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Quantifying spatial patterns of grass response to nutrient

additions using empirical and neutral semivariogram models

Erica A.H. Smithwick, Douglas C. Baldwin, Kusum J. Naithani

Disturbances influence vegetation patterns at multiple scales, but studies that isolate the

effect of scale are rare, meaning that scale and process are often confounded. To explore

this, we imposed a large (~3.75 ha) experiment in a South African coastal grassland

ecosystem to determine the spatial scale of grass response to nutrient additions. In two of

six 60 x 60 m grassland plots, we imposed nutrient additions using a scaled sampling

design in which fertilizer was added in replicated sub-plots of varying sizes (1 x 1 m, 2 x 2

m, and 4 x 4 m). The remaining plots either received no additions, or were fertilized evenly

across the entire plot area. We calculated empirical semi-variograms for all plots one year

following nutrient additions to determine whether the scale of grass response (biomass

and nutrient concentrations) corresponded to the scale of the sub-plot additions and

compared these results to reference plots (unfertilized or unscaled). In addition, we

calculated semi-variograms from a series of simulated landscapes generated using random

or structured patterns (neutral models) and compared the semivariogram parameters

between simulated and empirical landscapes. Results from the empirical semivariograms

showed that there was greater spatial structure in plots that received additions at sub-plot

scales, with range values that were closest to the 2 x 2 m grain. These results were in

agreement with simulated semivariograms using neutral models, supporting the notion

that our empirical results were not confounded by random effects. Overall, our results

highlight that neutral models can be combined with empirical semivariograms to identify

multi-scalar ecological patterns and this hybrid approach should be used more widely in

ecological studies.
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17 ABSTRACT 

18 Disturbances influence vegetation patterns at multiple scales, but studies that isolate the effect of 

19 scale are rare, meaning that scale and process are often confounded.  To explore this, we 

20 imposed a large (~3.75 ha) experiment in a South African coastal grassland ecosystem to 

21 determine the spatial scale of grass response to nutrient additions.  In two of six 60 x 60 m 

22 grassland plots, we imposed nutrient additions using a scaled sampling design in which fertilizer 

23 was added in replicated sub-plots of varying sizes (1 x 1 m, 2 x 2 m, and 4 x 4 m).  The 

24 remaining plots either received no additions, or were fertilized evenly across the entire plot area. 

25 We calculated empirical semi-variograms for all plots one year following nutrient additions to 

26 determine whether the scale of grass response (biomass and nutrient concentrations) 

27 corresponded to the scale of the sub-plot additions and compared these results to reference plots 

28 (unfertilized or unscaled). In addition, we calculated semi-variograms from a series of simulated 

29 landscapes generated using random or structured patterns (neutral models) and compared the 

30 semivariogram parameters between simulated and empirical landscapes. Results from the 

31 empirical semivariograms showed that there was greater spatial structure in plots that received 

32 additions at sub-plot scales, with range values that were closest to the 2 x 2 m grain.  These 

33 results were in agreement with simulated semivariograms using neutral models, supporting the 

34 notion that our empirical results were not confounded by random effects.  Overall, our results 

35 highlight that neutral models can be combined with empirical semivariograms to identify multi-

36 scalar ecological patterns and this hybrid approach should be used more widely in ecological 

37 studies.   

38
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40 INTRODUCTION

41 The importance of spatial autocorrelation for understanding vegetation distributions and 

42 processes is well-known (Turner 1989; Watt 1947) and these insights have augmented our 

43 understanding of how spatial structure of soils, plants, and climate can regulate ecosystem 

44 function,  often at multiple, nested scales (Turner et al. 2012).  However, for any given study, the 

45 scale of this autocorrelation structure and its implications for inferring ecological processes are 

46 often not known in advance.  Select studies have employed experimental spatial designs a priori 

47 (Stohlgren et al. 1995) or have used computational models to explore the influence of space on 

48 ecosystem properties (Jenerette & Wu 2004; Smithwick et al. 2003; With & Crist 1995).  

49 Geostatistical analysis of ecological patterns is also implemented widely (Jackson & Caldwell 

50 1993b; Robertson et al. 1993; Smithwick et al. 2005b) but is often used for observations on 

51 treatment response rather than to design experimental studies in advance.  In the majority of 

52 experimental ecological studies, spatial autocorrelation is accounted for post hoc through 

53 statistical segregation of error terms (Beale et al. 2010).  

54 Understanding the scale of ecological processes may help unravel a number of complex 

55 ecological questions.  For example, disturbances generate structural patterns that may influence 

56 ecological processes at many scales (Schoennagel et al. 2008; Turner et al. 2007).  However, 

57 developing predictive models about the scale of these responses is more difficult because 

58 disturbance processes can have cascading effects across scales (Falk et al. 2007; Peters et al. 

59 2007).  The emergence of bark beetles in the Western U.S. is another multi-scalar process that 

60 can only be understood through an unraveling of processes that scale from the tissue-level to the 

61 landscape-level (Raffa et al. 2008). Similarly, in savanna science, determining the factors that 

62 govern the distribution of grassland and woodland ecosystems is a central focus of many studies 

63 (House et al. 2003; Scholes & Archer 1997) and multiple spatial scales are likely needed to 
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64 explain complex grass-tree interactions (Mills et al. 2006; Okin et al. 2008; Pellegrini 2016; 

65 Wang et al. 2010). Herbivore grazing or fire disturbances may each influence savanna nutrient 

66 cycling but the scale at which these systems respond is unclear given that the spacing of 

67 individual plants, soil properties, terrain, and herbivore assemblages can each contribute to 

68 spatial patterns in nutrient availability (Augustine & Frank 2001; Liu et al. 2016; Okin et al. 

69 2008; Robertson et al. 1993; Senft et al. 1987; Smithwick et al. 2005b). 

