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Abstract. SymPy is an open source computer algebra system written in pure Python. It9
is built with a focus on extensibility and ease of use, through both interactive and programmatic10
applications. These characteristics have led SymPy to become the standard symbolic library for11
the scientific Python ecosystem. This paper presents the architecture of SymPy, a description of its12
features, and a discussion of select domain specific submodules.13

1. Introduction. SymPy is a full featured computer algebra system (CAS) writ-14
ten in the Python programming language [24]. It is free and open source software,15
being licensed under the 3-clause BSD license [36]. The SymPy project was started16
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by Ondřej Čertík in 2005, and it has since grown to over 500 contributors. Currently,17
SymPy is developed on GitHub using a bazaar community model [32]. The accessibil-18
ity of the codebase and the open community model allow SymPy to rapidly respond19
to the needs of users and developers.20

Python is a dynamically typed programming language that has a focus on ease21
of use and readability. Due in part to this focus, it has become a popular language22
for scientific computing and data science, with a broad ecosystem of libraries [27].23
SymPy is itself used by many libraries and tools to support research within a variety of24
domains, such as Sage [39] (pure mathematics), yt [44] (astronomy and astrophysics),25
PyDy [15] (multibody dynamics), and SfePy [10] (finite elements).26

Unlike many CASs, SymPy does not invent its own programming language.27
Python itself is used both for the internal implementation and end user interaction.28
The exclusive usage of a single programming language makes it easier for people al-29
ready familiar with that language to use or develop SymPy. Simultaneously, it enables30
developers to focus on mathematics, rather than language design.31

SymPy is designed with a strong focus on usability as a library. Extensibility is32
important in its application program interface (API) design. Thus, SymPy makes no33
attempt to extend the Python language itself. The goal is for users of SymPy to be34
able to include SymPy alongside other Python libraries in their workflow, whether35
that be in an interactive environment or as a programmatic part in a larger system.36

As a library, SymPy does not have a built-in graphical user interface (GUI). How-37
ever, SymPy exposes a rich interactive display system, including registering printers38
with Jupyter [29] frontends, including the Notebook and Qt Console, which will render39
SymPy expressions using MathJax [9] or LATEX.40

The remainder of this paper discusses key components of the SymPy software.41
Section 2 discusses the architecture of SymPy. Section 3 enumerates the features of42
SymPy and takes a closer look at some of the important ones. The section 4 looks at43
the numerical features of SymPy and its dependency library, mpmath. Section 5 looks44
at the domain specific physics submodules for performing symbolic and numerical45
calculations in classical mechanics and quantum mechanics. Conclusions and future46
directions for SymPy are given in section 6.47

2. Architecture. Software architecture is of central importance in any large48
software project because it establishes predictable patterns of usage and develop-49
ment [38]. This section describes the essential structural components of SymPy, pro-50
vides justifications for the design decisions that have been made, and gives example51
user-facing code as appropriate.52

2.1. Basic Usage. The following statement imports all SymPy functions into53
the global Python namespace. From here on, all examples in this paper assume that54
this statement has been executed.55
>>> from sympy import *56

Symbolic variables, called symbols, must be defined and assigned to Python vari-57
ables before they can be used. This is typically done through the symbols function,58
which may create multiple symbols in a single function call. For instance,59
>>> x, y, z = symbols('x y z')60
creates three symbols representing variables named x, y, and z. In this particular in-61
stance, these symbols are all assigned to Python variables of the same name. However,62
the user is free to assign them to different Python variables, while representing the63
same symbol, such as a, b, c = symbols('x y z'). In order to minimize potential64
confusion, though, all examples in this paper will assume that the symbols x, y, and65
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z have been assigned to Python variables identical to their symbolic names.66
Expressions are created from symbols using Python’s mathematical syntax. Note67

that in Python, exponentiation is represented by the ** binary infix operator. For68
instance, the following Python code creates the expression (x2 − 2x+ 3)/y.69
>>> (x**2 - 2*x + 3)/y70
(x**2 - 2*x + 3)/y71

Importantly, SymPy expressions are immutable. This simplifies the design of72
SymPy by allowing expression interning. It also enables expressions to be hashed and73
stored in Python dictionaries, thereby permitting features such as caching.74

2.2. The Core. A computer algebra system (CAS) represents mathematical75
expressions as data structures. For example, the mathematical expression x + y is76
represented as a tree with three nodes, +, x, and y, where x and y are ordered children77
of +. As users manipulate mathematical expressions with traditional mathematical78
syntax, the CAS manipulates the underlying data structures. Automated optimiza-79
tions and computations such as integration, simplification, etc. are all functions that80
consume and produce expression trees.81

In SymPy every symbolic expression is an instance of a Python Basic class, a82
superclass of all SymPy types providing common methods to all SymPy tree-elements,83
such as traversals. The children of a node in the tree are held in the args attribute.84
A terminal or leaf node in the expression tree has empty args.85

For example, consider the expression xy + 2:86
>>> expr = x*y + 287
By order of operations, the parent of the expression tree for expr is an addition, so it88
is of type Add. The child nodes of expr are 2 and x*y.89
>>> type(expr)90
<class 'sympy.core.add.Add'>91
>>> expr.args92
(2, x*y)93

Descending further down into the expression tree yields the full expression. For94
example, the next child node (given by expr.args[0]) is 2. Its class is Integer, and95
it has an empty args tuple, indicating that it is a leaf node.96
>>> expr.args[0]97
298
>>> type(expr.args[0])99
<class 'sympy.core.numbers.Integer'>100
>>> expr.args[0].args101
()102

