using89

MathJax [9] or LATEX.90

The remainder of this paper discusses key components of the SymPy software. Section 291

discusses the architecture of SymPy. Section 3 enumerates the features of SymPy and takes92

a closer look at some of the important ones. The section 4 looks at the numerical features of93

SymPy and its dependency library, mpmath. Section 5 looks at the domain specific physics94

submodules for performing symbolic and numerical calculations in classical mechanics and95

quantum mechanics. Conclusions and future directions for SymPy are given in section 6.96

2 ARCHITECTURE97

Software architecture is of central importance in any large software project because it establishes98

predictable patterns of usage and development [39]. This section describes the essential structural99

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

mailto:cimrman3@ntc.zcu.cz
mailto:scopatz@cec.sc.edu

components of SymPy, provides justifications for the design decisions that have been made, and100

gives example user-facing code as appropriate.101

2.1 Basic Usage102

The following statement imports all SymPy functions into the global Python namespace. From103

here on, all examples in this paper assume that this statement has been executed.1104

>>> from sympy import *105

Symbolic variables, called symbols, must be defined and assigned to Python variables before106

they can be used. This is typically done through the symbols function, which may create multiple107

symbols in a single function call. For instance,108

>>> x, y, z = symbols('x y z')109

creates three symbols representing variables named x, y, and z. In this particular instance, these110

symbols are all assigned to Python variables of the same name. However, the user is free to111

assign them to different Python variables, while representing the same symbol, such as a, b,112

c = symbols('x y z'). In order to minimize potential confusion, though, all examples in this113

paper will assume that the symbols x, y, and z have been assigned to Python variables identical114

to their symbolic names.115

Expressions are created from symbols using Python’s mathematical syntax. For instance, the116

following Python code creates the expression (x2 −2x+3)/y.117

>>> (x**2 - 2*x + 3)/y118

(x**2 - 2*x + 3)/y119

Importantly, SymPy expressions are immutable. This simplifies the design of SymPy by120

allowing expression interning. It also enables expressions to be hashed and stored in Python121

dictionaries, thereby permitting features such as caching.122

2.2 The Core123

A computer algebra system (CAS) represents mathematical expressions as data structures. For124

example, the mathematical expression x+y is represented as a tree with three nodes, +, x, and125

y, where x and y are ordered children of +. As users manipulate mathematical expressions126

with traditional mathematical syntax, the CAS manipulates the underlying data structures.127

Automated optimizations and computations such as integration, simplification, etc. are all128

functions that consume and produce expression trees.129

In SymPy every symbolic expression is an instance of a Python Basic class, a superclass130

of all SymPy types providing common methods to all SymPy tree-elements, such as traversals.131

The children of a node in the tree are held in the args attribute. A terminal or leaf node in the132

expression tree has empty args.133

For example, consider the expression xy +2:134

>>> expr = x*y + 2135

By order of operations, the parent of the expression tree for expr is an addition, so it is of type136

Add. The child nodes of expr are 2 and x*y.137

>>> type(expr)138

<class 'sympy.core.add.Add'>139

>>> expr.args140

(2, x*y)141

Descending further down into the expression tree yields the full expression. For example,142

the next child node (given by expr.args[0]) is 2. Its class is Integer, and it has an empty args143

tuple, indicating that it is a leaf node.144

1All examples in this paper use SymPy version 1.0.

3/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

>>> expr.args[0]145

2146

>>> type(expr.args[0])147

<class 'sympy.core.numbers.Integer'>148

>>> expr.args[0].args149

()150

A useful way to view an expression tree is using the srepr function, which returns a string151

representation of an expression as valid Python code with all the nested class constructor calls152

to create the given expression.153

>>> srepr(expr)154

"Add(Mul(Symbol('x'), Symbol('y')), Integer(2))"155

Every SymPy expression satisfies a key identity invariant:156

expr.func(*expr.args) == expr157

This means that expressions are rebuildable from their args.2 Note that in SymPy the ==158

operator represents exact structural equality, not mathematical equality. This allows testing if159

any two expressions are equal to one another as expression trees. For example, even though160

(x+1)2 and x2 +2x+1 are equal mathematically, SymPy gives161

>>> (x + 1)**2 == x**2 + 2*x + 1162

False163

because they are different as expression trees (the former is a Pow object and the latter is an Add164

object).165

Python allows classes to override mathematical operators. The Python interpreter translates166

the above x*y + 2 to, roughly, (x.__mul__(y)).__add__(2). Both x and y, returned from the167

symbols function, are Symbol instances. The 2 in the expression is processed by Python as a168

literal, and is stored as Python’s built in int type. When 2 is passed to the __add__ method169

of Symbol, it is converted to the SymPy type Integer(2) before being stored in the resulting170

expression tree. In this way, SymPy expressions can be built in the natural way using Python171

operators and numeric literals.172

2.3 Assumptions173

SymPy performs logical inference through its assumptions system. The assumptions system174

allows users to specify that symbols have certain common mathematical properties, such as175

being positive, imaginary, or integral. SymPy is careful to never perform simplifications on an176

expression unless the assumptions allow them. For instance, the identity
√

t2 = t holds if t is177

nonnegative (t ≥ 0). However, for general complex t, no such identity holds.178

By default, SymPy performs all calculations assuming that symbols are complex valued. This179

assumption makes it easier to treat mathematical problems in full generality.180

>>> t = Symbol('t')181

>>> sqrt(t**2)182

sqrt(t**2)183

By assuming the most general case, that symbols are complex by default, SymPy avoids184

performing mathematically invalid operations. However, in many cases users will wish to simplify185

expressions containing terms like
√

t2.186

Assumptions are set on Symbol objects when they are created. For instance Symbol('t',187

positive=True) will create a symbol named t that is assumed to be positive.188

>>> t = Symbol('t', positive=True)189

>>> sqrt(t**2)190

t191

2expr.func is used instead of type(expr) to allow the function of an expression to be distinct from its actual

Python class. In most cases the two are the same.

