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Parameter estimation in tree graph metabolic networks

Laura Astola, Hans Stigter, Maria Victoria Gomez Roldan, Fred van Eeuwijk, Robert D Hall, Marian Groenenboom, Jaap J. Molenaar

We study the glycosylation processes that convert initially toxic substrates to nutritionally

valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum

lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential

equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of

linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the

catalytic rates, which are affected among other factors by kinetic constants and enzyme

concentrations, are changing in time and with the approaches just mentioned, this

phenomenon cannot be described. Another problem is that, in general these kinetic

coefficients are not always identifiable. A third problem is that, it is not precisely known,

which enzymes are catalyzing the observed glycosylation processes. With several hundred

potential gene candidates, experimental validation using purified target proteins is

expensive and time consuming. We aim at reducing this task via mathematical modeling

to allow for the pre-selection of most potential gene candidates. In this article we discuss a

fast and relatively simple approach to estimate time varying kinetic rates, with three

favorable properties: Firstly, it allows for identifiable estimation of time dependent

parameters in networks with a tree-like structure. Secondly, it is very fast compared to the

usually applied methods, since it is not based on an iterative scheme. Thirdly, by

combining the metabolite concentration data with a corresponding microarray data, it can

help in detecting the genes related to the enzymatic processes. By comparing the

estimated time dynamics of the catalytic rates with time series gene expression data we

may assess potential candidate genes behind enzymatic reactions. As an example, we

show how to apply this method to select prominent glycosyltransferase genes in tomato

seedlings.
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ABSTRACT12

We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable

metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate

the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular

choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics.

In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme

concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot

be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A

third problem is that, it is not precisely known, which enzymes are catalyzing the observed glycosylation

processes. With several hundred potential gene candidates, experimental validation using purified target

proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to

allow for the pre-selection of most potential gene candidates.
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In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with

three favorable properties: Firstly, it allows for identifiable estimation of time dependent parameters in

networks with a tree-like structure. Secondly, it is very fast compared to the usually applied methods,

since it is not based on an iterative scheme. Thirdly, by combining the metabolite concentration data with

a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes.

By comparing the estimated time dynamics of the catalytic rates with time series gene expression data

we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to

apply this method to select prominent glycosyltransferase genes in tomato seedlings.
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INTRODUCTION33

In this paper we study metabolic network inference from given biological time-series data. The two main34

ingredients in general metabolic pathway inference are the reconstruction of the network topology and the35

estimation of the parameters involved. When the network is large and the concentrations of intermediates36

are unknown, or when there are no time series data available, one may still study the fluxes by setting37

up stoichiometric models for flux balance analysis Varma and Palsson (1995); Stelling et al. (2002);38

Orth et al. (2010). If time-series data of metabolites are available ordinary differential equations (ODEs)39

can often provide a suitable model Chen et al. (2010); Chou and Voit (2009); Srinath and Gunawan40

(2010); Hatzimanikatis et al. (1996). If also the enzymes involved are known, it is customary to use41

enzyme-kinetic models Steuer and Junker (2009); Schallau and Junker (2010); Liebermeister and Klipp42

(2006) with Michaelis-Menten kinetics, although the reliability of this approach has been questioned,43

especially when applied to in vivo measurements Savageau (1995); Hill et al. (1977). When (part of)44

the catalytic rates are not known, linear ODEs Astola et al. (2011) and general biochemical systems45

theory Voit et al. (2005) can be used. When the network topology is completely unknown, the situation46
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is more complicated, although some recent studies attempt to tackle this problem using methods based47

on genetic algorithms Schmidt et al. (2011). Still, the uniqueness of the reconstructed network is often48

compromised and the identifiability of the system remains an issue that needs to be investigated Craciun49

and Pantea (2008); Srinath and Gunawan (2010). Model identifiability is an essential prerequisite in50

making any conclusions from (by default limited number of) observations. The foremost categories51

of identifiability are the structural and the practical identifiability, the former related to the symbolic52

expression of the model itself and the latter related to the amount and nature of the available data. We will53

test our models and data on both conditions.54

Here we discuss a special and relevant class of network topologies, which are so-called tree networks55

and show that in such networks linear models yield parameter estimates that are unique in the structural56

sense. As the name suggests, a tree graph looks like a branching tree where the edges (arrows) are directed57

so that the nutrients flow from root to leaf (cf. Fig. 1).58
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Figure 1. A: a graph with a tree structure. B: this graph contains a cycle and is thus not a tree graph.