A useful way to view an expression tree is using the srepr function, which returns103
a string representation of an expression as valid Python code with all the nested class104
constructor calls to create the given expression.105
>>> srepr(expr)106
"Add(Mul(Symbol('x'), Symbol('y')), Integer(2))"107

Every SymPy expression satisfies a key identity invariant:108
expr.func(*expr.args) == expr109
This means that expressions are rebuildable from their args.1 Note that in SymPy110
the == operator represents exact structural equality, not mathematical equality. This111
allows testing if any two expressions are equal to one another as expression trees. For112

1expr.func is used instead of type(expr) to allow the function of an expression to be distinct from
its actual Python class. In most cases the two are the same.
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example, even though (x+ 1)2 and x2 +2x+1 are equal mathematically, SymPy gives113
>>> (x + 1)**2 == x**2 + 2*x + 1114
False115
because they are different as expression trees (the former is a Pow object and the latter116
is an Add object).117

Python allows classes to override mathematical operators. The Python interpreter118
translates the above x*y + 2 to, roughly, (x.__mul__(y)).__add__(2). Both x and y,119
returned from the symbols function, are Symbol instances. The 2 in the expression is120
processed by Python as a literal, and is stored as Python’s built in int type. When 2 is121
passed to the __add__ method of Symbol, it is converted to the SymPy type Integer(2)122
before being stored in the resulting expression tree. In this way, SymPy expressions123
can be built in the natural way using Python operators and numeric literals.124

2.3. Assumptions. SymPy performs logical inference through its assumptions125
system. The assumptions system allows users to specify that symbols have cer-126
tain common mathematical properties, such as being positive, imaginary, or integral.127
SymPy is careful to never perform simplifications on an expression unless the assump-128
tions allow them. For instance, the identity

√
t2 = t holds if t is nonnegative (t ≥ 0).129

If t is real, the identity
√
t2 = |t| holds. However, for general complex t, no such130

identity holds.131
By default, SymPy performs all calculations assuming that symbols are com-132

plex valued. This assumption makes it easier to treat mathematical problems in full133
generality.134
>>> t = Symbol('t')135
>>> sqrt(t**2)136
sqrt(t**2)137

By assuming the most general case, that symbols are complex by default, SymPy138
avoids performing mathematically invalid operations. However, in many cases users139
will wish to simplify expressions containing terms like

√
t2.140

Assumptions are set on Symbol objects when they are created. For instance141
Symbol('t', positive=True) will create a symbol named t that is assumed to be142
positive.143
>>> t = Symbol('t', positive=True)144
>>> sqrt(t**2)145
t146

Some of the common assumptions that SymPy allows are positive, negative,147
real, nonpositive, nonnegative, real, integer, and commutative.2 Assumptions on148
any object can be checked with the is_assumption attributes, like t.is_positive.149

Assumptions are only needed to restrict a domain so that certain simplifications150
can be performed. They are not required to make the domain match the input of a151
function. For instance, one can create the object

∑m
n=0 f(n) as Sum(f(n), (n, 0, m))152

without setting integer=True when creating the Symbol object n.153
The assumptions system additionally has deductive capabilities. The assump-154

tions use a three-valued logic using the Python built in objects True, False, and155
None. None represents the “unknown” case. This could mean that given assumptions156
do not unambiguously specify the truth of an attribute. For instance, Symbol('x',157
real=True).is_positive will give None because a real symbol might be positive or neg-158
ative. The None could also mean that not enough is known or implemented to compute159

2If A and B are Symbols created with commutative=False then SymPy will keep A · B and B · A
distinct.
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the given fact. For instance, (pi + E).is_irrational gives None, because determining160
whether π + e is rational or irrational is an open problem in mathematics [23].161

Basic implications between the facts are used to deduce assumptions. For in-162
stance, the assumptions system knows that being an integer implies being rational,163
so Symbol('x', integer=True).is_rational returns True. Furthermore, expressions164
compute the assumptions on themselves based on the assumptions of their argu-165
ments. For instance, if x and y are both created with positive=True, then (x +166
y).is_positive will be True whereas (x - y).is_positive will be None.167

2.4. Extensibility. While the core of SymPy is relatively small, it has been168
extended to a wide variety of domains by a broad range of contributors. This is due in169
part because the same language, Python, is used both for the internal implementation170
and the external usage by users. All of the extensibility capabilities available to users171
are also utilized by SymPy itself. This eases the transition pathway from SymPy user172
to SymPy developer.173

The typical way to create a custom SymPy object is to subclass an existing SymPy174
class, usually Basic, Expr, or Function. All SymPy classes used for expression trees3175
should be subclasses of the base class Basic, which defines some basic methods for176
symbolic expression trees. Expr is the subclass for mathematical expressions that177
can be added and multiplied together. Instances of Expr typically represent complex178
numbers, but may also include other “rings” like matrix expressions. Not all SymPy179
classes are subclasses of Expr. For instance, logic expressions such as And(x, y) are180
subclasses of Basic but not of Expr.181

The Function class is a subclass of Expr which makes it easier to define mathe-182
matical functions called with arguments. This includes named functions like sin(x)183
and log(x) as well as undefined functions like f(x). Subclasses of Function should184
define a class method eval, which returns values for which the function should be185
automatically evaluated, and None for arguments that should not be automatically186
evaluated.187