4/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

Some of the common assumptions that SymPy allows are positive, negative, real, nonpositive,192

integer, prime and commutative.3 Assumptions on any object can be checked with the is_assumption193

attributes, like t.is_positive.194

Assumptions are only needed to restrict a domain so that certain simplifications can be195

performed. They are not required to make the domain match the input of a function. For instance,196

one can create the object
∑m

n=0
f(n) as Sum(f(n), (n, 0, m)) without setting integer=True197

when creating the Symbol object n.198

The assumptions system additionally has deductive capabilities. The assumptions use a199

three-valued logic using the Python built in objects True, False, and None. Note that False is200

returned if the SymPy object doesn’t or can’t have the assumption. For example, both I.is_real201

and I.is_prime return False for the imaginary unit I.202

None represents the “unknown” case. This could mean that given assumptions do not unam-203

biguously specify the truth of an attribute. For instance, Symbol('x', real=True).is_positive204

will give None because a real symbol might be positive or negative. The None could also mean205

that not enough is known or implemented to compute the given fact. For instance, (pi +206

E).is_irrational gives None, because determining whether π +e is rational or irrational is an207

open problem in mathematics [24].208

Basic implications between the facts are used to deduce assumptions. For instance, the assump-209

tions system knows that being an integer implies being rational, so Symbol('x', integer=True).is_rational210

returns True. Furthermore, expressions compute the assumptions on themselves based on the211

assumptions of their arguments. For instance, if x and y are both created with positive=True,212

then (x + y).is_positive will be True whereas (x - y).is_positive will be None.213

2.4 Extensibility214

While the core of SymPy is relatively small, it has been extended to a wide variety of domains215

by a broad range of contributors. This is due in part because the same language, Python, is used216

both for the internal implementation and the external usage by users. All of the extensibility217

capabilities available to users are also utilized by SymPy itself. This eases the transition pathway218

from SymPy user to SymPy developer.219

The typical way to create a custom SymPy object is to subclass an existing SymPy class,220

usually Basic, Expr, or Function. All SymPy classes used for expression trees4 should be221

subclasses of the base class Basic, which defines some basic methods for symbolic expression trees.222

Expr is the subclass for mathematical expressions that can be added and multiplied together.223

Instances of Expr typically represent complex numbers, but may also include other “rings” like224

matrix expressions. Not all SymPy classes are subclasses of Expr. For instance, logic expressions225

such as And(x, y) are subclasses of Basic but not of Expr.226

The Function class is a subclass of Expr which makes it easier to define mathematical functions227

called with arguments. This includes named functions like sin(x) and log(x) as well as undefined228

functions like f(x). Subclasses of Function should define a class method eval, which returns a229

canonical form of the function application (usually an instance of some other class, i.e. a Number)230

or None, if for given arguments that function should not be automatically evaluated.231

Many SymPy functions perform various evaluations down the expression tree. Classes232

define their behavior in such functions by defining a relevant _eval_* method. For instance,233

an object can indicate to the diff function how to take the derivative of itself by defining the234

_eval_derivative(self, x) method, which may in turn call diff on its args. (Subclasses of235

Function should implement fdiff method instead, it returns the derivative of the function without236

considering the chain rule.) The most common _eval_* methods relate to the assumptions:237

_eval_is_assumption is used to deduce assumption on the object.238

As an example of the notions presented in this section, Listing 1 presents a minimal version239

of the gamma function Γ(x) from SymPy, which evaluates itself on positive integer arguments,240

has the positive and real assumptions defined, can be rewritten in terms of factorial with241

gamma(x).rewrite(factorial), and can be differentiated. self.func is used throughout instead242

of referencing gamma explicitly so that potential subclasses of gamma can reuse the methods.243

3If A and B are Symbols created with commutative=False then SymPy will keep A · B and B · A distinct.
4Some internal classes, such as those used in the polynomial module, do not follow this rule for efficiency

reasons.

5/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

Listing 1. A minimal implementation of sympy.gamma.

from sympy import Integer, Function, floor, factorial, polygamma244

245

class gamma(Function)246

@classmethod247

def eval(cls, arg):248

if isinstance(arg, Integer) and arg.is_positive:249

return factorial(arg - 1)250

251

def _eval_is_positive(self):252

x = self.args[0]253

if x.is_positive:254

return True255

elif x.is_noninteger:256

return floor(x).is_even257

258

def _eval_is_real(self):259

x = self.args[0]260

noninteger means real and not integer261

if x.is_positive or x.is_noninteger:262

return True263

264

def _eval_rewrite_as_factorial(self, z):265

return factorial(z - 1)266

267

def fdiff(self, argindex=1):268

from sympy.core.function import ArgumentIndexError269

if argindex == 1:270

return self.func(self.args[0])*polygamma(0, self.args[0])271

else:272

raise ArgumentIndexError(self, argindex)273

The gamma function implemented in SymPy has many more capabilities than the above listing,274

such as evaluation at rational points and series expansion.275

3 FEATURES276

Although SymPy’s extensive feature set cannot be covered in-depth in this paper, calculus and277

other bedrock areas are discussed in their own subsections. Additionally, Table 1 gives a compact278

listing of all major capabilities present in the SymPy codebase. This grants a sampling from the279

breadth of topics and application domains that SymPy services. Unless stated otherwise, all280

features noted in Table 1 are symbolic in nature. Numeric features are discussed in Section 4.281

Table 1. SymPy Features and Descriptions

Feature Description

Calculus Algorithms for computing derivatives, integrals, and limits.
Category Theory Representation of objects, morphisms, and diagrams. Tools for drawing

diagrams with Xy-pic.
Code Generation Generation of compilable and executable code in a variety of different

programming languages from expressions directly. Target languages
include C, Fortran, Julia, JavaScript, Mathematica, MATLAB and
Octave, Python, and Theano.

Combinatorics &
Group Theory

Permutations, combinations, partitions, subsets, various permutation
groups (such as polyhedral, Rubik, symmetric, and others), Gray
codes [27], and Prufer sequences [4].

6/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

Concrete Math Summation, products, tools for determining whether summation and
product expressions are convergent, absolutely convergent, hypergeo-
metric, and for determining other properties; computation of Gosper’s
normal form [32] for two univariate polynomials.