The catalytic rate corresponding to reaction between node i and j is indicated as ki j. Here the node X0

represents a boundary node connecting this network to the surrounding larger network

As in real trees the branches do not form cycles. By a cycle we mean any closed chain of edges59

regardless of the directions of the edges. In many biological pathways, such as in the flavone and the60

flavonol biosynthesis KEGG (2010), a tree graph captures the network of the enzymatic reactions. Indeed61

metabolic networks with tree structures constitute a relevant class, including for example large parts of62

the biosynthetic pathways of, e.g., γ-carotene, limonene, ansamycin and puromycin etc.KEGG (2010).63

The paper is organized as follows: in section 1 to set the stage we review our earlier work in modeling64

metabolic pathways using time-invariant systems of linear differential equations and discuss the particular65

properties of tree-graph networks. In section 2 we consider the essential problem of model identifiability66

and show that our candidate networks satisfy the criteria for structural and practical identifiability. In67

section 3 we propose a novel application for our time-variant estimation scheme by showing how it can68

be employed in finding the most likely catalysts from a large set of enzymes.69
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1 PARAMETER ESTIMATION70

1.1 Parameter Estimation in general networks71

In this section we consider the parameter estimation problem in general linear time-invariant ordinary72

differential equation (LTI-ODE) systems. For convenience, we first briefly sketch the approach when the73

catalytic rates are constants over time as in our previous work Astola et al. (2011).74

We recall that any network can be represented as a graph, where nodes are connected by edges when75

there is some interaction between these nodes. In a metabolic network a node represents a substrate or76

a product, and a directed edge from node i to node j means that i can be converted to j by enzymatic77

activity. To an edge from node i to j, we assign a weight, i.e., the catalytic rate ki j ≥ 0, which represents78

the rate of product formation. In parameter inference one estimates the ki j from data.79

Denoting the concentration of substrate i at time t as Xi(t), a general time-invariant linear ODE model

with a constant nonhomogeneous term, satisfying the mass conservation law, can be written as

Ẋi(t) =−∑
j 6=i

ki jXi(t)+∑
j 6=i

k jiX j(t)+bi , (1)

for i = 1, . . . ,n, with

bi =

{

constant if i = 1

0 otherwise
. (2)

The first summation in (1) stands for the edges leaving Xi, the second for the incoming edges and bi for the

possible in or outflow to the system. To simplify the notation, we introduce a matrix A with components

given by
{

Ai j = k ji, i 6= j

Aii =−∑ j 6=i ki j,
(3)

Then, (1) becomes

Ẋi(t) =
n

∑
j=1

Ai jX j(t)+bi , i = 1, . . . ,n . (4)

Equation (4) can be rewritten in a compact matrix form as

Ẋ(t) =








Ẋ1(t)
Ẋ2(t)

...

Ẋn(t)








=








−∑ j 6=1 k1 j kn1 b1

k12 kn2 0
...

...

k1n −∑ j 6=n kn j 0

















X1(t)
X2(t)

...

Xn(t)
1










= Ã · X̃(t) , (5)

where X̃(t) is obtained from X(t) by appending an extra 1 and matrix Ã is obtained from A by extending80

it with an extra column containing the constant b1.81

To reconstruct a metabolic network from time-series measurements, we have to estimate the reaction

rates ki j, i.e., the weights of the edges in the network and the flow terms bi. In view of (5), it is sufficient

to estimate the (n+1)× (n+1) matrix Ã. We denote the data, i.e., measured concentrations of substrate i

at time points t j, j = 1, . . . ,m, as an (n×m) matrix X. Estimates of the derivatives of the data curves we

will store in a matrix Ẋ. To compute these estimates we may proceed in two ways. First, construct two

n×m data matrices X0,X1 as follows

X0 =








X1,m−1 X1,m−2 . . . X1,0

X2,m−1 X2,m−2 . . . X2,0

... . . .

...

Xn,m−1 Xn,m−2 . . . Xn,0








,X1 =








X1,m X1,m−1 . . . X1,1

X2,m X2,m−1 . . . X2,1

... . . .

...