70 New approaches are needed to characterize how ecosystems re-organize in response to 

71 disturbance and to determine whether there are specific scale or scales of response that are most 

72 relevant.  In so doing, it may be possible to reduce bias in empirical studies due to scale, thus 

73 deepening insights into ecological processes controlling those patterns and minimizing the 

74 potential for scale mismatches (Cumming 2011; Ludwig et al. 2000).  Implications of such 

75 understanding can be significant.  For example, Gil et al. (2016) recently found that increasing 

76 the scale of nutrient enrichment weakens herbivore control of primary producers, challenging 

77 understanding of ecosystem resilience to ecosystem eutrophication. In a more applied setting, it 

78 has been shown that the spatial scale of grazer movement can influence nutrient additions in an 

79 agricultural field, which could be used to more efficiently target agricultural management 

80 activity (Fu et al. 2013).  Unraveling such bias or, more optimistically, incorporating scale into 

81 ecological prediction and application, requires better experimental approaches to explicitly test 

82 for the influence of scale on an ecological pattern.

83 To address this, our overarching goal was to develop a novel methodology to directly test 

84 for multi-scalar patterns in primary production following nutrient addition.  Our first objective 

85 was to determine: at what scale does vegetation respond to nutrient additions? Understanding 

86 nutrient limitation to grass productivity is an important question in its own right (Craine et al. 
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87 2008; Wakeling et al. 2010) but often neglects questions related to the scale of the response. We 

88 hypothesized that the grass response would differ between three subplots scales (1 x 1 m, 2 x 2 

89 m, and 4 x 4 m).  These scales were chosen correspond to ecosystem processes that might govern 

90 nutrient uptake, including the spacing of grass tufts, trees or shrubs, and plot-level topography, 

91 respectively, which have been identified as critical sources of variation in soil biogeochemistry 

92 (Ettema & Wardle 2002; Jackson & Caldwell 1993a; Rietkerk et al. 2000; Smithwick et al. 

93 2005b). We surmised that insights gained about the specific scale of response could be used in 

94 future studies to understand the scale-specific ecological mechanisms that might be operating at 

95 that scale.  

96 In addition to testing the within-plot scale of vegetation response to fertilization, our 

97 second objective was to test whether there would be stronger spatial structure (enhanced 

98 patchiness) across plots in which nutrients were added at multiple sub-plot scales, compared to 

99 homogenously fertilized or unfertilized reference plots.  To avoid issues of pseudoreplication, 

100 these comparisons were made between empirical semivariograms and neutral semivariograms 

101 (computer-simulated landscapes that mimic hypothesized patterns). Empirical and neutral 

102 semivariograms were compared for six conditions that received, or were artificially modeled to 

103 simulate, different nutrient addition patterns (no fertilizer, homogenously fertilized, or fertilized 

104 in sub-plot scales) and levels of grazing (fenced or unfenced).  We hypothesized that the ranges 

105 (autocorrelation distances, or length scales) calculated in the neutral models would be 

106 comparable to the ranges calculated from empirical data, and that they would show greater 

107 spatial structure in plots that received heterogeneous fertilizers compared to reference plots.  

108 In addition, we used these neutral models to explore the influence of herbivory on the 

109 spatial structure of fertilized or reference plots.  Following nutrient additions, herbivores can 
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110 influence patterns of primary productivity through enhanced consumption of nutrient-rich 

111 patches and/or through enhanced deposition of new nutrients via manure or urine from animals 

112 entering the fertilized area, which may have variable effects on spatial heterogeneity depending 

113 on the scale of the observations (Fuhlendorf & Smeins 1999).  Consumption of nutrient-rich 

114 patches may reduce overall variance by reducing differences in biomass amounts compared to 

115 ungrazed areas but new nutrient additions by animals also occur when animals move across the 

116 plot, or rest in new locations, thus enhancing variability (Auerswald et al. 2010).  Therefore, in 

117 this study we tested the hypothesis that herbivory increases spatial heterogeneity (Liu et al. 2016) 

118 such that patchiness would be highest. i.e., range scales would be smaller, in plots that received 

119 both manure additions and scaled nutrient additions (unfenced and heterogeneously fertilized), 

120 relative to plots that received only grazing or only homogeneous nutrients. 

121 Our third objective was to estimate the degree to which grass biomass was related to 

122 patterns in foliar nitrogen content (% N) and phosphorus content (% P), while accounting for 

123 random effects due to scale and treatment.  Generally, temperate systems are expected to have 

124 greater levels of N limitation on vegetation growth than sub-tropical or tropical systems, where P 

125 may be more limiting due to highly weathered soils (Domingues et al. 2010; Hedin 2004; 

126 Lambers et al. 2008; Vitousek & Sanford 1986).  Yet, N, P, and N+P limitations on vegetation 

127 productivity have all been documented in African savanna or grassland systems (Augustine et al. 

128 2003; Craine et al. 2008; Ngatia et al. 2015; Okin et al. 2008), indicating that an understanding 

129 of nutrient limitations on biomass productivity in these systems is still unclear.  Complexity in 

130 understanding differences in nutrient limitations has been attributed to, for instance, differential 

131 nutrient affinities across functional groups (Ratnam et al. 2008; Reich et al. 2003) as well as 

132 complex herbivory feedbacks (Augustine et al. 2003), both of which are compounded by issues 
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133 of scale (Ekblom & Gillson 2010; Fuhlendorf & Smeins 1999).  While a complete test of these 

134 factors was beyond the scope of this study, we had the opportunity to explore the effect of foliar 

135 nutrient concentrations on biomass responses under a dual nutrient addition experiment, while 

136 treating the levels of our experimental design (e.g. plot, subplot, treatment) as separate random 

137 effects.  By so doing, we were able to explore whether foliar N, P or N and P together explained 

138 patterns in biomass, beyond the given variability in our study design, and to determine the level 

139 (scale) at which these random effects were most pronounced.  