Cryptography Block and stream ciphers, including shift, Affine, substitution, Vi-
genère’s, Hill’s, bifid, RSA, Kid RSA, linear-feedback shift registers,
and Elgamal encryption.

Differential Geome-
try

Representations of manifolds, metrics, tensor products, and coordinate
systems in Riemannian and pseudo-Riemannian geometries [41].

Geometry Representations of 2D geometrical entities, such as lines and circles.
Enables queries on these entities, such as asking the area of an ellipse,
checking for collinearity of a set of points, or finding the intersection
between objects.

Lie Algebras Representations of Lie algebras and root systems.
Logic Boolean expressions, equivalence testing, satisfiability, and normal

forms.
Matrices Tools for creating matrices of symbols and expressions. Both sparse and

dense representations, as well as symbolic linear algebraic operations
(e.g., inversion and factorization), are supported.

Matrix Expressions Matrices with symbolic dimensions (unspecified entries). Block matri-
ces.

Number Theory Prime number generation, primality testing, integer factorization, con-
tinued fractions, Egyptian fractions, modular arithmetic, quadratic
residues, partitions, binomial and multinomial coefficients, prime num-
ber tools, hexidecimal digits of π, and integer factorization.

Plotting Hooks for visualizing expressions via matplotlib [21] or as text drawings
when lacking a graphical back-end. 2D function plotting, 3D function
plotting, and 2D implicit function plotting are supported.

Polynomials Polynomial algebras over various coefficient domains. Functionality
ranges from simple operations (e.g., polynomial division) to advanced
computations (e.g., Gröbner bases [1] and multivariate factorization
over algebraic number domains).

Printing Functions for printing SymPy expressions in the terminal with ASCII
or Unicode characters and converting SymPy expressions to LATEX and
MathML.

Quantum Mechan-
ics

Quantum states, bra–ket notation, operators, basis sets, representa-
tions, tensor products, inner products, outer products, commutators,
anticommutators, and specific quantum system implementations.

Series Series expansion, sequences, and limits of sequences. This includes
Taylor, Laurent, and Puiseux series as well as special series, such as
Fourier and formal power series.

Sets Representations of empty, finite, and infinite sets. This includes special
sets such as for all natural, integer, and complex numbers. Operations
on sets such as union, intersection, Cartesian product, and building
sets from other sets are supported.

Simplification Functions for manipulating and simplifying expressions. Includes
algorithms for simplifying hypergeometric functions, trigonometric
expressions, rational functions, combinatorial functions, square root
denesting, and common subexpression elimination.

Solvers Functions for symbolically solving equations, systems of equations,
both linear and non-linear, inequalities, ordinary differential equations,
partial differential equations, Diophantine equations, and recurrence
relations.

7/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

Special Functions Implementations of a number of well known special functions, including
Dirac delta, Gamma, Beta, Gauss error functions, Fresnel integrals,
Exponential integrals, Logarithmic integrals, Trigonometric integrals,
Bessel, Hankel, Airy, B-spline, Riemann Zeta, Dirichlet eta, polyloga-
rithm, Lerch transcendent, hypergeometric, elliptic integrals, Mathieu,
Jacobi polynomials, Gegenbauer polynomial, Chebyshev polynomial,
Legendre polynomial, Hermite polynomial, Laguerre polynomial, and
spherical harmonic functions.

Statistics Support for a random variable type as well as the ability to declare
this variable from prebuilt distribution functions such as Normal,
Exponential, Coin, Die, and other custom distributions [36].

Tensors Symbolic manipulation of indexed objects.
Vectors Basic operations on vectors and differential calculus with respect to

3D Cartesian coordinate systems.

3.1 Simplification282

The generic way to simplify an expression is by calling the simplify function. It must be283

emphasized that simplification is not a rigorously defined mathematical operation [8]. The284

simplify function applies several simplification routines along with heuristics to make the output285

expression “simple”.5286

It is often preferable to apply more directed simplification functions. These apply very specific287

rules to the input expression and are typically able to make guarantees about the output. For288

instance, the factor function, given a polynomial with rational coefficients in several variables, is289

guaranteed to produce a factorization into irreducible factors. Table 2 lists common simplification290

functions.291

Table 2. Some SymPy Simplification Functions

expand expand the expression
factor factor a polynomial into irreducibles
collect collect polynomial coefficients
cancel rewrite a rational function as p/q with common factors canceled
apart compute the partial fraction decomposition of a rational function
trigsimp simplify trigonometric expressions [14]
hyperexpand expand hypergeometric functions [34, 35]

3.2 Calculus292

SymPy provides all the basic operations of calculus, such as calculating limits, derivatives,293

integrals, or summations.294

Limits are computed with the limit function, using the Gruntz algorithm [18] for computing295

symbolic limits and heuristics (a description of the Gruntz algorithm may be found in the296

supplement). For example, the following computes lim
x→∞

xsin(1

x
) = 1. Note that SymPy denotes297

∞ as oo.298

>>> limit(x*sin(1/x), x, oo)299

1300

As a more complex example, SymPy computes

lim
x→0

(

2e
1−cos (x)

sin (x) −1

)

sinh (x)

atan2 (x)

= e.

5The measure parameter of the simplify function lets specify the Python function used to determine how

complex an expression is. The default measure function returns the total number of operations in the expression.

8/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

>>> limit((2*E**((1-cos(x))/sin(x))-1)**(sinh(x)/atan(x)**2), x, 0)301

E302

Derivatives are computed with the diff function, which recursively uses the various differen-303

tiation rules.304

>>> diff(sin(x)*exp(x), x)305

exp(x)*sin(x) + exp(x)*cos(x)306

Integrals are calculated with the integrate function. SymPy implements a combination of
the Risch algorithm [6], table lookups, a reimplementation of Manuel Bronstein’s “Poor Man’s
Integrator” [5], and an algorithm for computing integrals based on Meijer G-functions [34, 35].
These allow SymPy to compute a wide variety of indefinite and definite integrals. The Meijer
G-function algorithm and the Risch algorithm are respectively demonstrated below by the
computation of

∫

∞

0

e−st log(t)dt = − log(s)+γ

s

and

∫ −2x2 (log(x)+1)ex
2

+
(

ex
2

+1
)2

x
(

ex2 +1
)2

(log(x)+1)
dx = log(log(x)+1)+

1

ex2 +1
.