Xn,m Xn,m−1 . . . Xn,1








, (6)

where m is the number of measurements. The matrix

Ẋ≡
1

∆t
(X1 −X0) , (7)
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could then be used as an approximation for Ẋ . For simplicity we assume the time grid to be equidistant82

with time step ∆t. If this is not the case, the necessary modifications are easily implemented.83

Secondly, we may use an alternative and often better approach to obtain approximations for Ẋi by84

fitting splines to the time series data Xi Zhan and Yeung (2011). To obtain curves that interpolate the85

data faithfully, we require that the distances between the curves and the measurements are minimal and86

that at the same time the curves are smooth. To achieve this we fit P-splines, which are B-splines with a87

penalization for non-smoothness Eilers and Marx (1996).88

From these splines, we evaluate the derivative estimates at time points t j. These estimates are then

used as entries in the matrix Ẋ. Having at hand an estimate for matrix Ẋ, the problem of network inference

comes down to finding the the matrix Ã from the equation

Ẋ= ÃX̃ , (8)

in which Ẋ is known and X̃ is obtained from the data matrix X by extending this with an extra row89

of ones. However, solving Ã directly from (8) often results in over-fitting, since all possible edges are90

included in the modeled network. Another serious shortcoming of such a matrix (pseudo-) inversion91

approach is the fact that we cannot control the positivity of the reaction rates. Although in Schmidt et al.92

(2005) negative coefficients were interpreted as inhibition of the compounds, in many biological pathways,93

negative coefficients are not permitted. Thus we take a more general approach in which one can exclude94

all edges that are biologically not acceptable, and in which one can constrain the reaction rates to be95

positive, without substantially compromising computation time.96

To this end, we reformulate the equation as a minimization problem:

argmin
Ã

(
||Ẋ− ÃX̃||

)
. (9)

The matrix norm used here is the Frobenius norm:

||Ã||=

√
n

∑
i=1

m

∑
j=1

Ã2
i j . (10)

This alternative formulation allows inclusion of expert knowledge in a simple way. We put Ãi j = 0, when97

an edge from node i to node j cannot exist. Nearly all mathematical software packages (Mathematica,98

Matlab, Maple, etc. ) can numerically find the minimizer Ã (and thus the reaction rates ki j and the flow99

term b1) with the constraint that ki j ≥ 0.100

1.2 Parameter estimation in tree networks101

As described in the introduction, tree networks are networks, whose graphs resemble trees in that they102

branch away from the root and the directions of the edges always point from the root towards the leaves.103

In Fig. 1 we presented, using an example, the difference between a tree and a non-tree graph. In a kinetic104

reaction system with a tree network, the parameters can be uniquely estimated even when they are time105

dependent. We could write this down in general. However, the proof is based on one central idea. We feel106

that the reader gains more insight if we simply show this idea through an example. To that end we use as107

example the network in the left hand side of Fig. 1. The extension to the general is straightforward.108

For the network on the left in Fig. 1, we have the following kinetic mass balance model:













Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7













=













−(k1,2 + k1,3) 0 0 0 0 0 0 0 b1

k1,2 −(k2,4 + k2,5) 0 0 0 0 0 0 0

k1,3 0 −(k3,6 + k3,7) 0 0 0 0 0 0

0 k2,4 0 0 0 0 0 0 0

0 k2,5 0 0 0 0 0 0 0

0 0 k3,6 0 0 0 0 0 0

0 0 k3,7 0 0 0 0 0 0



























X1

X2

X3

X4

X5

X6

X7

1















, (11)

where the constant b1 represents the influx into the system and the ki, j are the catalytic rates. Note that109

there are as many unknown parameters (ki, j, b1) as there are measured variables Xi(t j). Therefore, as can110

be directly verified, we can rewrite the previous matrix equation by exchanging the Xi and ki, j as follows:111
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











Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7













=













1 −X1 −X1 0 0 0 0

0 X1 0 −X2 −X2 0 0

0 0 X1 0 0 −X3 −X3

0 0 0 X2 0 0 0

0 0 0 0 X2 0 0

0 0 0 0 0 X3 0

0 0 0 0 0 0 X3













︸ ︷︷ ︸

matrix B













b1

k1,2

k1,3

k2,4

k2,5

k3,6

k3,7













. (12)

We immediately see that B is an upper triangular matrix since the entries below the diagonal are zero.