140    

141 METHODS

142 Study area. This study was conducted in Mkambathi Nature Reserve, a 7720-ha protected area 

143 located at 31 13 27 S and 29 57 58 E along the Wild Coast region of the Eastern Cape 

144 Province, South Africa.  The Eastern Cape is at the confluence of four major vegetative 

145 groupings (Afromontane, Cape, Tongaland-Pondoland, and Karoo-Namib) reflecting 

146 biogeographically complex evolutionary histories.  It is located within the Maputaland-

147 Pondoland-Albany conservation area, which bridges the coastal forests of Eastern Africa to the 

148 north, and the Cape Floristic Region and Succulent Karoo to the south and west.  The 

149 Maputaland-Pondoland-Albany region is the second richest floristic region in Africa, with over 

150 8,100 species identified (23 % endemic), and 1,524 vascular plant genera (39 endemic).  

151 Vegetation in Mkambathi is dominated by coastal sour grassveld ecosystems, which dominate 

152 about 80 % of the ecosystem (Kerley et al. 1995; Shackleton et al. 1991), with small pockets of 

153 forest along river gorges, wetland depressions, and coastal dunes.  Dominant grasses in the 

154 Mkambathi reserve include the coastal Themeda triandra � Centella asiatica grass community, 

155 the tall grass Cymbopogon validas � Digitaria natalensis community in drier locations, and the 
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156 short-grass Tristachya leucothrix-Loudetia simplex community (Shackleton 1990).  Grasslands in 

157 Mkambathi have high fire frequencies, and typically burn biennially.  Soils are generally derived 

158 from weathered Natal Group sandstone and are highly acidic and sandy with weak structure and 

159 soil moisture holding capacity (Shackleton et al. 1991).  Climate is generally considered warm 

160 temperate, where average monthly minimum and maximum temperature in East London is 14 

161 and 23 ºC respectively, and precipitation is 921 mm yr-1 (1961 � 1990 average, S.A. Weather 

162 Service).  

163 We established a large-scale experimental site that included six 60 x 60 m plots arranged 

164 in a rectangular grid (Eastern Cape Parks and Tourism Agency Permit RA0081).  The site was 

165 surrounded by a fuel-removal fire-break and each plot was separated by at least 10 m for a total 

166 size of 3.75 ha for the entire site.  To account for grazing, a fence was constructed around three 

167 of these plots.   

168 Nutrient additions. Nutrient additions were applied to four plots whereas two plots received no 

169 fertilizer additions.  Of the four plots that received fertilization, two received nutrients evenly 

170 across the entire 60 x 60 m plot (�homogenous plots�) and the other two fertilized plots received 

171 nutrient additions within smaller subplots in a heterogeneous design (�heterogeneous plots�).  

172 Within heterogeneous plots, fertilizer was applied within subplots of three different sizes (1 x 1 

173 m, 2 x 2 m, and 4 x 4 m) that were replicated randomly across each plot (Fig. 1). Location of 

174 individual subplots was determined prior to field work using a Latin Hypercube random 

175 generator that optimizes the variability of lag distances among sampling plots and is ideal for 

176 geostatistical analysis (Xu et al. 2005).  There were a total of 126 subplots per plot that received 

177 fertilizer in the heterogeneous plots.  All sampling locations were geo-referenced with a GPS 
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178 (Trimble).  The number of sub-plot units at each scale was determined so as to equalize the total 

179 fertilized area at each sub-plot scale (i.e., six 4 x 4 m plots and 24, 2 x 2 m plots). 

180 To ensure aboveground grass biomass would respond to nutrient additions, we employed 

181 a dual (nitrogen (N) + phosphorus (P)) nutrient addition experiment.  Additional N was added as 

182 either ammonium nitrate (230 g kg-1 N) or urea (460 g kg-1) at a rate of 10 g m-2 yr-1 in a single 

183 application, following the protocols of Craine et al. (2008).  Additional P was added as 

184 superphosphate (105 g kg-1 P) at a rate of 5 g m-2 yr-1.  Dual addition (N+P) was chosen to 

185 increase the likelihood of treatment response and increase geostatistical power by reducing the 

186 number of treatments, thus increasing sample size.  Per unit area, levels of nutrient additions 

187 were constant among plots and subplots.  

188 Vegetation and Soil Sampling. One year following nutrient additions, a subset of subplots was 

189 sampled for soil and vegetation nutrient concentrations and biomass.  Sub-plots to be sampled 

190 were randomly selected prior to being in the field using the Latin Hypercube approach.  The 

191 approach allowed us to specify a balanced selection of subplots within each subplot size class 

192 (four 4 x 4 m, eight 2 x 2 m, and thirty-two 1 x 1 m). Within each subplot location that was 

193 revisited, we randomly selected locations for biomass measurement and vegetation clippings.  

194 Two locations were identified and flagged from within the 1 x 1 m subplots (center coordinate 

195 and a random location 0.5 m from center), four samples were identified and flagged from within 

196 the 2 x 2 m subplots, and eight samples were identified and flagged from within the 4 x 4 m 

197 subplots.  At each flagged location within sampled subplots, productivity was measured as grass 

198 biomass using a disc pasture meter (DPM; Bransby and Tainton, 1977) and grab samples of grass 

199 clippings were collected for foliar nutrient analysis, using shears and cutting to ground-level.  

200 Calibration of the DPM readings was determined using ten random 1 x 1 m subplots in each plot 
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201 (n = 60 total) that were not used for vegetation or soil harvesting, in which the entire biomass 

202 was harvested to bare soil.  Soil samples from the top 0 � 10 cm soil profile depth were collected 

203 adjacent to vegetation samples.  Due to logistical and financial constraints, these samples were 

204 collected in fenced plots only.  The A horizon of the Mollisols was consistently thicker than 10 

205 cm, so all samples collected were drawn from the A horizon.  Soil samples were shipped to 

206 BEMLab (Strand, South Africa) for nutrient analysis.

207 Laboratory Analysis. Biomass samples were separated into grasses and forbs, weighed, dried 

208 for 24 h at 60 °C, and reweighed.  Vegetation nutrient samples were dried, ground with a 40 mm 

209 grinding mesh, and then shipped to the Penn State Agricultural Analytical Laboratory 