Many SymPy functions perform various evaluations down the expression tree.188
Classes define their behavior in such functions by defining a relevant _eval_* method.189
For instance, an object can indicate to the diff function how to take the derivative190
of itself by defining the _eval_derivative(self, x) method, which may in turn call191
diff on its args. The most common _eval_* methods relate to the assumptions.192
_eval_is_assumption defines the assumptions for assumption.193

As an example of the notions presented in this section, Listing 1 presents a mini-194
mal version of the gamma function Γ(x) from SymPy, which evaluates itself on positive195
integer arguments, has the positive and real assumptions defined, can be rewritten196
in terms of factorial with gamma(x).rewrite(factorial), and can be differentiated.197
fdiff is a convenience method for subclasses of Function. fdiff returns the deriva-198
tive of the function without considering the chain rule. self.func is used throughout199
instead of referencing gamma explicitly so that potential subclasses of gamma can reuse200
the methods.201

Listing 1: A minimal implementation of sympy.gamma.
from sympy import Integer, Function, floor, factorial, polygamma202

203
class gamma(Function)204

3Some internal classes, such as those used in the polynomial module, do not follow this rule for
efficiency reasons.
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@classmethod205
def eval(cls, arg):206

if isinstance(arg, Integer) and arg.is_positive:207
return factorial(arg - 1)208

209
def _eval_is_positive(self):210

x = self.args[0]211
if x.is_positive:212

return True213
elif x.is_noninteger:214

return floor(x).is_even215
216

def _eval_is_real(self):217
x = self.args[0]218
# noninteger means real and not integer219
if x.is_positive or x.is_noninteger:220

return True221
222

def _eval_rewrite_as_factorial(self, z):223
return factorial(z - 1)224

225
def fdiff(self, argindex=1):226

from sympy.core.function import ArgumentIndexError227
if argindex == 1:228

return self.func(self.args[0])*polygamma(0, self.args[0])229
else:230

raise ArgumentIndexError(self, argindex)231

The gamma function implemented in SymPy has many more capabilities than the232
above listing, such as evaluation at rational points and series expansion.233

3. Features. Although SymPy’s extensive feature set cannot be covered in-234
depth in this paper, calculus and other bedrock areas are discussed in their own235
subsections. Additionally, Table 1 gives a compact listing of all major capabilities236
present in the SymPy codebase. This grants a sampling from the breadth of topics237
and application domains that SymPy services. Unless stated otherwise, all features238
noted in Table 1 are symbolic in nature. Numeric features are discussed in Section 4.239

Table 1: SymPy Features and Descriptions

Feature Description
Calculus Algorithms for computing derivatives, integrals, and limits.
Category Theory Representation of objects, morphisms, and diagrams. Tools

for drawing diagrams with Xy-pic.
Code Generation Generation of compilable and executable code in a variety

of different programming languages from expressions directly.
Target languages include C, Fortran, Julia, JavaScript, Math-
ematica, MATLAB and Octave, Python, and Theano.
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Combinatorics &
Group Theory

Permutations, combinations, partitions, subsets, various per-
mutation groups (such as polyhedral, Rubik, symmetric, and
others), Gray codes [26], and Prufer sequences [4].

Concrete Math Summation, products, tools for determining whether summa-
tion and product expressions are convergent, absolutely con-
vergent, hypergeometric, and for determining other properties;
computation of Gosper’s normal form [31] for two univariate
polynomials.

Cryptography Block and stream ciphers, including shift, Affine, substitution,
Vigenère’s, Hill’s, bifid, RSA, Kid RSA, linear-feedback shift
registers, and Elgamal encryption.

Differential Ge-
ometry

Representations of manifolds, metrics, tensor products, and
coordinate systems in Riemannian and pseudo-Riemannian ge-
ometries [40].

Geometry Representations of 2D geometrical entities, such as lines and
circles. Enables queries on these entities, such as asking the
area of an ellipse, checking for collinearity of a set of points,
or finding the intersection between objects.

Lie Algebras Representations of Lie algebras and root systems.
Logic Boolean expressions, equivalence testing, satisfiability, and

normal forms.
Matrices Tools for creating matrices of symbols and expressions. Both

sparse and dense representations, as well as symbolic linear al-
gebraic operations (e.g., inversion and factorization), are sup-
ported.

Matrix Expres-
sions

Matrices with symbolic dimensions (unspecified entries). Block
matrices.

Number Theory Prime number generation, primality testing, integer factoriza-
tion, continued fractions, Egyptian fractions, modular arith-
metic, quadratic residues, partitions, binomial and multino-
mial coefficients, prime number tools, hexidecimal digits of pi,
and integer factorization.

Plotting Hooks for visualizing expressions via matplotlib [20] or as text
drawings when lacking a graphical back-end. 2D function plot-
ting, 3D function plotting, and 2D implicit function plotting
are supported.

Polynomials Polynomial algebras over various coefficient domains. Func-
tionality ranges from simple operations (e.g., polynomial divi-
sion) to advanced computations (e.g., Gröbner bases [1] and
multivariate factorization over algebraic number domains).

Printing Functions for printing SymPy expressions in the terminal with
ASCII or Unicode characters and converting SymPy expres-
sions to LATEX and MathML.

Quantum Me-
chanics

Quantum states, bra–ket notation, operators, basis sets, rep-
resentations, tensor products, inner products, outer products,
commutators, anticommutators, and specific quantum system
implementations.

