
Hypothesis generating model-based wearable clinical trial

Wearable physiological sensors have the projected capability to detect unknown and

unreported health conditions. Development requires rounds of discovery-oriented human

subject research and confirmatory clinical trials. However, each study is a significant

investment and difficult to justify in isolation. This impasse requires bootstrapping spiral

device development through hypothesis-generating, model-based clinical trials. An

unconventional clinical trial design addresses environmental health and infectious disease,

through the day-to-day observation of diverse people who occupy a shared environment.

The design utilizes a flexible suite of developmental diagnostic devices to detect the

physiological impact of exposures. Through advanced data analysis, the devices provide

information about deviations from normal parameters for each human subject. The

correlation of these anomalies across the entire cohort generates hypotheses about

exposures that impact health. These hypotheses can be investigated further in targeted

studies and lead to simultaneous refinement of the devices.
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Introduction 

A world of complex environmental and infectious health effects is plagued with claims and counter 

claims (Parihar et al 2013, Magnavita 2015), shaping behaviors towards smog, pollen, indoor volatile 

organic compounds (VOCs), passive smoking, food products, drinking water, gluten, and even infectious 

agents like the flu.  Establishing even a single causal relationship to enable diagnosis, treatment, and 

public health interventions requires decades of epidemiology because human and environmental 

diversity are compounded by the vagueries of self-reporting and the biases of controlled laboratory 

experiment.  However, enabled by modern computing, sensors can characterize unreported health 

conditions by tracking novel physiological parameters.  As an example, lung sound analysis extracts 

modes of respiratory disorder beyond coughs or wheezes (Fard et al 2015).  Lung sound research is at 

the cusp of an unexpectedly fruitful stage (Bhattacharyya et al 2015, Joshi and Bartter), detecting 

conditions even beneath the notice of the patient (Jiang et al 2015, Yigla et al 2008).  Other novel 

physiological measures, such as blood pressure waveforms (Townsend et al 2015) or bowel sounds 

(Goto et al 2015), also reflect cryptic underlying dysfunction.  Characterizing this dysfunction while 

simultaneously developing the methods to detect it within the current structure of human subjects 

research is a study design challenge. 

Novel physiological parameters are difficult to evaluate for a lack of historical data.  A practical way to 

achieve informative correlation with exposures and outcomes is through monitoring of individuals 

during daily life (i.e. Holter monitor vs. stationary EKG). Continuous monitoring generates demographic-

adjusted normal ranges, but also numerous repeated measurements during biological (e.g. diurnal, 

annual) cycles (Savage 2015).  Longitudinal, particularly continuous, measurement addresses inter- and 

intra-personal variation which typically clouds the results of more traditional studies and requires 

repeated research initiatives to resolve.  Equally importantly, continuous monitoring can capture clinical 

events, including the subclinical events that precede them and the sequelae.  By capturing large 

numbers of events across diverse interpersonal backgrounds, wearable form factors enable even cheap, 

noisy sensors to yield medically relevant information (Bugane et al 2012, Louter et al 2014). 

The value of broad sensor deployment in the absence of a clearly defined medical purpose is difficult to 

overstate.  Seemingly silly sensors have advanced very rapidly by being widely deployed while still in the 

process of establishing utility.   Opportunistic and iterative processes allow inexpensive sensors to find 

applications and subsequently be tuned for these new functions.  Advanced sensors paradoxically suffer 

stagnation.  Advanced sensors are deployed sparingly, under laboratory conditions, for short periods of 

time.  Sophisticated sensors are only tested when the utility and prospect for FDA approval is evident in 

well in advance.  Human testing is thus costly and rigid. 

The hallmark of traditional diagnostic device development is the clinical trial, for validation.  Clinical 

trials of therapeutics can be driven by outcomes, but diagnostics are validated against established 

standards (Hui and Zhou 1998, FDA 2007), if only a panel of medical experts (Rutjes et al 2007).  The 

challenges of the imperfect gold standard are widely acknowledged if only inadequately addressed; but 

entering a trial without knowing what will be detected and having no standard transgresses the concept 

of a clinical trial.  When deploying a novel wearable device, a traditional control cohort cannot be 

presumed to be healthy; certainly not for the duration of the study.  Instead, health status, symptoms, 

and mechanism of illness are all latent variables, as is the performance of the instrument.  Breaking 
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through this dialectical, reflexive ignorance requires simultaneous discovery (health status), 

development (refinement of the device), and validation (measurement of sensitivity and specificity).     

Design Approach 

Breaking this deadlock requires a novel study design: broadening the range of conditions under which 

the device is deployed, incorporating diverse suboptimal devices in a dynamic fashion, and accepting 

that results will be only gradually conclusive.  The study itself is an entry into spiral development 

processes to address specific outcomes with increasing clarity. Ultimately, numerous clinically relevant 

disease states triggered by known exposures, monitored across demographically defined populations, 

will be diagnosed in a mechanistically relevant fashion.   

The proposed study populations are cohorts with widely inclusive demographics who interact and 

traverse a shared physical space.  The cohort is equipped with an ad hoc collection of prototype sensors 

to transduce various physiological parameters; medical history and journaling are adjunctive data 

streams.  The sensors are expected to have substantial operational defects, including noise, malfunction, 

and bias. By detecting common underlying physiology, diverse sensors corroborate each other and 

overcome uncorrelated noise; by detecting distinct physiology (e.g. antagonistic, local to a body site), 

the sensors distinguish among modes of exposure and mechanisms of response. 