210 (University Park, Pennsylvania; USDA Permit PDEP11-00029).  Grass P concentration was 

211 analyzed using a hot block acid digestion approach (Huang & Schulte 1985) and grass N 

212 concentration was measured with a Combustion-Elementar Vario Max method (Horneck & 

213 Miller 1998).  Soil N and C concentrations were determined on a LECO elemental analyzer 

214 (Leco Corporation, St. Joseph, MI).  Soil P was analyzed using acid extraction following the 

215 method of Wolf and Beegle (1995).  Soil pH was estimated using KCl extraction following 

216 Eckert and Sims (1995).   

217

218 Calculations and Statistics.  Aboveground grass biomass was estimated from DPM 

219 measurements, using linear regression to relate DPM estimates with harvested biomass at 

220 calibration subplots.  DPM estimates were significantly correlated with total grass biomass (R2 = 

221 0.76, p < 0.0001) (Supplmentary Material, Fig S1) and the resulting equation was then used to 

222 estimate biomass at the remaining 606 locations.   
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223 To test the scale of grass biomass response to fertilization (Objective 1), we used a 

224 maximum likelihood approach to quantify the spatial structure of biomass separately for each of 

225 the six empirical plots.  The approach assumes that the data (Y1 � Yn) are realizations of an 

226 underlying spatial process, and that the distribution of the data follows a Gaussian multivariate 

227 distribution:

228       (1)� ~ �(�1, � Σ +  �0�)
229 where  is the mean of the data multiplied by an n-dimensional vector of 1�s, C is the partial sill �
230 (total sill = C0 + C),  is an n x n spatial covariance matrix, C0 is the nugget effect, and I is an n Σ
231 x n identity matrix.  The i,jth element of  is calculated with a spatial covariance function , Σ �(ℎ��)
232 where   is the Euclidean distance between measurement points i and j.  An exponential ℎ��
233 covariance model was chosen for its relative simplicity.  The full equation for summarizing the 

234 second order moment for an element i,j is:

235     (2)�(ℎ��) = �0 +  � [exp(
‒ ℎ��� )]

236 where is the modeled spatial covariance for measurements i and j,  is the range parameter, �(ℎ��) �
237 and  is the range of spatial autocorrelation. The underlying spatial mean  may be held 3 ∗ � �
238 constant or estimated with a linear model across all locations.  We used the plot-level mean of 

239 the data for  (Table 1).  �
240 The measured soil and plant variables exhibited varying degrees of non-normality in their 

241 distributions, which violates the assumption of Gaussian stationarity within the underlying 

242 spatial data generating process.  To uphold this assumption, we transformed variables at each 

243 plot using a box-cox transformation (Box & Cox 1964):  

244   if  (3)�� = (��� ‒ 1)/� � ≠ 0
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245                 if �� = log (��)  � = 0

246 where  is an untransformed variable (e.g., biomass) at location i,  is the transformed variable, �� ��
247 and  is a transformation parameter.  We optimized the three spatial covariance model �
248 parameters and the transformation parameter (C0, C, ) with the maximum likelihood �, �
249 procedure. A numerical finite-difference approximation algorithm selected the set of parameters 

250 that maximized a normal multivariate log-likelihood function (more details in Diggle et al, 

251 2003). To approximate a sampling distribution of each parameter, a bootstrapping algorithm was 

252 used where a randomly sampled subset of data was inputted into the same maximum likelihood 

253 approach for 1000 iterations.  This provided a population of fitted parameters and models that 

254 was used to analyze the approximate distributions of each parameter for each plot.  The 

255 maximum likelihood optimization was cross-validated by removing a random sub-sample of 

256 measurements from the optimization and then using the optimized model to make predictions at 

257 locations where measurements were removed.  Observed vs. predicted values from the cross-

258 validation procedure were then analyzed at each plot separately. 

259 We used ordinary kriging (Cressie 1988) with the optimized spatial covariance model 

260 from the maximum likelihood analysis to estimate biomass across all plots.  Ordinary kriging is 

261 useful in this case, because we detected spatial structure in the biomass data when considering all 

262 biomass data at once (see Results).  The geoR package (Ribeiro Jr. & Diggle 2001) in the R 

263 statistical language (R Development Team, 2014) was used for all spatial modeling and kriging.

264 To compare spatial structure across empirical or simulated patterns (Objective 2), we 

265 compared the empirical semivariograms with neutral semivariogram models.  Essentially this 

266 approach allows us to compare empirical patterns across a set of null models in which the 

267 patterns are known.  The neutral semivariogram models were constructed for six simulated 
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268 landscapes (Fig. 2) to represent alternative landscape structures in response to nutrient addition 

269 and grazing: (a) fenced-unfertilized (biomass was assumed to be randomly distributed around the 

270 mean of the biomass from the fenced, unfertilized experimental plot), (b) fenced-heterogeneous 

271 (biomass of (a) was doubled for selected subplots, following the same subplot structure that was 

272 used in the field experiments), (c) fenced-homogenous (biomass of (a) was doubled at every grid 

273 cell to mimic an evenly distributed fertilization response), (d) unfenced-unfertilized (biomass of 

274 (a) was increased by 50 % in response to a combined effect of biomass loss by grazing and 

275 biomass gain by manure nutrient additions by herbivores; the increase occurred at a subset of 

276 sites to mimic random movement patterns of herbivores), (e) unfenced-heterogeneous (biomass 

277 equaled biomass of herbivory only, fertilizer only, or herbivory + fertilizer), and (f) unfenced-

278 homogenous (biomass of (d) was doubled at all grid cells to mimic the additive effects of 

279 herbivores and homogenous fertilizer additions).

280 The spatial structure of simulated landscapes was analyzed using the same maximum 

281 likelihood approach as described above and data was not transformed. The mean () was 

282 estimated using a constant trend estimate. To compare neutral (simulated data) and empirical 

283 (observed data) semivariogram models, we scaled the nugget and sill model parameters by 

284 dividing these parameters into the maximum observed semivariance value within each plot. 