Series Series expansion, sequences, and limits of sequences. This in-
cludes Taylor, Laurent, and Puiseux series as well as special
series, such as Fourier and formal power series.
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Sets Representations of empty, finite, and infinite sets. This in-
cludes special sets such as for all natural, integer, and com-
plex numbers. Operations on sets such as union, intersection,
Cartesian product, and building sets from other sets are sup-
ported.

Simplification Functions for manipulating and simplifying expressions. In-
cludes algorithms for simplifying hypergeometric functions,
trigonometric expressions, rational functions, combinatorial
functions, square root denesting, and common subexpression
elimination.

Solvers Functions for symbolically solving equations, systems of equa-
tions, both linear and non-linear, inequalities, ordinary dif-
ferential equations, partial differential equations, Diophantine
equations, and recurrence relations.

Special Func-
tions

Implementations of a number of well known special functions,
including Dirac delta, Gamma, Beta, Gauss error functions,
Fresnel integrals, Exponential integrals, Logarithmic integrals,
Trigonometric integrals, Bessel, Hankel, Airy, B-spline, Rie-
mann Zeta, Dirichlet eta, polylogarithm, Lerch transcendent,
hypergeometric, elliptic integrals, Mathieu, Jacobi polynomi-
als, Gegenbauer polynomial, Chebyshev polynomial, Legendre
polynomial, Hermite polynomial, Laguerre polynomial, and
spherical harmonic functions.

Statistics Support for a random variable type as well as the ability to
declare this variable from prebuilt distribution functions such
as Normal, Exponential, Coin, Die, and other custom distri-
butions [35].

Tensors Symbolic manipulation of indexed objects.
Vectors Basic operations on vectors and differential calculus with re-

spect to 3D Cartesian coordinate systems.

3.1. Simplification. The generic way to simplify an expression is by calling the240
simplify function. It must be emphasized that simplification is not an unambiguously241
defined mathematical operation [8]. The simplify function applies several simplifi-242
cation routines along with heuristics to make the output expression as “simple” as243
possible.244

It is often preferable to apply more directed simplification functions. These apply245
very specific rules to the input expression and are typically able to make guarantees246
about the output. For instance, the factor function, given a polynomial with ra-247
tional coefficients in several variables, is guaranteed to produce a factorization into248
irreducible factors. Table 2 lists common simplification functions.249

Table 2: Some SymPy Simplification Functions

expand expand the expression
factor factor a polynomial into irreducibles
collect collect polynomial coefficients
cancel rewrite a rational function as p/q with common factors canceled
apart compute the partial fraction decomposition of a rational function
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trigsimp simplify trigonometric expressions [14]

Substitutions are performed using the .subs method.250
>>> (sin(x) + x**2 + 1).subs(x, y + 1)251
(y + 1)**2 + sin(y + 1) + 1252

3.2. Calculus. Integrals are calculated with the integrate function. SymPy im-253
plements a combination of the Risch algorithm [6], table lookups, a reimplementation254
of Manuel Bronstein’s “Poor Man’s Integrator” [5], and an algorithm for computing255
integrals based on Meijer G-functions [33, 34]. These allow SymPy to compute a wide256
variety of indefinite and definite integrals. The Meijer G-function algorithm and the257
Risch algorithm are respectively demonstrated below by the computation of258 ∫ ∞

0
e−st log (t) dt = − log (s) + γ

s
259

and260

∫ −2x2 (log (x) + 1) ex2 +
(
ex

2 + 1
)2

x(ex2 + 1)2 (log (x) + 1)
dx = log (log (x) + 1) + 1

ex2 + 1
.261

>>> s, t = symbols('s t', positive=True)262
>>> integrate(exp(-s*t)*log(t), (t, 0, oo)).simplify()263
-(log(s) + EulerGamma)/s264
>>> integrate((-2*x**2*(log(x) + 1)*exp(x**2) +265
... (exp(x**2) + 1)**2)/(x*(exp(x**2) + 1)**2*(log(x) + 1)), x)266
log(log(x) + 1) + 1/(exp(x**2) + 1)267

Derivatives are computed with the diff function, which recursively uses the var-268
ious differentiation rules.269
>>> diff(sin(x)*exp(x), x)270
exp(x)*sin(x) + exp(x)*cos(x)271

Summations and products are computed with summation and product, respec-272
tively. Summations are computed using a combination of Gosper’s algorithm [17], an273
algorithm that uses Meijer G-functions [33, 34], and heuristics. Products are com-274
puted via a suite of heuristics.275
>>> i, n = symbols('i n')276
>>> summation(2**i, (i, 0, n - 1))277
2**n - 1278
>>> summation(i*factorial(i), (i, 1, n))279
n*factorial(n) + factorial(n) - 1280

Limits are computed with the limit function. The limit module implements the281
Gruntz algorithm [18] for computing symbolic limits. For example, the following282
computes lim

x→∞
x sin( 1

x ) = 1. Note that SymPy denotes ∞ as oo.283

>>> limit(x*sin(1/x), x, oo)284
1285
As a more complex example, SymPy computes286

lim
x→0

(
2e

1−cos (x)
sin (x) − 1

) sinh (x)
atan2 (x) = e.287

>>> limit((2*E**((1-cos(x))/sin(x))-1)**(sinh(x)/atan(x)**2), x, 0)288
E289
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Integrals, derivatives, summations, products, and limits that cannot be computed290
return unevaluated objects. These can also be created directly if the user chooses.291
>>> integrate(x**x, x)292
Integral(x**x, x)293
>>> Sum(2**i, (i, 0, n - 1))294
Sum(2**i, (i, 0, n - 1))295