This implies that the determinant of the matrix B in (12) is the product of the entries on the diagonal:

X2
1 ·X2

2 ·X2
3 , and thus unequal to 0 since Xi 6= 0, ∀i = 1, . . . ,n. So, B is invertible and the system of

equations has the unique solution.













b1

k1,2

k1,3

k2,4

k2,5

k3,6

k3,7













=













X−1
0 X−1

0 X−1
0 X−1

0 X−1
0 X−1

0 X−1
0

0 X−1
1 0 X−1

1 X−1
1 0 0

0 0 X−1
1 0 0 X−1

1 X−1
1

0 0 0 X−1
2 0 0 0

0 0 0 0 X−1
2 0 0

0 0 0 0 0 X−1
3 0

0 0 0 0 0 0 X−1
3













︸ ︷︷ ︸

matrix B−1













Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7













(13)

2 MODEL IDENTIFIABILITY112

2.1 Structural identifiability113

A general problem in parameter estimation is that it is difficult and sometimes even impossible to be sure114

that the estimated parameters are unique. If the model is structurally unidentifiable, there is an infinite115

number of parameter sets that give equal results. This is a substantial challenge, especially when the116

network structure is not known, since an overly complex network can result in over-fitting. This problem117

is not present in any of the (biologically) potential networks as sketched in Fig. 2, since as tree graphs118

these all turn out to be locally structurally identifiable.

Figure 2. Here we depict all biologically feasible networks of the quercetin glycosylation pathway.

119
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2.2 Practical identifiability120

Structural identifiability does not imply practical identifiability and therefore we have studied the practical121

identifiability of the parameters in our system by means of profile likelihood Raue et al. (2009). We122

learned that all the kinetic parameters connecting substrates and products with concentrations above123

detection limit show also practical identifiability. Another observation is that if we allow a product to124

decay without constraints, the practical identifiability as well as the tree structure of the graph is lost.125

The inference method proposed here is by no means restricted to tree networks, but in case the network126

has a tree structure, the parameters can be estimated in an unambiguous way. We summarize the general127

work flow for the proposed parameter inference in the schematic diagram in Fig. 3.
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Figure 3. A schematic view of the inference procedure.

128

3 EXTENSIONS AND NOVELTIES129

3.1 Time varying kinetic rates130

In earlier work we developed a fast method to reconstruct metabolic networks Astola et al. (2011). The131

idea in this approach was to substitute the measurements directly into the model equations and not only in132

the objective function. This approach had as a limitation that all parameters were assumed to be constant133

in time. Here we extend our previous approach by allowing the catalytic rates to be time dependent, to134

better reflect the real situation, since in practice the enzyme concentrations are fluctuating in time. This135

has also immediately resulted in reconstructions that better fit the observed data as can be seen in Fig. 4.136

While the standard practice in enzyme kinetics is to either use constant catalytic rates in mass balance137
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Figure 4. In this figure we have used three different models to reconstruct a flavonol concentration data

indicated as dots. The compounds shown here belong to a pathway with putative structure as on the left in

Fig. 1. The colors of the reconstructed curves correspond to those of the dots. On the left hand side, a

reconstruction with a tree network (as in Fig. 1) and constant catalytic rates. Middle, a reconstruction

with the full network (all nodes are connected to each other) and constant catalytic rates. Note that the fit

is still poor, although the number of parameters is much higher than in the case on the left. On the right, a

reconstruction with the same tree structure as in the leftmost case but with time dependent catalytic rates

equation or to model product formation through a Hill function Goutelle et al. (2008) such as in the138

Michaelis-Menten equation Savageau (1995), none of these take into account the fact that the enzyme139

concentration is also changing in time. Since we also want to study the relation of gene expression and140

enzyme concentration in time, we need to capture their dynamics.141

As the catalytic rate is now modeled as a function in time, and not as a constant, it is no longer possible142

to infer this with the standard procedure of solving for those parameters that fit the ordinary differential143

equations to data in the sense of maximum likelihood. We cannot clearly separate the substrate/product,144

enzyme concentrations and noise, for we have no measurements of the enzyme concentrations. To solve145

them, we would have to impose a model on them, which we don’t have a priori. A reasonable approach146

in this situation is to first estimate a model for the metabolite concentrations on which we have several147