285 The relationship between biomass and foliar N and P (Objective 3) was investigated 

286 using a linear mixed modeling approach, where herbivory, fertilizer type (i.e., heterogeneous, 

287 homogenous, and unfertilized), plot treatment, and subplot size were all included as random 

288 effects.  Accounting for experimental factors as random effects is a desirable approach for 

289 managing non-independence in data collected across different treatments that are not replicated 

290 (i.e., pseudoreplication) (Millar & Anderson 2004).   Multiple combinations of random effects 
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291 and fixed effects were tested, where foliar N and P represented fixed effects upon biomass, and 

292 model error was assumed to be Gaussian.  A normal likelihood function was minimized to 

293 estimate optimal regression coefficients for each mixed model formulation.

294 Our objective was to identify a mixed model that estimated biomass closely to 

295 observations, while also having the fewest possible parameters.  The Akaike�s Information 

296 Criterion (AIC) and Bayesian Information criterion (BIC) were used to compare different 

297 models, since they decrease with a negative log-likelihood function but increase with the amount 

298 of parameters used in the model (Burnham and Anderson, 2004).  After all model formulations 

299 were fitted to observed biomass and both AIC and BIC were calculated for each model, we chose 

300 the model with the lowest BIC as best representing the tradeoff of parsimony and prediction 

301 skill.  The BIC associated with all other models was subtracted into the lowest available BIC, 

302 and models with a difference in BIC > 2 were deemed significantly less favorable at estimating 

303 biomass and representing random effects than the model with the lowest BIC.  All mixed 

304 modeling was conducted with the R package lme4.  

305

306 RESULTS

307 Across plots, vegetation biomass ranged from 376  6.0 g m-2 (mean  1 Standard Error 

308 (SE), n = 124) in the unfenced, homogenously fertilized plot to 563  18.6 g m-2 (n = 128) in the 

309 unfenced, heterogeneously fertilized plot (Table 1).  Forb biomass was approximately 18 % of 

310 total biomass, with the remaining 82 % represented by grass.  Vegetation nutrient concentrations 

311 increased, and N:P ratios declined, following fertilization (Table 1). Vegetation N concentration 

312 ranged from 0.58  0.01 % to 0.75  0.04 %, averaging 0.60 ± 0.01 % in unfertilized plots versus 

313 an average of 0.72 ± 0.02 % in heterogeneously fertilized plots and 0.77 ± 0.02 % in 
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314 homogenously fertilized plots, an increase of 20 % and 28 %, respectively.  Vegetation P 

315 concentration averaged 0.037 ± 0.001 mg g-1 in unfertilized plots, 0.056 ± 0.002 mg g-1 in 

316 heterogeneously fertilized, and 0.057 ± 0.002 mg g-1 in homogeneously fertilized plots, an 

317 increase of 34 and 35%, respectively.  The N:P ratios ranged from a high of 17.9 in the fenced-

318 unfertilized plot to 12.1 in the unfenced-homogenously fertilized plot.  Vegetation C content 

319 averaged 44.6 ± 0.13 % across all six plots.  Soil P and N were also higher following fertilization 

320 in the fenced plots, where these variables were measured (Supplementary Table 1).  Soil C 

321 ranged from 2.49 ± 0.01 % to 2.55 ± 0.01 % across plots.  Soil pH was 4.27 in the unfertilized 

322 plot and 4.08 in fertilized plots.  Confirming reference conditions, pH measured in a single 

323 control plot in 2011 prior to fertilization was 4.21± 0.01. 

324 We had expected that biomass and vegetation nutrient concentrations following 

325 fertilization would be spatially autocorrelated at scales corresponding to the scale of the 

326 fertilization additions (Objective 1).  In heterogeneously fertilized plots this would be indicated 

327 by range distances from empirical semivariograms that corresponded to the hypotenuse distances 

328 of the subplot scales (i.e., 1 m, 2.83 m, and 5.66 m hypotenuse distances for the 1 x 1 m, 2 x 2 m, 

329 and 4 x 4 m subplots, respectively).  In homogenously fertilized plots or unfertilized plots, spatial 

330 structure would be observed at scales other than scales of the subplots (or not at all) and we 

331 would expect a higher degree of nugget variance (spatial structure expressed at scales finer than 

332 those that were measured).  Results from the empirical semi-variogram model of the 

333 heterogeneous plots show that there was a statistically significant patch structure at scales similar 

334 to the scale of the subplots in both of the heterogeneously fertilized plots (Fig. 3b,f).  Also 

335 confirming these expectations, in unfenced and fenced plots (unfertilized or homogenously 

336 fertilized) the range scale was significantly longer or shorter (Fig. 3; Supplementary Table 2). 
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337 Examining the sampling distributions of the semivariogram range values for vegetation 

338 biomass determined from the maximum likelihood and bootstrapping analysis, it can be seen that 

339 the range value most closely resembles that of the hypotenuse of the 2 x 2 m subplot, relative to 

340 the other subplots (Fig. 3d,h).  Higher spatial structure in the heterogeneous versus 

341 homogeneous or unfertilized plots can also be seen in the kriged plots of biomass (Fig. 4). These 

342 maps also demonstrated the higher mean levels of biomass in fertilized subplots relative to areas 

343 outside of subplots or relative to other plots. Normalized nugget/sill ratios were highest in the 

344 unfenced, homogeneously fertilized plot (3.89) with lower ratios (0-0.02) for heterogeneously 

345 fertilized or fenced treatments. 

346 Consistent with the biomass results, semivariogram parameters for vegetation % N and % 

347 P (Supplementary Table 3) generally supported expectations, at least for the heterogeneously 

348 fertilized and fenced plot, in which range scales were comparable to subplot scales in the (% P, ~ 

349 4.9 m, % N, ~ 5.8 m); however, other plots showed higher or lower ranges.  The proportion of 

350 nugget variance in semivariogram models of vegetation % N and % P was highest in the 

351 unfertilized plots, which supports expectations of higher spatial structure in fertilized treatments, 

352 as for biomass, but differences were variable among individual plots. However, semi-variograms 

353 of soil carbon and nutrients (Supplementary Table 3) showed few differences among model 

354 parameters among treatments where these were measured (fenced plots, only). In sum, 

355 differences in spatial structure that could be attributed to treatments were most evident for 

356 biomass, somewhat evident for vegetation % N and % P, and least evident for soil C or nutrients.  