3.3. Polynomials. SymPy implements a suite of algorithms for polynomial ma-296
nipulation, which ranges from relatively simple algorithms for doing arithmetic of297
polynomials, to advanced methods for factoring multivariate polynomials into irre-298
ducibles, symbolically determining real and complex root isolation intervals, or com-299
puting Gröbner bases.300

Polynomial manipulation is useful in its own right. Within SymPy, though, it is301
mostly used indirectly as a tool in other areas of the library. In fact, many math-302
ematical problems in symbolic computing are first expressed using entities from the303
symbolic core, preprocessed, and then transformed into a problem in the polynomial304
algebra, where generic and efficient algorithms are used to solve the problem. The305
solutions to the original problem are subsequently recovered from the results. This is306
a common scheme in symbolic integration or summation algorithms.307

SymPy implements dense and sparse polynomial representations.4 Both are used308
in the univariate and multivariate cases. The dense representation is the default for309
univariate polynomials. For multivariate polynomials, the choice of representation is310
based on the application. The most common case for the sparse representation is311
algorithms for computing Gröbner bases (Buchberger, F4, and F5) [7, 11, 12]. This is312
because different monomial orderings can be expressed easily in this representation.313
However, algorithms for computing multivariate GCDs or factorizations, at least those314
currently implemented in SymPy [28], are better expressed when the representation315
is dense. The dense multivariate representation is specifically a recursively-dense rep-316
resentation, where polynomials in K[x0, x1, . . . , xn] are viewed as a polynomials in317
K[x0][x1] . . . [xn]. Note that despite this, the coefficient domain K, can be a multi-318
variate polynomial domain as well. The dense recursive representation in Python gets319
inefficient as the number of variables increases.320

3.4. Printers. SymPy has a rich collection of expression printers. By default,321
an interactive Python session will render the str form of an expression, which has322
been used in all the examples in this paper so far. The str form of an expression is323
valid Python and roughly matches what a user would type to enter the expression.324
>>> phi0 = Symbol('phi0')325
>>> str(Integral(sqrt(phi0), phi0))326
'Integral(sqrt(phi0), phi0)'327

Expressions can be printed with 2D, monospace fonts via pprint. Unicode charac-328
ters are used for rendering mathematical symbols such as integral signs, square roots,329
and parentheses. Greek letters and subscripts in symbol names that have Unicode330
code points associated are also rendered automatically.331
>>> pprint(Integral(sqrt(phi0 + 1), phi0))
⌠
⎮ ________
⎮ ╲╱ φ₀ + 1 d(φ₀)
⌡

1

332

4In a dense representation, the coefficients for all terms up to the degree of each variable are
stored in memory. In a sparse representation, only the nonzero coefficients are stored.
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Alternately, the use_unicode=False flag can be set, which causes the expression to be333
printed using only ASCII characters.334
>>> pprint(Integral(sqrt(phi0 + 1), phi0), use_unicode=False)335

/336
|337
| __________338
| \/ phi0 + 1 d(phi0)339
|340

/341
The function latex returns a LATEX representation of an expression.342

>>> print(latex(Integral(sqrt(phi0 + 1), phi0)))343
\int \sqrt{\phi_{0} + 1}\, d\phi_{0}344

Users are encouraged to run the init_printing function at the beginning of in-345
teractive sessions, which automatically enables the best pretty printing supported by346
their environment. In the Jupyter Notebook or Qt Console [29], the LATEX printer is347
used to render expressions using MathJax or LATEX, if it is installed on the system.348
The 2D text representation is used otherwise.349

Other printers such as MathML are also available. SymPy uses an extensible350
printer subsystem for customizing any given printer, and allows custom objects to351
define their printing behavior for any printer. The code generation functionality of352
SymPy relies on this subsystem to convert expressions into code in various target353
programming languages.354

3.5. Solvers. SymPy has a module of equation solvers that can handle ordinary355
differential equations, recurrence relationships, Diophantine equations, and algebraic356
equations. There is also rudimentary support for simple partial differential equations.357

There are two functions for solving algebraic equations in SymPy: solve and358
solveset. solveset has several design changes with respect to the older solve func-359
tion. This distinction is present in order to resolve the usability issues with the360
previous solve function API while maintaining backward compatibility with earlier361
versions of SymPy. solveset only requires essential input information from the user.362
The function signatures of solve and solveset are363
solve(f, *symbols, **flags)364
solveset(f, symbol, domain=S.Complexes)365
The domain parameter is typically either S.Complexes (the default) or S.Reals; the366
latter causes solveset to only return real solutions.367

An important difference between the two functions is that the output API of368
solve varies with input (sometimes returning a Python list and sometimes a Python369
dictionary) whereas solveset always returns a SymPy set object.370

Both functions implicitly assume that expressions are equal to 0. For instance,371
solveset(x - 1, x) solves x− 1 = 0 for x.372

solveset is under active development as a planned replacement for solve. There373
are certain features which are implemented in solve that are not yet implemented in374
solveset. Notably, these include nonlinear multivariate system and transcendental375
equations.376