measurements. By fixing the concentrations first using spline approximations, we may then estimate the148

trends in the enzyme concentrations. This method assumes that the solutions are rather smooth. If this is149

not the case and the sampling frequency is low, the derivatives obtained by fitting splines can introduce150

errors that distort the reconstruction.151

3.2 Time dependent parameter estimation152

In this section we present three different schemes to estimate the ki j(t) in model (4). In (9) we used the153

data at all time points simultaneously to estimate the time independent parameters. However, a remarkable154

feature of tree structured networks is that the data at one time point is already enough to calculate unique155

estimates for the parameter values at that particular time point. This is immediately clear from (13): as156

soon as we have estimates for the time derivatives Ẋ(tk) available, we may calculate estimates for the157

ki j(tk).158

Scheme 1. To estimate the derivatives at some time point one still needs the data of neighboring time points.159

So, the first step in this scheme is to fit, e.g., P-splines to the data time series O’ Sullivan (1986);160

Eilers and Marx (1996). From these splines we calculate estimates for the time derivatives Ẋi(tk).161

Then by substituting these estimates as well as the measurements into equation (4), we are left with162

a set of linear equations to solve ki j(tk) and b1 at all times tk. Finally, for smooth and continuous163

catalytic rates, one may fit, e.g., a second order polynomial through these estimates.164

Scheme 2. An alternative approach in which the number of parameters is smaller than in scheme 1, is to

assume that the functions ki j(t) can be adequately represented as polynomials in time of some order.

In practice order 2 is often sufficient. With this choice we have then:

ki j(t) = αi jt
2 +βi jt + γi j . (14)

This implies that per ki j we have 3 parameters to be estimated using the whole time series data.165

By substituting (14) into matrix Ã in (9) we then obtain estimates for αi j, βi j and γi j, and thus for166

ki j(t).167
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Scheme 3. As in the previous scheme, we assume (14). We construct an objective function like the following:

∑
k

||X(tk)−X(tk)|| , (15)

which is the sum of the distances between X(tk) and the measurements. We look for a matrix Ã,168

such that the solutions Xi(t) to (4) minimize this objective function. Using suitable optimization169

algorithm we simultaneously estimate Xi, ki j, and b1.170

To compare the accuracy and speed of these three schemes we applied them using as test networks random171

tree networks (see top row in Fig. 5) that have equal numbers of nodes and edges as the network on the172

left in Fig. ??.

Figure 5. These networks are examples of the networks that were used in the simulations, in which we

compared the three different parameter estimation schemes. Top row: tree networks. Bottom row:

non-tree networks.

173

In these networks, we simulated time series data with time varying catalytic rates. To generate174

artificial data, we assigned random values to αi j,βi j and γi j in a range, such that the resulting solutions175

have approximately the same range as the metabolite concentration data for quercetin glycosides measured176

in tomato seedlings (cf. Fig. 4). To assess the reconstruction power of the three schemes, we also tested177

them on networks that are not trees (see bottom row in Fig. 5). The corresponding data generation process178

is the same but the network models have more edges and thus cycles. In the first set of simulations we179

used noiseless data and in the second set we added ±10% uniformly distributed noise.180

As can be seen from Fig. 6 and 7 scheme 1 and scheme 2 give almost equal results concerning the181

residuals. In principle they are solving the same optimization problem, only scheme 1 first solves the point182

wise rate values and then fits a polynomial, whereas scheme 2 searches for a polynomial-valued rates183

that fit to the data at each point. We measured the accuracy of the parameter estimation by computing the184

Frobenius norm (10) of the difference between the original parameter matrix used in simulation and the185

reconstructed matrix. Although scheme 3 can result in quite good fit to data, this does not imply that the186

parameters are estimated accurately. In terms of accuracy, scheme 2. performed best in our simulations.187

This is also intuitive, since scheme 2 is optimizing the polynomial-valued parameters to fit the whole time188

series and thus likely to be more robust against errors in point wise derivatives that are due to the initial189

spline approximation. Besides the actual estimation accuracy, also computation times are relevant. In190

terms of computation time, scheme 1 is the fastest and scheme 3 is around 1000 times slower. Notice that191

the comparisons in Fig. 6 and 7 were done in a setting where equal parameter constraints were given to192

the solvers and the parameters were estimated using constrained non-linear optimization (NMinimize193

in Mathematica) choosing for the fast Nelder-Mead algorithm.194

This result is more or less to be expected, since when the data is reasonably accurate, it does not195

always make sense to re-estimate the data by using it as an unknown variable in the equations of the196

system. Rather, it pays off to substitute the data directly into the equations reducing the number of197

unknown elements. Since our method is based on initial fitting of splines, the major sensitivity is indeed198

with respect to data. This was also confirmed by the sensitivity analysis we conducted.199