During the study, sensors are baselined on each individual.  From this baseline, excursions are reported 

as anomalies.  Meaningful anomalies likely involve several sensors simultaneously (for example, 

excursions in the covariance of respiratory rate and heart rate would be distinct from excursions in the 

correlated rates of both).  Salient anomalies are characterized and additional population data is polled 

to recruit less significant anomalies of a similar nature correlated in time and space, based on models of 

shared environmental exposure or infectious passage, including priming detection of similar anomalies 

from the same individual in the future.  Temporal data also assists in disentangling reverse causality.  

During recruitment of anomalies, missing data may be imputed statistically.  The strategy of recruitment 

leverages the breadth of the larger cohort to identify the extent of the exposure but the salient 

anomalies motivate biological significance and limit the potential for false discovery.     

Sensors may be withdrawn, replaced, or inserted across all or part of the population during the study.  

Spiral sensor development enables increased focus on clinically relevant hypotheses.  The study design 

can accept an arbitrary number of physiological sensors, to determine their utility in a dynamic fashion, 

and to substantiate or redirect contentious claims about causation in health and wellness.  Faced with 

diverse environmental and infectious health challenges, a panoply of diverse sensors is not a problem, 

but an opportunity.  Ultimately, the price of flexibility is that characterization of sensitive populations, 

exposures, and sensors must be confirmed in a (preferably pre-registered) clinical trial with a distinct 

subject population.   

Addressing Statistical Significance 

Determining statistical significance is difficult in an exploratory setting with repeated tests, multiple 

comparisons, and emergent hypotheses.  Interactive determinations of statistical significance can limit 

false discovery.  One example is the re-injection of putatively significant anomalies at random time 

points to attempt recruitment.  If the subsidiary anomalies recruited during these injections is similar to 

those during organic events, then recruitment is not driven by shared exposures - but positive statistical 
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significance is only suggestive.  Borrowing from Andrew Gelman (andrewgelman.com): Direction of 

research should flow not from statistical significance but instead effect size (clinical relevance), 

generalizability (public health relevance), and mechanistic plausibility. 

Addressing Privacy/Confidentiality 

The greatest safety concern is privacy/confidentiality.  Three principles mitigate privacy risk.  First, 

measurements should be transmitted parsimoniously.  Second, measurements should be stored briefly.  

Third, data should be strategically degraded to frustrate data misuse. 

Data from wearable sensors should be processed for anomalies on the subject with local computing to 

avoid transmission.  Baselines should be stored in compressed form locally to enable streaming analysis; 

both refining the baseline and performing anomaly detection.  Anomalies are transmitted for 

population-level analysis; but anomaly transmission could be opt-in, to mitigate subject privacy 

concerns.  Second, baseline data should be compressed in a lossy fashion.  Anomaly data can also be 

progressively reduced in precision as the study progresses.  Third, precision location data is particularly 

sensitive; by defining neighborhoods to aggregate location data dynamically, numbers of subjects 

provides more than statistical power, but also a degree of privacy.  Finally, given the recruitment 

method used to assemble suites of anomalies, fake anomalies should be injected into the transmitted 

data stream, generated from a plausible distribution.  ‘Blind injection’ is employed in other disciplines 

(Cho 2016) to ‘blind’ investigators and test data analysis pipelines.  In this case, injected anomalies 

would not effectively recruit correlated anomalies from the subject population, but would confound 

data misuse.   

Device Safety and Behavioral Safety 

Preventing physical harms from sensors is an anticipated requirement of any institutional review board.  

In addition, certain devices may pose unexpected behavioral risks (e.g. inconvenient exercise monitors 

may reduce exercise; cell phones are associated with pedestrian accidents).  Behavioral safety may be 

more subtle but adverse behaviors are themselves events. 

Social Interactions 

Social interactions may be detected physiologically; equipping persons with a Holter monitor, a skin 

galvanic response device, and a respiratory monitor is perilously close to a walking polygraph.  In a 

workplace, weekly meetings might be observed as environmental or contagious physiological stress.  In 

a sense, this would be a success, and may even be relevant to a range of clinical outcomes (unless the 

meeting were a discussion of the sensors).  This design concern is not trivially remedied during long term 

trials; but should be addressed during any confirmatory studies. 

Conclusions 

Wearable sensors are rapidly progressing in their application to health; but with a strong bias toward 

those with the least expensive preliminary design.  These inexpensive sensors are broadly tested and 

rapidly refined as uses are discovered.  More sophisticated sensing modes progress through a very 

different process, in the medical scientific literature, and despite tremendous promise, their 

development suffers by comparison.   
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We present a flexible study design which would facilitate the development of sophisticated sensors 

while preserving the advantages of formal studies.  The joyful diversity of sensors, subjects, and 

exposures provides breadth and generalizability; and the concurrence both reduces the costs of subject 

recruitment and management, and also allows the sensors to inform on each other for the purpose of 

validation.  Human subject protection concerns are also given due attention.   

Because of the flexible nature of the study design, it is feasible to imagine a ‘rolling’ or ‘continuous’ 

study into which devices and subjects are continually recruited; time and geography being held 

relatively constant.  This would optimize the use of the underlying infrastructure and limit administrative 

delays during initialization and termination of distinct studies.  This model of study design could be 

conducted in any number of locally relevant environments (rural, urban, tropical, etc.) to localize and 

personalize medicine. 
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