3.6. Matrices. Besides being an important feature in its own right, computa-377
tions on matrices with symbolic entries are important for many algorithms within378
SymPy. The following code shows some basic usage of the Matrix class.379
>>> A = Matrix(2, 2, [x, x + y, y, x])380
>>> A381
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Matrix([382
[x, x + y],383
[y, x]])384

SymPy matrices support common symbolic linear algebra manipulations, includ-385
ing matrix addition, multiplication, exponentiation, computing determinants, solving386
linear systems, and computing inverses using LU decomposition, LDL decomposi-387
tion, Gauss-Jordan elimination, Cholesky decomposition, Moore-Penrose pseudoin-388
verse, and adjugate matrix.389

All operations are performed symbolically. For instance, eigenvalues are computed390
by generating the characteristic polynomial using the Berkowitz algorithm and then391
solving it using polynomial routines.392
>>> A.eigenvals()393
{x - sqrt(y*(x + y)): 1, x + sqrt(y*(x + y)): 1}394

Internally these matrices store the elements as lists of lists, making it a dense395
representation.5 For storing sparse matrices, the SparseMatrix class can be used.396
Sparse matrices store their elements as a dictionary of keys.397

SymPy also supports matrices with symbolic dimension values. MatrixSymbol398
represents a matrix with dimensions m × n, where m and n can be symbolic. Ma-399
trix addition and multiplication, scalar operations, matrix inverse, and transpose are400
stored symbolically as matrix expressions.401

Block matrices are also implemented in SymPy. BlockMatrix elements can be402
any matrix expression, including explicit matrices, matrix symbols, and other block403
matrices. All functionalities of matrix expressions are also present in BlockMatrix.404

When symbolic matrices are combined with the assumptions module for logical405
inference, they provide powerful reasoning over invertibility, semi-definiteness, or-406
thogonality, etc., which are valuable in the construction of numerical linear algebra407
systems.408

4. Numerics. Floating point numbers in SymPy are implemented by the Float409
class, which represents an arbitrary-precision binary floating-point number by storing410
its value and precision (in bits). This representation is distinct from the Python411
built-in float type, which is a wrapper around machine double types and uses a fixed412
precision (53-bit).413

Because Python float literals are limited in precision, strings should be used to414
input precise decimal values:415
>>> Float(1.1)416
1.10000000000000417
>>> Float(1.1, 30) # precision equivalent to 30 digits418
1.10000000000000008881784197001419
>>> Float("1.1", 30)420
1.10000000000000000000000000000421
The evalf method converts a constant symbolic expression to a Float with the spec-422
ified precision, here 25 digits:423
>>> (pi + 1).evalf(25)424
4.141592653589793238462643425
Float numbers do not track their accuracy, and should be used with caution within426
symbolic expressions since familiar dangers of floating-point arithmetic apply [16]. A427
notorious case is that of catastrophic cancellation:428

5Similar to the polynomials module, dense here means that all entries are stored in memory,
contrasted with a sparse representation where only nonzero entries are stored.
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>>> cos(exp(-100)).evalf(25) - 1429
0430
Applying the evalf method to the whole expression solves this problem. Internally,431
evalf estimates the number of accurate bits of the floating-point approximation for432
each sub-expression, and adaptively increases the working precision until the esti-433
mated accuracy of the final result matches the sought number of decimal digits:434
>>> (cos(exp(-100)) - 1).evalf(25)435
-6.919482633683687653243407e-88436
The evalf method works with complex numbers and supports more complicated ex-437
pressions, such as special functions, infinite series, and integrals. The internal error438
tracking does not provide rigorous error bounds (in the sense of interval arithmetic)439
and cannot be used to accurately track uncertainty in measurement data; the sole pur-440
pose is to mitigate loss of accuracy that typically occurs when converting symbolic441
expressions to numerical values.442

4.1. The mpmath library. The implementation of arbitrary-precision floating-443
point arithmetic is supplied by the mpmath library. Originally, it was developed as444
a SymPy module but has subsequently been moved to a standalone pure-Python445
package. The basic datatypes in mpmath are mpf and mpc, which respectively act446
as multiprecision substitutes for Python’s float and complex. The floating-point447
precision is controlled by a global context:448
>>> import mpmath449
>>> mpmath.mp.dps = 30 # 30 digits of precision450
>>> mpmath.mpf("0.1") + mpmath.exp(-50)451
mpf('0.100000000000000000000192874984794')452
>>> print(_) # pretty-printed453
0.100000000000000000000192874985454

For pure numerical computing, it is convenient to use mpmath directly with from455
mpmath import *. Nevertheless, it is best to avoid such an import statement when456
using SymPy simultaneously, since the names of numerical functions such as exp will457
collide the symbolic counterparts in SymPy.458

Like SymPy, mpmath is a pure Python library. Internally, mpmath represents a459
floating-point number (−1)sx·2y by a tuple (s, x, y, b) where x and y are arbitrary-size460
Python integers and the redundant integer b stores the bit length of x for quick access.461
If GMPY [19] is installed, mpmath automatically uses the gmpy.mpz type for x, and462
GMPY methods for rounding-related operations, improving performance.463

The mpmath library supports special functions, root-finding, linear algebra, poly-464
nomial approximation, and numerical computation of limits, derivatives, integrals,465
infinite series, and ODE solutions. All features work in arbitrary precision and use466
algorithms that allow computing hundreds of digits rapidly (except in degenerate467
cases).468