>>> s, t = symbols('s t', positive=True)307

>>> integrate(exp(-s*t)*log(t), (t, 0, oo)).simplify()308

-(log(s) + EulerGamma)/s309

>>> integrate((-2*x**2*(log(x) + 1)*exp(x**2) +310

... (exp(x**2) + 1)**2)/(x*(exp(x**2) + 1)**2*(log(x) + 1)), x)311

log(log(x) + 1) + 1/(exp(x**2) + 1)312

Summations are computed with summation using a combination of Gosper’s algorithm [17],313

an algorithm that uses Meijer G-functions [34, 35], and heuristics. Products are computed with314

product function via a suite of heuristics.315

>>> i, n = symbols('i n')316

>>> summation(2**i, (i, 0, n - 1))317

2**n - 1318

>>> summation(i*factorial(i), (i, 1, n))319

n*factorial(n) + factorial(n) - 1320

Integrals, derivatives, summations, products, and limits that cannot be computed return321

unevaluated objects. These can also be created directly if the user chooses.322

>>> integrate(x**x, x)323

Integral(x**x, x)324

>>> Sum(2**i, (i, 0, n - 1))325

Sum(2**i, (i, 0, n - 1))326

3.3 Polynomials327

SymPy implements a suite of algorithms for polynomial manipulation, which ranges from328

relatively simple algorithms for doing arithmetic of polynomials, to advanced methods for329

factoring multivariate polynomials into irreducibles, symbolically determining real and complex330

root isolation intervals, or computing Gröbner bases.331

Polynomial manipulation is useful in its own right. Within SymPy, though, it is mostly332

used indirectly as a tool in other areas of the library. In fact, many mathematical problems333

in symbolic computing are first expressed using entities from the symbolic core, preprocessed,334

and then transformed into a problem in the polynomial algebra, where generic and efficient335

9/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

algorithms are used to solve the problem. The solutions to the original problem are subsequently336

recovered from the results. This is a common scheme in symbolic integration or summation337

algorithms.338

SymPy implements dense and sparse polynomial representations.6 Both are used in the uni-339

variate and multivariate cases. The dense representation is the default for univariate polynomials.340

For multivariate polynomials, the choice of representation is based on the application. The most341

common case for the sparse representation is algorithms for computing Gröbner bases (Buchberger,342

F4, and F5) [7, 11, 12]. This is because different monomial orderings can be expressed easily in343

this representation. However, algorithms for computing multivariate GCDs or factorizations, at344

least those currently implemented in SymPy [29], are better expressed when the representation345

is dense. The dense multivariate representation is specifically a recursively-dense representation,346

where polynomials in K[x0,x1, . . . ,xn] are viewed as a polynomials in K[x0][x1] . . . [xn]. Note347

that despite this, the coefficient domain K, can be a multivariate polynomial domain as well.348

The dense recursive representation in Python gets inefficient as the number of variables increases.349

Some examples for the sympy.polys module can be found in the supplement.350

3.4 Printers351

SymPy has a rich collection of expression printers. By default, an interactive Python session will352

render the str form of an expression, which has been used in all the examples in this paper so353

far. The str form of an expression is valid Python and roughly matches what a user would type354

to enter the expression.355

>>> phi0 = Symbol('phi0')356

>>> str(Integral(sqrt(phi0), phi0))357

'Integral(sqrt(phi0), phi0)'358

Expressions can be printed in 2D with monospace fonts via pprint. Unicode characters are359

used for rendering mathematical symbols such as integral signs, square roots, and parentheses.360

Greek letters and subscripts in symbol names that have Unicode code points associated are also361

rendered automatically.362

>>> pprint(Integral(sqrt(phi0 + 1), phi0))
⌠
⎮ ________
⎮ ╲╱ φ₀ + 1 d(φ₀)
⌡

1

363

Alternately, the use_unicode=False flag can be set, which causes the expression to be printed364

using only ASCII characters.365

>>> pprint(Integral(sqrt(phi0 + 1), phi0), use_unicode=False)366

/367

|368

| __________369

| \/ phi0 + 1 d(phi0)370

|371

/372

The function latex returns a LATEX representation of an expression.373

>>> print(latex(Integral(sqrt(phi0 + 1), phi0)))374

\int \sqrt{\phi_{0} + 1}\, d\phi_{0}375

Users are encouraged to run the init_printing function at the beginning of interactive376

sessions, which automatically enables the best pretty printing supported by their environment.377

In the Jupyter Notebook or Qt Console [30], the LATEX printer is used to render expressions378

6In a dense representation, the coefficients for all terms up to the degree of each variable are stored in memory.

In a sparse representation, only the nonzero coefficients are stored.

10/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

using MathJax or LATEX, if it is installed on the system. The 2D text representation is used379

otherwise.380

Other printers such as MathML are also available. SymPy uses an extensible printer subsystem381

for customizing any given printer, and allows custom objects to define their printing behavior for382

any printer. The code generation functionality of SymPy relies on this subsystem to convert383

expressions into code in various target programming languages.384

3.5 Solvers385

SymPy has a module of equation solvers that can handle ordinary differential equations, recurrence386

relationships, Diophantine equations, and algebraic equations. There is also rudimentary support387

for simple partial differential equations.388

There are two functions for solving algebraic equations in SymPy: solve and solveset.389

solveset has several design changes with respect to the older solve function. This distinction390

is present in order to resolve the usability issues with the previous solve function API while391

maintaining backward compatibility with earlier versions of SymPy. solveset only requires392

essential input information from the user. The function signatures of solve and solveset are393

solve(f, *symbols, **flags)394

solveset(f, symbol, domain=S.Complexes)395

The domain parameter is typically either S.Complexes (the default) or S.Reals; the latter causes396

solveset to only return real solutions.397

An important difference between the two functions is that the output API of solve varies398

with input (sometimes returning a Python list and sometimes a Python dictionary) whereas399

solveset always returns a SymPy set object.400

Both functions implicitly assume that expressions are equal to 0. For instance, solveset(x -401