357 To compare mean differences among plots (Objective 2), we compared normalized 

358 spatial model fits of neutral and empirical semi-variograms, which allowed us to quantify the 

359 relative influence of treatment responses to random processes not accounted for in the 
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360 experimental design. Results indicated that the range of autocorrelation in heterogeneous plots 

361 was similar to that found in the empirical semi-variograms and generally matched subplot scales 

362 (Fig. 5).  Interestingly, range scales were higher, and proportional nugget variance was greater in 

363 fenced plots, compared to unfenced plots.  This was an opposite pattern than that observed in 

364 empirical plots, in which grazing resulted in longer range scales and higher nugget variance.  

365 These results likely reflect processes not included in the neutral model.  Particularly, the neutral 

366 model was designed to mimic patterns in biomass using assumptions about herbivore movement, 

367 grazing, and manure additions, assuming they were additive to the effects of fertilization, 

368 whereas empirical results likely reflect complex interactions between grazing and fertilization.  

369 In this case, longer observed range scales in grazed versus ungrazed plots may reflect enhanced 

370 homogenization of biomass through grazing, an effect that was apparently greater than biomass 

371 enhancement from nutrient addition.  Nonetheless, the fact that heterogeneous plots were similar 

372 between fenced and unfenced plots indicates the strong scalar influence of nutrient additions 

373 relative to nutrient-herbivore interactions.

374 Addressing Objective 3, mixed models used to estimate biomass from N or P foliar 

375 concentrations, while treating plot and treatment as random effects, showed that biomass was 

376 best predicted by levels of foliar P, relative to foliar N alone or foliar N x P (Table 2).  Although 

377 foliar P alone did better than foliar N alone as a fixed effect, the difference was marginal (< 2 

378 BIC).  The �best� model uses only plot treatment type as a random effect, which outperformed 

379 model formulations using herbivory or fertilizer type and those with nested structures 

380 incorporating subplot size as random effects.

381

382 DISCUSSION
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383 Scale issues confound a complete understanding of ecosystem response to perturbations 

384 (Turner 2010).  This is particularly important in grassland or savanna systems in which the 

385 relative importance of factors affecting grass-woodland ecosystems are debated (e.g., Mills et al. 

386 2006; Sankaran et al. 2004; Scholes & Archer 1997), with some suggesting that these factors are 

387 nested hierarchically with spatial scale (Pellegrini 2016; Pickett et al. 2003; Rogers 2003).  

388 Results of this experiment yield data on the spatial scale of the nutrient-productivity relationship 

389 in a grassland coastal forest of the Eastern Cape, South Africa, and support the assertion that 

390 ecological processes are multi-scaled and hierarchical in response to nutrient additions.  

391 Specifically, we observed immediate (one year following fertilization) biomass response at the 

392 plot level due to nutrient addition and fencing.  Using spatial modeling, we discerned strong 

393 autocorrelation structure in biomass at subplot scales associated with scales of nutrient addition. 

394 The strongest evidence for spatial structure was observed at the 2 x 2 m scale.  Comparing this 

395 spatial structure between neutral and empirical semivariogram models, we were able to infer the 

396 relative importance of treatment conditions (nutrients and grazing) to random, spatially 

397 structured processes.  Traditional ecosystem-level approaches to quantify spatial pattern have 

398 focused on understanding extant patterns, in which processes are necessarily inferred or 

399 correlated. However, by examining spatial patterns under experimental conditions in which scale 

400 and treatment are controlled, we were able to relate ecological responses to known scales of 

401 perturbation.   

402 Subplots responded very strongly to nutrient additions at subplot scales, as evident from 

403 the kriged maps, showing that most of the increase in average plot biomass was due to large 

404 increases in subplot biomass.  One surprising result of our study was the detection of average 

405 greater biomass in plots that received heterogeneous fertilizer applications compared to plots that 
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406 received homogeneous fertilizer, despite the fact that fertilizer was added equally on a per area 

407 basis.  Several other studies have found higher biomass following heterogeneous nutrient 

408 applications.  For example, Day et al. (2003) observed that heterogeneous spatial patterns of 

409 nutrient supply in early stages of grassland development led to enhanced nutrient acquisition and 

410 biomass productivity.  Similarly, Du et al. (2012) observed increased plant biomass following 

411 heterogeneous nutrient fertilization in old-field communities in China.  Mechanisms for 

412 enhanced productivity following heterogeneous nutrient supply are not clear but may include 

413 shifts in root structure and function or shifts in species dominance, which were not analyzed 

414 here.  For example, roots may respond to patchiness in nutrient availability by modifying root 

415 lifespan, rooting structures and uptake rate to maximize nutrient supply (Hodge 2004; Robinson 

416 1994).  In turn, initial advantages afforded by plants in nutrient-rich locations may result in 

417 larger plants and advantages against competitive species, potentially via enhanced root growth 

418 (Casper et al. 2000).  

419 Observing vegetative response to nutrient additions is complicated by processes such as 

420 luxury consumption (Ostertag 2010), initial spatial patterns in soil fertility (Castrignano et al. 

421 2000), root distribution, signaling and allocation (Aiken & Smucker 1996), species and 

422 functional group shifts (Ratnam et al. 2008; Reich et al. 2003), or species� differences in uptake 

423 rates or resorption (Reed et al. 2012; Townsend et al. 2007).  Spatial patterns of finer-scale 

424 processes such as microbial community composition have also been explored and are known to 

425 influence rates of nutrient cycling (Ritz et al. 2004; Smithwick et al. 2005a).  In the case of 

426 heterogeneous nutrient supply, species competitive relationships across space may be enhanced 

427 (Du et al. 2012) and may result in increases in plant diversity (Fitter 1982; Wijesinghe et al. 