The double exponential (tanh-sinh) quadrature is used for numerical integra-469
tion by default. For smooth integrands, this algorithm usually converges extremely470
rapidly, even when the integration interval is infinite or singularities are present at471
the endpoints [42, 2]. However, for good performance, singularities in the middle of472
the interval must be specified by the user. To evaluate slowly converging limits and473
infinite series, mpmath automatically tries Richardson extrapolation and the Shanks474
transformation (Euler-Maclaurin summation can also be used) [3]. A function to475
evaluate oscillatory integrals by means of convergence acceleration is also available.476

A wide array of higher mathematical functions are implemented with full support477
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for complex values of all parameters and arguments, including complete and incom-478
plete gamma functions, Bessel functions, orthogonal polynomials, elliptic functions479
and integrals, zeta and polylogarithm functions, the generalized hypergeometric func-480
tion, and the Meijer G-function. The Meijer G-function instance G3,0

1,3
(
0; 1

2 ,−1,− 3
2 |x
)

481
is a good test case [43]; past versions of both Maple and Mathematica produced in-482
correct numerical values for large x > 0. Here, mpmath automatically removes an483
internal singularity and compensates for cancellations (amounting to 656 bits of pre-484
cision when x = 10000), giving correct values:485
>>> mpmath.mp.dps = 15486
>>> mpmath.meijerg([[],[0]],[[-0.5,-1,-1.5],[]],10000)487
mpf('2.4392576907199564e-94')488

Equivalently, with SymPy’s interface this function can be evaluated as:489
>>> meijerg([[],[0]],[[-S(1)/2,-1,-S(3)/2],[]],10000).evalf()490
2.43925769071996e-94491

Symbolic integration and summation often produces hypergeometric and Meijer492
G-function closed forms (see Subsection 3.2); numerical evaluation of such special493
functions is a useful complement to direct numerical integration and summation.494

5. Domain Specific Submodules. SymPy includes several packages that al-495
low users to solve domain specific problems. For example, a comprehensive physics496
package is included that is useful for solving problems in mechanics, optics, and quan-497
tum mechanics along with support for manipulating physical quantities with units.498

5.1. Classical Mechanics. One of the core domains that SymPy suports is the499
physics of classical mechanics. This is in turn separated into two distinct components:500
vector algebra symbolics and mechanics.501

5.1.1. Vector Algebra. The sympy.physics.vector package provides reference502
frame-, time-, and space-aware vector and dyadic objects that allow for three-dimen-503
sional operations such as addition, subtraction, scalar multiplication, inner and outer504
products, and cross products. Both of these objects can be written in very compact505
notation that make it easy to express the vectors and dyadics in terms of multiple506
reference frames with arbitrarily defined relative orientations. The vectors are used507
to specify the positions, velocities, and accelerations of points; orientations, angular508
velocities, and angular accelerations of reference frames; and forces and torques. The509
dyadics are essentially reference frame-aware 3×3 tensors [41]. The vector and dyadic510
objects can be used for any one-, two-, or three-dimensional vector algebra, and they511
provide a strong framework for building physics and engineering tools.512

The following Python code demonstrates how a vector is created using the or-513
thogonal unit vectors of three reference frames that are oriented with respect to each514
other, and the result of expressing the vector in the A frame. The B frame is oriented515
with respect to the A frame using Z-X-Z Euler Angles of magnitude π, π2 , and

π
3 rad,516

respectively, whereas the C frame is oriented with respect to the B frame through a517
simple rotation about the B frame’s X unit vector through π

2 rad.518
>>> from sympy.physics.vector import ReferenceFrame519
>>> A = ReferenceFrame('A')520
>>> B = ReferenceFrame('B')521
>>> C = ReferenceFrame('C')522
>>> B.orient(A, 'body', (pi, pi/3, pi/4), 'zxz')523
>>> C.orient(B, 'axis', (pi/2, B.x))524
>>> v = 1*A.x + 2*B.z + 3*C.y525
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>>> v526
A.x + 2*B.z + 3*C.y527
>>> v.express(A)528
A.x + 5*sqrt(3)/2*A.y + 5/2*A.z529

5.1.2. Mechanics. The sympy.physics.mechanics package utilizes the sympy.530
physics.vector package to populate time-aware particle and rigid-body objects to531
fully describe the kinematics and kinetics of a rigid multi-body system. These objects532
store all of the information needed to derive the ordinary differential or differential533
algebraic equations that govern the motion of the system, i.e., the equations of mo-534
tion. These equations of motion abide by Newton’s laws of motion and can handle535
arbitrary kinematic constraints or complex loads. The package offers two automated536
methods for formulating the equations of motion based on Lagrangian Dynamics [22]537
and Kane’s Method [21]. Lastly, there are automated linearization routines for con-538
strained dynamical systems [30].539

5.2. Quantum Mechanics. The sympy.physics.quantum package has extensive540
capabilities for performing symbolic quantum mechanics, using Python objects to rep-541
resent the different mathematical objects relevant in quantum theory [37]: states (bras542
and kets), operators (unitary, Hermitian, etc.), and basis sets, as well as operations543
on these objects such as representations, tensor products, inner products, outer prod-544
ucts, commutators, and anticommutators. The base objects are designed in the most545
general way possible to enable any particular quantum system to be implemented546
by subclassing the base operators and defining the relevant class methods to provide547
system-specific logic.548