1, x) solves x−1 = 0 for x.402

solveset is under active development as a planned replacement for solve. There are certain403

features which are implemented in solve that are not yet implemented in solveset, including404

multivariate systems, and some transcendental equations.405

More examples of solveset and solve can be found in the supplement.406

3.6 Matrices407

Besides being an important feature in its own right, computations on matrices with symbolic408

entries are important for many algorithms within SymPy. The following code shows some basic409

usage of the Matrix class.410

>>> A = Matrix(2, 2, [x, x + y, y, x])411

>>> A412

Matrix([413

[x, x + y],414

[y, x]])415

SymPy matrices support common symbolic linear algebra manipulations, including matrix416

addition, multiplication, exponentiation, computing determinants, solving linear systems, and417

computing inverses using LU decomposition, LDL decomposition, Gauss-Jordan elimination,418

Cholesky decomposition, Moore-Penrose pseudoinverse, and adjugate matrix.419

All operations are performed symbolically. For instance, eigenvalues are computed by420

generating the characteristic polynomial using the Berkowitz algorithm and then solving it using421

polynomial routines.422

>>> A.eigenvals()423

{x - sqrt(y*(x + y)): 1, x + sqrt(y*(x + y)): 1}424

Internally these matrices store the elements as lists of lists, making it a dense representation.7425

For storing sparse matrices, the SparseMatrix class can be used. Sparse matrices store their426

elements as a dictionary of keys.427

7Similar to the polynomials module, dense here means that all entries are stored in memory, contrasted with a

sparse representation where only nonzero entries are stored.

11/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

SymPy also supports matrices with symbolic dimension values. MatrixSymbol represents428

a matrix with dimensions m × n, where m and n can be symbolic. Matrix addition and429

multiplication, scalar operations, matrix inverse, and transpose are stored symbolically as matrix430

expressions.431

Block matrices are also implemented in SymPy. BlockMatrix elements can be any matrix ex-432

pression, including explicit matrices, matrix symbols, and other block matrices. All functionalities433

of matrix expressions are also present in BlockMatrix.434

When symbolic matrices are combined with the assumptions module for logical inference,435

they provide powerful reasoning over invertibility, semi-definiteness, orthogonality, etc., which436

are valuable in the construction of numerical linear algebra systems.437

More examples for Matrix and BlockMatrix may be found in the supplement.438

4 NUMERICS439

Floating point numbers in SymPy are implemented by the Float class, which represents an440

arbitrary-precision binary floating-point number by storing its value and precision (in bits).441

This representation is distinct from the Python built-in float type, which is a wrapper around442

machine double types and uses a fixed precision (53-bit).443

Because Python float literals are limited in precision, strings should be used to input precise444

decimal values:445

>>> Float(1.1)446

1.10000000000000447

>>> Float(1.1, 30) # precision equivalent to 30 digits448

1.10000000000000008881784197001449

>>> Float("1.1", 30)450

1.10000000000000000000000000000451

The evalf method converts a constant symbolic expression to a Float with the specified precision,452

here 25 digits:453

>>> (pi + 1).evalf(25)454

4.141592653589793238462643455

Float numbers do not track their accuracy, and should be used with caution within symbolic456

expressions since familiar dangers of floating-point arithmetic apply [16]. A notorious case is457

that of catastrophic cancellation:458

>>> cos(exp(-100)).evalf(25) - 1459

0460

Applying the evalf method to the whole expression solves this problem. Internally, evalf461

estimates the number of accurate bits of the floating-point approximation for each sub-expression,462

and adaptively increases the working precision until the estimated accuracy of the final result463

matches the sought number of decimal digits:464

>>> (cos(exp(-100)) - 1).evalf(25)465

-6.919482633683687653243407e-88466

The evalf method works with complex numbers and supports more complicated expressions, such467

as special functions, infinite series, and integrals. The internal error tracking does not provide468

rigorous error bounds (in the sense of interval arithmetic) and cannot be used to accurately track469

uncertainty in measurement data; the sole purpose is to mitigate loss of accuracy that typically470

occurs when converting symbolic expressions to numerical values.471

4.1 The mpmath library472

The implementation of arbitrary-precision floating-point arithmetic is supplied by the mpmath473

library. Originally, it was developed as a SymPy module but has subsequently been moved to474

a standalone pure-Python package. The basic datatypes in mpmath are mpf and mpc, which475

12/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

respectively act as multiprecision substitutes for Python’s float and complex. The floating-point476

precision is controlled by a global context:8477

>>> import mpmath478

>>> mpmath.mp.dps = 30 # 30 digits of precision479

>>> mpmath.mpf("0.1") + mpmath.exp(-50)480

mpf('0.100000000000000000000192874984794')481

>>> print(_) # pretty-printed482

0.100000000000000000000192874985483

For pure numerical computing, it is convenient to use mpmath directly with from mpmath484

import *. Nevertheless, it is best to avoid such an import statement when using SymPy485

simultaneously, since the names of numerical functions such as exp will collide the symbolic486

counterparts in SymPy.487

Like SymPy, mpmath is a pure Python library. Internally, mpmath represents a floating-point488

number (−1)sx ·2y by a tuple (s,x,y,b) where x and y are arbitrary-size Python integers and489

the redundant integer b stores the bit length of x for quick access. If GMPY [19] is installed,490

mpmath automatically uses the gmpy.mpz type for x, and GMPY methods for rounding-related491

operations, improving performance.492

The mpmath library supports special functions, root-finding, linear algebra, polynomial493

approximation, and numerical computation of limits, derivatives, integrals, infinite series, and494

ODE solutions. All features work in arbitrary precision and use algorithms that allow computing495

hundreds of digits rapidly (except in degenerate cases).496

The double exponential (tanh-sinh) quadrature is used for numerical integration by default.497

For smooth integrands, this algorithm usually converges extremely rapidly, even when the498

integration interval is infinite or singularities are present at the endpoints [43, 2]. However, for499

good performance, singularities in the middle of the interval must be specified by the user. To500

evaluate slowly converging limits and infinite series, mpmath automatically tries Richardson501

extrapolation and the Shanks transformation (Euler-Maclaurin summation can also be used) [3].502