Our network models, although relatively small, belong to the general group of the so-called sloppy200

biochemical models Gutenkunst (2008). The range of eigenvalues of the Hessian of the residual (between201

predicted and measured values) varies from 10−4 to 105. We remark that since we are considering time202

varying parameters, to compute the derivatives at the point yielding minimal residual, we have taken203

time-averages of point-wise derivatives w.r.t. a parameter at each data point. Eigenvectors corresponding204

to very small eigenvalues, implying sloppiness in sensitivity, all point towards those parameters that are205
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Figure 6. We have compared three different reconstruction schemes in 150 simulations, when the

underlying network has a tree structure. In each sub-figure the percentual histograms of simulation results

are plotted. On the left: the errors in the estimated catalytic rates, using noiseless data. Middle: similarly

but with 10% uniformly distributed random noise added to data. Right: the computation times in

noiseless case. We observe that although scheme 3 occasionally yields a very precise solution, this

happens relatively rarely. In terms of network inference, scheme 1 (corresponding to the method

proposed here) and 2 give consistently lower error rates. The computation times for scheme 1 and scheme

2 overlap here, and for this reason only the latter is visible. The error rates and timings in all three figures

are on logarithmic scales.
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Figure 7. We have compared three different reconstruction schemes in 100 simulations, when the

underlying network has a non-tree structure. Left: the errors in the estimated catalytic rates. Middle:

similarly with 10% uniform random noise added to data. Right: computation times when data are

noiseless. We observe a substantial growth in computation times used up by scheme 3, compared to the

situation where the networks had tree structures. The computation times for scheme 1 and scheme 2

overlap and thus only the latter is visible. The error rates and timings in all three figures are on

logarithmic scales.
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Figure 8. The mean expression levels of three different putative glucosyl transferase (GT) genes and the

estimated catalytic rate for reaction that converts quercetin to quercetin-3-O-glucoside. Assuming that the

expression levels correlate with the predicted enzymatic activity, the leftmost gene looks promising in that

the two have almost identical slopes and curvatures, whereas the rightmost gene seems to have a trend

opposite to that of the catalytic rate.

associated with network nodes where the measured metabolite concentrations are very low. This is logical206

since the parameters associated with concentration values close to zero have little effect on the residual,207

because our objective function does not contain the standard deviation term in the denominator. By this208

choice we explicitly wanted to avoid that those measurements that are close to noise level shall have equal209

weight with the more abundant ones.210

9/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2077v1 | CC-BY 4.0 Open Access | rec: 26 May 2016, publ: 26 May 2016



4 PARAMETER INFERENCE AS A MEAN TO SELECT ACTIVE GENES211

In addition, as a potentially powerful application, we show how we may infer the gene candidates likely to212

be involved in the enzymatic reactions. This can be done by comparing estimated time dependent catalytic213

rates with simultaneously measured gene expression data. If, according to the model, the formation214

of a metabolite necessitates higher/lower enzyme concentration, this should be also observable in the215

expression level of the gene that codes for this enzyme. Using this heuristics we were able to select from216

a large set of potential genes the most likely candidate genes for further experimental validation of their217

functioning in particular reactions. In view of this application small inaccuracies in parameters are not218

detrimental, since here we are mainly interested the dynamic trends of the catalytic rates instead of their219

precise numeric values.220

As an example we take the quercetin glycosylation pathway in cotyledons, occurring during the221

development of tomato seedlings Koes et al. (1994). Quercetin glycosides are a subset of flavonoids,222

which are plant secondary metabolites naturally produced by plants. Flavonoids are being intensively223

studied for their proposed beneficial effects on prevention of chronic diseases Bovy et al. (2007); Rein224

et al. (2006); Moon et al. (2006).225

We have measured the concentrations of several quercetin derivative compounds accumulating in226

cotyledon- and hypocotyl tissues. We have daily measurements from day 5 after sowing up to day 9. The227

same sample used for the metabolite analysis with liquid chromatography mass spectrometry were used228

for gene expression analysis. The expression levels of genes, putatively involved in the glycosylation of229

quercetin, were quantified using microarray analysis. Glycosyltransferases (GTs) are members of the230

multigene superfamily in plants that can transfer single or multiple sugars to various plant molecules,231

resulting in the glycosylation of these compounds Wang (2009). To date, it is not known exactly which232