Symbolic quantum operators and states may be defined, and one can perform a549
full range of operations with them.550
>>> from sympy.physics.quantum import Commutator, Dagger, Operator551
>>> from sympy.physics.quantum import Ket, qapply552
>>> A = Operator('A')553
>>> B = Operator('B')554
>>> C = Operator('C')555
>>> D = Operator('D')556
>>> a = Ket('a')557
>>> comm = Commutator(A, B)558
>>> comm559
[A,B]560
>>> qapply(Dagger(comm*a)).doit()561
-<a|*(Dagger(A)*Dagger(B) - Dagger(B)*Dagger(A))562
Commutators can be expanded using common commutator identities:563
>>> Commutator(C+B, A*D).expand(commutator=True)564
-[A,B]*D - [A,C]*D + A*[B,D] + A*[C,D]565

On top of this set of base objects, a number of specific quantum systems have566
been implemented in a fully symbolic framework. These include:567

• Many of the exactly solvable quantum systems, including simple harmonic568
oscillator states and raising/lowering operators, infinite square well states,569
and 3D position and momentum operators and states.570

• Second quantized formalism of non-relativistic many-body quantum mechan-571
ics [13].572

• Quantum angular momentum [45]. Spin operators and their eigenstates can573
be represented in any basis and for any quantum numbers. A rotation opera-574
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tor representing the Wigner-D matrix, which may be defined symbolically or575
numerically, is also implemented to rotate spin eigenstates. Functionality for576
coupling and uncoupling of arbitrary spin eigenstates is provided, including577
symbolic representations of Clebsch-Gordon coefficients and Wigner symbols.578

• Quantum information and computing [25]. Multidimensional qubit states,579
and a full set of one- and two-qubit gates are provided and can be represented580
symbolically or as matrices/vectors. With these building blocks, it is possible581
to implement a number of basic quantum algorithms including the quantum582
Fourier transform, quantum error correction, quantum teleportation, Grover’s583
algorithm, dense coding, etc. In addition, any quantum circuit may be plotted584
using the circuit_plot function (Figure 1).585

Here are a few short examples of the quantum information and computing capa-586
bilities in sympy.physics.quantum. Start with a simple four-qubit state and flip the587
second qubit from the right using a Pauli-X gate:588
>>> from sympy.physics.quantum.qubit import Qubit589
>>> from sympy.physics.quantum.gate import XGate590
>>> q = Qubit('0101')591
>>> q592
|0101>593
>>> X = XGate(1)594
>>> qapply(X*q)595
|0111>596
Qubit states can also be used in adjoint operations, tensor products, inner/outer597
products:598
>>> Dagger(q)599
<0101|600
>>> ip = Dagger(q)*q601
>>> ip602
<0101|0101>603
>>> ip.doit()604
1605
Quantum gates (unitary operators) can be applied to transform these states and then606
classical measurements can be performed on the results:607
>>> from sympy.physics.quantum.qubit import measure_all608
>>> from sympy.physics.quantum.gate import H, X, Y, Z609
>>> c = H(0)*H(1)*Qubit('00')610
>>> c611
H(0)*H(1)*|00>612
>>> q = qapply(c)613
>>> measure_all(q)614
[(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)]615
Lastly, the following example demonstrates creating a three-qubit quantum Fourier616
transform, decomposing it into one- and two-qubit gates, and then generating a circuit617
plot for the sequence of gates (see Figure 1).618
>>> from sympy.physics.quantum.qft import QFT619
>>> from sympy.physics.quantum.circuitplot import circuit_plot620
>>> fourier = QFT(0,3).decompose()621
>>> fourier622
SWAP(0,2)*H(0)*C((0),S(1))*H(1)*C((0),T(2))*C((1),S(2))*H(2)623
>>> c = circuit_plot(fourier, nqubits=3)624
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Fig. 1: The circuit diagram for a three-qubit quantum Fourier transform generated
by SymPy.

6. Conclusion and future work. SymPy is a robust computer algebra system625
that provides a wide spectrum of features both in traditional computer algebra and626
in a plethora of scientific disciplines. This allows SymPy to be used in a first-class627
way with other Python projects, including the scientific Python stack. Unlike many628
other CASs, SymPy is designed to be used in an extensible way: both as an end-user629
application and as a library.630

SymPy expressions are immutable trees of Python objects. SymPy uses Python631
both as the internal language and the user language. This permits users to access to632
the same methods that the library implements in order to extend it for their needs.633
Additionally, SymPy has a powerful assumptions system for declaring and deducing634
mathematical properties of expressions.635

SymPy has submodules for many areas of mathematics. This includes functions636
for simplifying expressions, performing common calculus operations, pretty printing637
expressions, solving equations, and representing symbolic matrices. Other included638
areas are discrete math, concrete math, plotting, geometry, statistics, polynomials,639
sets, series, vectors, combinatorics, group theory, code generation, tensors, Lie alge-640
bras, cryptography, and special functions. Additionally, SymPy contains submodules641
targeting certain specific domains, such as classical mechanics and quantum mechan-642
ics. This breadth of domains has been engendered by a strong and vibrant user643
community. Anecdotally, these users likely chose SymPy because of its ease of access.644

Some of the planned future work for SymPy includes work on improving code645
generation, improvements to the speed of SymPy (one area of work in this direction646
is SymEngine, a C++ symbolic manipulation library that is planned to be usable as647
a alternative core for SymPy), improving the assumptions system, and improving the648
solvers module.649
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