A function to evaluate oscillatory integrals by means of convergence acceleration is also available.503

A wide array of higher mathematical functions are implemented with full support for complex504

values of all parameters and arguments, including complete and incomplete gamma functions,505

Bessel functions, orthogonal polynomials, elliptic functions and integrals, zeta and polylogarithm506

functions, the generalized hypergeometric function, and the Meijer G-function. The Meijer507

G-function instance G3,0

1,3

(

0; 1

2
,−1,−3

2
|x

)

is a good test case [44]; past versions of both Maple and508

Mathematica produced incorrect numerical values for large x > 0. Here, mpmath automatically509

removes an internal singularity and compensates for cancellations (amounting to 656 bits of510

precision when x = 10000), giving correct values:511

>>> mpmath.mp.dps = 15512

>>> mpmath.meijerg([[],[0]],[[-0.5,-1,-1.5],[]],10000)513

mpf('2.4392576907199564e-94')514

Equivalently, with SymPy’s interface this function can be evaluated as:515

>>> meijerg([[],[0]],[[-S(1)/2,-1,-S(3)/2],[]],10000).evalf()516

2.43925769071996e-94517

Symbolic integration and summation often produces hypergeometric and Meijer G-function518

closed forms (see Subsection 3.2); numerical evaluation of such special functions is a useful519

complement to direct numerical integration and summation.520

5 DOMAIN SPECIFIC SUBMODULES521

SymPy includes several packages that allow users to solve domain specific problems. For example,522

a comprehensive physics package is included that is useful for solving problems in mechanics,523

optics, and quantum mechanics along with support for manipulating physical quantities with524

units.525

8All examples in this section use mpmath version 0.19.

13/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

5.1 Classical Mechanics526

One of the core domains that SymPy suports is the physics of classical mechanics. This is in527

turn separated into two distinct components: vector algebra symbolics and mechanics.528

5.1.1 Vector Algebra529

The sympy.physics.vector package provides reference frame-, time-, and space-aware vector530

and dyadic objects that allow for three-dimensional operations such as addition, subtraction,531

scalar multiplication, inner and outer products, and cross products. Both of these objects can532

be written in very compact notation that make it easy to express the vectors and dyadics in533

terms of multiple reference frames with arbitrarily defined relative orientations. The vectors534

are used to specify the positions, velocities, and accelerations of points; orientations, angular535

velocities, and angular accelerations of reference frames; and forces and torques. The dyadics are536

essentially reference frame-aware 3 ×3 tensors [42]. The vector and dyadic objects can be used537

for any one-, two-, or three-dimensional vector algebra, and they provide a strong framework for538

building physics and engineering tools.539

The following Python code demonstrates how a vector is created using the orthogonal unit540

vectors of three reference frames that are oriented with respect to each other, and the result541

of expressing the vector in the A frame. The B frame is oriented with respect to the A frame542

using Z-X-Z Euler Angles of magnitude π, π
2

, and π
3

rad, respectively, whereas the C frame is543

oriented with respect to the B frame through a simple rotation about the B frame’s X unit544

vector through π
2

rad.545

>>> from sympy.physics.vector import ReferenceFrame546

>>> A = ReferenceFrame('A')547

>>> B = ReferenceFrame('B')548

>>> C = ReferenceFrame('C')549

>>> B.orient(A, 'body', (pi, pi/3, pi/4), 'zxz')550

>>> C.orient(B, 'axis', (pi/2, B.x))551

>>> v = 1*A.x + 2*B.z + 3*C.y552

>>> v553

A.x + 2*B.z + 3*C.y554

>>> v.express(A)555

A.x + 5*sqrt(3)/2*A.y + 5/2*A.z556

5.1.2 Mechanics557

The sympy.physics.mechanics package utilizes the sympy.physics.vector package to populate558

time-aware particle and rigid-body objects to fully describe the kinematics and kinetics of a559

rigid multi-body system. These objects store all of the information needed to derive the ordinary560

differential or differential algebraic equations that govern the motion of the system, i.e., the561

equations of motion. These equations of motion abide by Newton’s laws of motion and can handle562

arbitrary kinematic constraints or complex loads. The package offers two automated methods for563

formulating the equations of motion based on Lagrangian Dynamics [23] and Kane’s Method [22].564

Lastly, there are automated linearization routines for constrained dynamical systems [31].565

5.2 Quantum Mechanics566

The sympy.physics.quantum package has extensive capabilities for performing symbolic quantum567

mechanics, using Python objects to represent the different mathematical objects relevant in568

quantum theory [38]: states (bras and kets), operators (unitary, Hermitian, etc.), and basis sets,569

as well as operations on these objects such as representations, tensor products, inner products,570

outer products, commutators, and anticommutators. The base objects are designed in the most571

general way possible to enable any particular quantum system to be implemented by subclassing572

the base operators and defining the relevant class methods to provide system-specific logic.573

Symbolic quantum operators and states may be defined, and one can perform a full range of574

operations with them.575

>>> from sympy.physics.quantum import Commutator, Dagger, Operator576

>>> from sympy.physics.quantum import Ket, qapply577

14/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

>>> A = Operator('A')578

>>> B = Operator('B')579

>>> C = Operator('C')580

>>> D = Operator('D')581

>>> a = Ket('a')582

>>> comm = Commutator(A, B)583

>>> comm584

[A,B]585

>>> qapply(Dagger(comm*a)).doit()586

-<a|*(Dagger(A)*Dagger(B) - Dagger(B)*Dagger(A))587

Commutators can be expanded using common commutator identities:588

>>> Commutator(C+B, A*D).expand(commutator=True)589

-[A,B]*D - [A,C]*D + A*[B,D] + A*[C,D]590

On top of this set of base objects, a number of specific quantum systems have been implemented591

in a fully symbolic framework. These include:592

• Many of the exactly solvable quantum systems, including simple harmonic oscillator states593

and raising/lowering operators, infinite square well states, and 3D position and momentum594

operators and states.595

• Second quantized formalism of non-relativistic many-body quantum mechanics [13].596