GTs catalyze each glycosylation reaction. With more than 200 GT candidates an experimental validation233

of every single GT is costly. Therefore we wanted to make a pre-selection of the potentially strongest234

gene candidates, using mathematical modeling and simulations. We use the heuristics that if the kinetic235

ODE model describes the system of enzymatic reactions reasonably well, the estimated catalytic rates236

should reflect the real enzymatic activity. This in turn should correlate with the expression trends of the237

GTs observed using the time series microarray analysis.238

Our procedure for the GT inference is as follows:239

1. Given the time series metabolite concentration data, estimate the time dependent parameters using240

all biologically relevant networks. Select the network that gives the best fit to measurements with241

respect to residual or goodness of fit etc. Save the estimated catalytic rates corresponding to the242

best network as reference.243

2. Compute correlations between the time series of expression levels of each GT and the previously244

saved series of catalytic rates.245

3. Select those GTs whose dynamics correlate best with catalytic dynamics for further experimental246

validation.247

For illustration see Figure 7, where we show the expression levels of two GTs together with the estimated248

catalytic rates for a reaction that glycosylates quercetin to quercetin-3-O-glucoside. We have standardized,249

i.e. subtracted the mean and divided by standard deviation both predicted and measured expressions for250

visual comparison. As can be seen from the Figure 7, the deviation of the expression levels between251

samples can vary from gene to gene. One could also weight the correlation according to this variation so252

that more precise observations are favored. To test experimentally whether the inferred genes are actually253

related to the enzymes that glycosylate the flavonols, a set of selected genes are currently being cloned.254

As a computational validation of the selection procedure, we tested whether substituting the (scaled)255

expression levels of the selected genes into the model will result in a decreased residual (better likelihood256

of observing the measurements). The reason we want to do this post-analysis is two-fold. First of all,257

our GT candidates are ranked according to their correlation with the predicted enzymatic trends, but it258

may happen that several candidates have almost equal correlation coefficients. This makes it difficult259

to distinguish between the candidates, especially because the initial GT-population is already a result260

of an ontology-based selection. Another point is that, the selection of the most likely GT’s is based on261

individual matchings with single dynamic parameters whose magnitudes are unknown. It is not absolutely262

clear, say, whether the combination of the very best candidates will always give better results than when263
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for example one candidate is actually the second best one (in terms of correlation). In each network264

combination, at most seven GT’s are considered, but still the number of all possible combinations is very265

large. Also the expression levels need to be scaled to match the metabolic model.266

To ensure a rich set of gene combinations, we ran a Markov Chain Monte Carlo-algorithm (MCMC) Cal-267

vetti and Somersalo (2007). To address the question, of whether the differences in correlations are268

significant enough, we first ordered the genes into a sequence according to their correlation with the269

predicted enzyme concentration levels and took two sets of genes according to their order number in the270

sequence: 1,2, . . . ,10 and 11,12, . . . ,20. We tested whether the residuals, obtained after 200 iterations of271

1000 samples with MCMC algorithm using the data of these two sets, have equal means and variances.272

For the mean test we obtained a P-value less than 0.00001 and for the variance test a P-value of less273

than 0.006. We may conclude that in the context of a dynamic kinetic reaction model, those genes with274

expression levels highly correlating to the predicted enzyme dynamics, are significantly more likely to be275

responsible for the observations.276

5 CONCLUSIONS277

In this article, we consider the time dependence and unique estimability of kinetic rates in metabolic278

networks. Firstly, we show that when the underlying network has a structure of a tree graph, these279

rates can be unambiguously estimated. Secondly we propose a fast approach for the estimation of time280

dependent kinetic rates and demonstrate its performance on simulated data. Finally we also propose an281

application, where we utilize the estimation method to detect the genes that are potentially involved in282

particular enzymatic reactions using microarray data.283
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