428 2005), although other studies have found little evidence to support this claim (Gundale et al. 
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429 2011). Together, these factors may explain the high unexplained variance of vegetation N and P 

430 concentrations that we observed and may account for the nugget variance in our empirical spatial 

431 models. However, effects of species composition shifts on plant biomass were likely minimal in 

432 this study given the short-term nature of the study (one year), although the patchiness in biomass 

433 in gridded fertilizer plots indicates size differences that are likely to modify competitive 

434 relationships in the future.  Unfortunately, the site burned one year following the experiment, 

435 precluding additional tests of these relationships.  

436 Understanding the length scales of key ecosystem properties is critical for determining 

437 optimal scales for studying ecological systems, interpreting change in ecological communities, 

438 and assessing landscape connectivity and ecosystem resilience (Johnson 2009; Turner et al. 

439 2012).  Autocorrelation structure may reflect influences of spatial interactions among 

440 individuals, patches, or abiotic gradients (Ettema & Wardle 2002; Jackson & Caldwell 1993a; 

441 Rietkerk et al. 2000; Smithwick et al. 2005b).  Our study showed that biomass responded 

442 strongly at all scales in which nutrients were added, but was strongest at the 2 x 2 m scale. 

443 Rietkerk et al. (2000) observed patchiness in soil moisture at three unique scales (0.5 m, 1.8 m 

444 and 2.8 m) in response to herbivore impacts.  Following fire in the Greater Yellowstone 

445 Ecosystem (Wyoming, U.S.A.), Turner et al. (2011) observed variation in soil properties at the 

446 level of individual soil cores, and Smithwick et al. (2012) observed autocorrelation in post-fire 

447 soil microbial variables that ranged from 1.5 to 10.5 m.  In savanna and boreal ecosystems, 

448 patchiness in soil resources at the level of individual shrubs and trees has been demonstrated by 

449 several studies (Dijkstra et al. 2006; Hibbard et al. 2001; Lechmere-Oertel et al. 2005; Liski 

450 1995; Pennanen et al. 1999). Obviously, other contingent factors (e.g., herbivory, historical fire, 

451 land use) are important for explaining grass species distributions and productivity patterns at 
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452 broader temporal and spatial scales, but our study suggests that intermediate length scales (<4 

453 m2) reflect ecological processes important for understanding patterns in grassland nutrition.  

454 Many studies have used stoichiometric relationships of N and P to infer nutrient 

455 limitation (Koerselman & Meuleman 1996; Reich & Oleksyn 2004), although there are limits to 

456 this approach (Ostertag 2010; Townsend et al. 2007).  Using this index, our N:P ratios of 

457 vegetation in reference plots would indicate co-limitation for N and P prior to fertilization (N:P > 

458 16).  Addition of dual fertilizer appeared to alleviate P limitation more than N, with N:P ratios 

459 reduced one year following treatment, indicating N limitation or co-limitation with another 

460 element (N:P < 14).  In addition, P was most strongly correlated with biomass in linear mixed 

461 effects modeling across all plots, after accounting for random effects of the experimental design. 

462 Ostertag (2010) also showed that there was a preference for P uptake in a nutrient limited 

463 ecosystem in Hawaii and suggested that foliar P accumulation may be a strategy to cope with 

464 variability in P availability.  Grazing may also preferentially increase grass P concentrations in 

465 semi-arid systems in South Africa (Mbatha & Ward 2010).  The cumulative impacts of 

466 preferential plant P uptake and P additions from manure may explain the high spatial structure 

467 observed in our grazed and fertilized plots.

468  Spatial heterogeneity may be critical for influencing ecosystem resilience to stressors by 

469 mediating disturbance spread (i.e., fire, invasive species dispersal) (Yang et al. 2008), explaining 

470 patterns in disease emergence (Wu et al. 2015), or promoting recovery and regeneration through 

471 maintenance of legacy structures and functions (Turner et al. 2012).  Understanding the 

472 importance of spatial pattern for maintaining soil fertility is increasingly relevant for agricultural 

473 management that incorporates precision technology as well as for ecosystem management 

474 activities that prioritize monitoring and restoration.  In South Africa, grasslands cover nearly 
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475 one-third of the country and maintain the second-highest levels of biodiversity, behind the Cape 

476 Floristic Region.  Grasslands of Mkambati are representative of ancient grasslands that are under 

477 threat globally, yet posses high levels of species endemism and provide significant ecosystem 

478 goods and services (Bond 2016). Grasslands in southern Africa are expected to undergo 

479 significant losses in biodiversity in coming decades due to increasing pressure from agricultural 

480 development and direct changes in climate (Biggs et al. 2008; Huntley & Barnard 2012).  For 

481 example, losses in critical African bird species in fynbos and grassland biomass are expected to 

482 be 30 � 40 % lower by 2085 as a result of projected climate change, with range reductions > 60 

483 % in many cases. As a result of these pressures, understanding the factors that regulate 

484 ecosystem productivity, and the scales at which they operate, is critical for guiding ecosystem 

485 management activities aimed at maintaining landscape sustainability.

486

487 CONCLUSIONS

488 This study provided an opportunity for direct hypothesis-testing of the influence of 

489 spatial pattern on ecosystem processes, providing an alternative to studies in which spatial 

490 autocorrelation is observed post-hoc or otherwise confounds complex ecosystem dynamics.  