• Quantum angular momentum [46]. Spin operators and their eigenstates can be represented597

in any basis and for any quantum numbers. A rotation operator representing the Wigner-D598

matrix, which may be defined symbolically or numerically, is also implemented to rotate599

spin eigenstates. Functionality for coupling and uncoupling of arbitrary spin eigenstates is600

provided, including symbolic representations of Clebsch-Gordon coefficients and Wigner601

symbols.602

• Quantum information and computing [26]. Multidimensional qubit states, and a full603

set of one- and two-qubit gates are provided and can be represented symbolically or as604

matrices/vectors. With these building blocks, it is possible to implement a number of basic605

quantum algorithms including the quantum Fourier transform, quantum error correction,606

quantum teleportation, Grover’s algorithm, dense coding, etc. In addition, any quantum607

circuit may be plotted using the circuit_plot function (Figure 1).608

Here are a few short examples of the quantum information and computing capabilities in609

sympy.physics.quantum. Start with a simple four-qubit state and flip the second qubit from the610

right using a Pauli-X gate:611

>>> from sympy.physics.quantum.qubit import Qubit612

>>> from sympy.physics.quantum.gate import XGate613

>>> q = Qubit('0101')614

>>> q615

|0101>616

>>> X = XGate(1)617

>>> qapply(X*q)618

|0111>619

Qubit states can also be used in adjoint operations, tensor products, inner/outer products:620

>>> Dagger(q)621

<0101|622

>>> ip = Dagger(q)*q623

>>> ip624

<0101|0101>625

>>> ip.doit()626

1627

15/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

Quantum gates (unitary operators) can be applied to transform these states and then classical628

measurements can be performed on the results:629

>>> from sympy.physics.quantum.qubit import measure_all630

>>> from sympy.physics.quantum.gate import H, X, Y, Z631

>>> c = H(0)*H(1)*Qubit('00')632

>>> c633

H(0)*H(1)*|00>634

>>> q = qapply(c)635

>>> measure_all(q)636

[(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)]637

H S T

H S

H

Figure 1. The circuit diagram for a three-qubit quantum Fourier transform generated by
SymPy.

Lastly, the following example demonstrates creating a three-qubit quantum Fourier transform,638

decomposing it into one- and two-qubit gates, and then generating a circuit plot for the sequence639

of gates (see Figure 1).640

>>> from sympy.physics.quantum.qft import QFT641

>>> from sympy.physics.quantum.circuitplot import circuit_plot642

>>> fourier = QFT(0,3).decompose()643

>>> fourier644

SWAP(0,2)*H(0)*C((0),S(1))*H(1)*C((0),T(2))*C((1),S(2))*H(2)645

>>> c = circuit_plot(fourier, nqubits=3)646

6 CONCLUSION AND FUTURE WORK647

SymPy is a robust computer algebra system that provides a wide spectrum of features both in648

traditional computer algebra and in a plethora of scientific disciplines. This allows SymPy to be649

used in a first-class way with other Python projects, including the scientific Python stack. Unlike650

many other CASs, SymPy is designed to be used in an extensible way: both as an end-user651

application and as a library.652

SymPy expressions are immutable trees of Python objects. SymPy uses Python both as the653

internal language and the user language. This permits users to access to the same methods that654

the library implements in order to extend it for their needs. Additionally, SymPy has a powerful655

assumptions system for declaring and deducing mathematical properties of expressions.656

SymPy has submodules for many areas of mathematics. This includes functions for simplify-657

ing expressions, performing common calculus operations, pretty printing expressions, solving658

equations, and representing symbolic matrices. Other included areas are discrete math, concrete659

math, plotting, geometry, statistics, polynomials, sets, series, vectors, combinatorics, group660

theory, code generation, tensors, Lie algebras, cryptography, and special functions. Additionally,661

SymPy contains submodules targeting certain specific domains, such as classical mechanics and662

16/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

quantum mechanics. This breadth of domains has been engendered by a strong and vibrant user663

community. Anecdotally, these users likely chose SymPy because of its ease of access.664

Some of the planned future work for SymPy includes work on improving code generation,665

improvements to the speed of SymPy (one area of work in this direction is SymEngine, a C++666

symbolic manipulation library that is planned to be usable as a alternative core for SymPy),667

improving the assumptions system, and improving the solvers module.668

7 ACKNOWLEDGEMENTS669

The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the670

National Nuclear Security Administration of the U.S. Department of Energy under Contract No.671

DE-AC52-06NA25396.672

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin673

Company, for the United States Department of Energy’s National Nuclear Security Administration674

under Contract DE-AC04-94AL85000.675

Google Summer of Code is an international annual program in which Google awards stipends676

to all students who successfully complete a requested free and open-source software coding677

project during the summer.678

The author of this paper Francesco Bonazzi thanks the Deutsche Forschungsgemeinschaft679

(DFG) for its financial support via the International Research Training Group 1524 "Self-680

Assembled Soft Matter Nano-Structures at Interfaces."681

REFERENCES682

[1] Adams, W. W. and Loustaunau, P. (1994). An introduction to Gröbner bases. Number 3.683

American Mathematical Society.684

[2] Bailey, D. H., Jeyabalan, K., and Li, X. S. (2005). A comparison of three high-precision685

quadrature schemes. Experimental Mathematics, 14(3):317–329.686

[3] Bender, C. M. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists and687

Engineers. Springer, 1st edition.688

[4] Biggs, N., Lloyd, E. K., and Wilson, R. J. (1976). Graph Theory, 1736-1936. Oxford689

University Press.690

[5] Bronstein, M. (2005a). pmint—The Poor Man’s Integrator.691

[6] Bronstein, M. (2005b). Symbolic Integration I: Transcendental Functions. Springer–Verlag,692

New York, NY, USA.693

[7] Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basis Elemente des Restk-694

lassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck,695

Innsbruck, Austria.696

[8] Carette, J. (2004). Understanding Expression Simplification. In ISSAC ’04: Proceedings of697

the 2004 International Symposium on Symbolic and Algebraic Computation, pages 72–79, New698

York, NY, USA. ACM Press.699

[9] Cervone, D. (2012). Mathjax: a platform for mathematics on the web. Notices of the AMS,700