491 Specifically, spatial models were used to test the scale at which vegetation responded to nutrient 

492 additions within plots and we compared these model parameters to those determined from model 

493 parameters from simulated landscapes using replicated neutral models.  Biomass responded to 

494 nutrient additions, with spatial autocorrelation of the biomass response highest at the 2 x 2 m 

495 scale. Comparison of empirical and simulated neutral models, confirmed that this length scale 

496 accounted for the majority of the spatial structure in the observations.  Vegetation P 

497 concentrations were elevated more than vegetation N suggesting plant P preference or luxury 
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498 consumption, although vegetation nutrient concentrations exhibited lower spatial structure than 

499 that observed for biomass.  Finally, this study was undertaken in a nature reserve in which 

500 grasslands are being actively managed to meet multiple management objectives including 

501 wildlife management and biodiversity.  These results indicate strong coupling between soil 

502 nutrients and aboveground function which should be considered in vulnerability assessments that 

503 consider grassland responses to shifts in climate and management activities.   

504
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Table 1(on next page)

Plot-level biomass and vegetation nutrient concentrations.

Mean (M � �������� ����� 	
��� ������� ���������� � �������������� ���������� �

concentration, and N:P ratios across experimental plots in Mkambathi Nature Reserve, one

year following nutrient fertilization.
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1

Treatment

Average Biomass 

± 1 SE (g m-2)

Average N 

± 1 SE (%)

Average P 

± 1 SE (%) N:P n

Fenced

   Unfertilized
411.9 ± 9.75 0.646 ± 0.024 0.036 ± 0.001 17.9 134

   Heterogeneous 542.4 ± 15.05 0.747 ± 0.041 0.048 ± 0.002 15.6 120

   Homogeneous 456.2 ± 8.28 0.710 ± 0.014 0.054 ± 0.002 13.2 117

Unfenced

   Unfertilized

483.6 ± 13.70 0.576 ± 0.011 0.038 ± 0.001 15.2 132

   Heterogeneous 562.6 ± 18.60 0.775 ± 0.015 0.064 ± 0.002 12.1 128

   Homogeneous 375.4 ± 5.96 0.722 ± 0.017 0.059 ± 0.002 12.2 124

2
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Table 2(on next page)

Mixed model results comparing biomass to foliar nutrients.

Results of the mixed model relating biomass to foliar nutrients, where herbivory, fertilizer

type, plot treatment, and subplot size were all tested as random effects; foliar N and P

represented fixed effects upon biomass, and model error was assumed to be Gaussian. A

normal likelihood function was minimized to estimate optimal regression coefficients for each

mixed model formulation. Both Akaikem� �����������  ���!���� "#� $ ��% &�'!���� �����������

criterion (BIC) were used to compare different models. Delta (c$ �!(�!�!��� %���!�!�)!� �� &� 

between the current model and the model with the lowest BIC.
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1

2

3 Model DF AIC BIC ∆
Random Effects

Plot 5 1092.4 1114.2 0.0

Herbivore 5 1190.1 1211.9 97.7

Fertilizer 5 1100.7 1122.5 8.3

Plot | Sub-Plot 6 1090.4 1116.5 2.3

Herbivore | Sub-Plot 6 1188.6 1214.7 100.5

Fertilizer | Sub-Plot 6 1102.7 1128.8 14.6

Fixed Effects

N + P 5 1090.3 1112.1 5.3

P 4 1089.8 1107.3 0.4

N 4 1090.7 1108.2 1.3

N : P 6 1092.3 1118.5 11.6

N + P + Sub-Plot 6 1092.3 1118.5 11.6

N + P : Sub-Plot 8 1095.6 1130.5 23.6

P + N2 5 1091.6 1113.4 6.6

N + P2 5 1089.7 1111.5 4.7

N2 + P2 5 1091.1 1113.0 6.1

N2 4 1093.3 1110.8 3.9

P2 4 1089.4 1106.9 0.0
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1

Experimental design

Overview of experimental design based on Latin Hypercube sampling used to identify subplot

locations to receive fertilizer in the heterogeneous plots.
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2

Spatial maps of neutral models

Spatial maps of neutral models used to simulate vegetation biomass for the following

conditions: (a) unfenced, unfertilized, (b) Unfenced, heterogeneously fertilized, (c) Unfenced-

homogeneously fertilized, (d) Fenced, unfertilized, (e) Fenced, heterogeneously fertilized, (f)

Fenced, homogeneously fertilized.
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3

Empirical semivariograms

Empirical semi-variograms of vegetation biomass for each plot: (A) Unfenced, unfertilized, (B)

Unfenced, Heterogeneously Fertilized, (C) Unfenced, homogeneously fertilized, (E) Fenced,

unfertilized, (f) Fenced, heterogeneously fertilized, (G) Fenced, homogeneously fertilized.

Shaded lines represent semi-variogram models fitted during the bootstrapping procedure.

Dashed vertical line represents the range value. Also shown: the sampling distribution of the

range parameter for heterogeneously fertilized plots that were either (D) Unfenced, or (H)

Fenced. The distribution was calculated with a bootstrapping approach with maximum

likelihood optimization. Dashed vertical lines represent the hypotenuses of the 1x1 m (1.4),

2x2 (2.8), and 4x4 (5.7) sub-plots.
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4

Kriged biomass map.

Kriged map of biomass using ordinary kriging with a spatial covariance model optimized by a

maximum likelihood analysis: (A) Unfenced, unfertilized, (B) Unfenced, heterogeneously

fertilized, (C) Unfenced, homogeneously fertilized, (D) Fenced, unfertilized, (E) Fenced-

heterogeneously fertilized, (F) Fenced, homogeneously fertilized.
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5

Semivariograms from neutral models.

Simulated semivariograms of vegetation biomass for each plot from neutral landscape

models: (A) Unfenced, unfertilized, (B) Unfenced, heterogeneously fertilized, (C) Unfenced,

homogeneously fertilized, (D) Fenced, unfertilized, (E) Fenced, heterogeneously fertilized, (F)

Fenced, homogeneously fertilized. Shaded lines represent semi-variogram models fitted

during the bootstrapping procedure. Dashed vertical line represents the optimal range value.

Also shown: the sampling distribution of the range parameter for heterogeneously fertilized

plots that were either (D) Unfenced, or (H) Fenced. The distribution was calculated with a

bootstrapping approach with maximum likelihood optimization.
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