59(2):312–316.701

[10] Cimrman, R. (2014). SfePy - write your own FE application. In de Buyl, P. and Varoquaux,702

N., editors, Proceedings of the 6th European Conference on Python in Science (EuroSciPy703

2013), pages 65–70. http://arxiv.org/abs/1404.6391.704

[11] Faugère, J. C. (1999). A New Efficient Algorithm for Computing Gröbner Bases (F4).705

Journal of Pure and Applied Algebra, 139(1-3):61–88.706

[12] Faugère, J. C. (2002). A New Efficient Algorithm for Computing Gröbner Bases Without707

Reduction To Zero (F5). In ISSAC ’02: Proceedings of the 2002 International Symposium on708

Symbolic and Algebraic Computation, pages 75–83, New York, NY, USA. ACM Press.709

[13] Fetter, A. and Walecka, J. (2003). Quantum Theory of Many-Particle Systems. Dover710

Publications.711

[14] Fu, H., Zhong, X., and Zeng, Z. (2006). Automated and Readable Simplification of712

Trigonometric Expressions. Mathematical and Computer Modelling, 55(11-12):1169–1177.713

17/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

https://github.com/symengine/symengine

[15] Gede, G., Peterson, D. L., Nanjangud, A. S., Moore, J. K., and Hubbard, M. (2013).714

Constrained multibody dynamics with Python: From symbolic equation generation to publica-715

tion. In ASME 2013 International Design Engineering Technical Conferences and Computers716

and Information in Engineering Conference, pages V07BT10A051–V07BT10A051. American717

Society of Mechanical Engineers.718

[16] Goldberg, D. (1991). What every computer scientist should know about floating-point719

arithmetic. ACM Computing Surveys (CSUR), 23(1):5–48.720

[17] Gosper, R. W. (1978). Decision procedure for indefinite hypergeometric summation. Pro-721

ceedings of the National Academy of Sciences, 75(1):40–42.722

[18] Gruntz, D. (1996). On Computing Limits in a Symbolic Manipulation System. PhD thesis,723

Swiss Federal Institute of Technology, Zürich, Switzerland.724

[19] Horsen, C. V. (2015). GMPY. https://pypi.python.org/pypi/gmpy2.725

[20] Hudak, P. (1998). Domain specific languages. In Handbook of Programming Languages, Vol.726

III: Little Languages and Tools, chapter 3, pages 39–60. MacMillan, Indianapolis.727

[21] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing In Science &728

Engineering, 9(3):90–95.729

[22] Kane, T. R. and Levinson, D. A. (1985). Dynamics, Theory and Applications. McGraw Hill.730

[23] Lagrange, J. (1811). Mécanique analytique. Number v. 1 in Mécanique analytique. Ve731

Courcier.732

[24] Lang, S. (1966). Introduction to transcendental numbers. Reading, Mass.733

[25] Lutz, M. (2013). Learning Python. O’Reilly Media, Inc.734

[26] Nielsen, M. and Chuang, I. (2011). Quantum Computation and Quantum Information.735

Cambridge University Press.736

[27] Nijenhuis, A. and Wilf, H. S. (1978). Combinatorial Algorithms: For Computers and737

Calculators. Academic Press, New York, NY, USA, second edition.738

[28] Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering,739

9(3):10–20.740

[29] Paprocki, M. (2010). Design and implementation issues of a computer algebra system in741

an interpreted, dynamically typed programming language. Master’s thesis, University of742

Technology of Wrocław, Poland.743

[30] Pérez, F. and Granger, B. E. (2007). IPython: a system for interactive scientific computing.744

Computing in Science & Engineering, 9(3):21–29.745

[31] Peterson, D. L., Gede, G., and Hubbard, M. (2014). Symbolic linearization of equations of746

motion of constrained multibody systems. Multibody System Dynamics, 33(2):143–161.747

[32] Petkovšek, M., Wilf, H. S., and Zeilberger, D. (1996). A= BAK peters. Wellesley, MA.748

[33] Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy,749

12(3):23–49.750

[34] Roach, K. (1996). Hypergeometric function representations. In ISSAC ’96: Proceedings of751

the 1996 International Symposium on Symbolic and Algebraic Computation, pages 301–308,752

New York, NY, USA. ACM Press.753

[35] Roach, K. (1997). Meijer G function representations. In ISSAC ’97: Proceedings of the754

1997 international symposium on Symbolic and algebraic computation, pages 205–211, New755

York, NY, USA. ACM.756

[36] Rocklin, M. and Terrel, A. R. (2012). Symbolic statistics with SymPy. Computing in Science757

and Engineering, 14.758

[37] Rosen, L. (2005). Open source licensing, volume 692. Prentice Hall.759

[38] Sakurai, J. and Napolitano, J. (2010). Modern Quantum Mechanics. Addison-Wesley.760

[39] Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging761

Discipline. Prentice Hall. Prentice Hall Ordering Information.762

[40] Stein, W. and Joyner, D. (2005). SAGE: System for Algebra and Geometry Experimentation.763

Communications in Computer Algebra, 39(2).764

[41] Sussman, G. J. and Wisdom, J. (2013). Functional Differential Geometry. Massachusetts765

Institute of Technology Press.766

[42] Tai, C.-T. (1997). Generalized vector and dyadic analysis: applied mathematics in field767

theory, volume 9. Wiley-IEEE Press.768

18/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

https://pypi.python.org/pypi/gmpy2

[43] Takahasi, H. and Mori, M. (1974). Double exponential formulas for numerical integration.769

Publications of the Research Institute for Mathematical Sciences, 9(3):721–741.770

[44] Toth, V. T. (2007). Maple and Meijer’s G-function: a numerical instability and a cure.771

http://www.vttoth.com/CMS/index.php/technical-notes/67.772

[45] Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., and Norman,773

M. L. (2011). yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. The774

Astrophysical Journal Supplement Series, 192:9–+.775

[46] Zare, R. (1991). Angular Momentum: Understanding Spatial Aspects in Chemistry and776

Physics. Wiley.777

19/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2083v3 | CC BY 4.0 Open Access | rec: 15 Jun 2016, publ: 16 Jun 2016

http://www.vttoth.com/CMS/index.php/technical-notes/67

