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ABSTRACT12

We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable

metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To es-

timate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A

popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten

kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and

enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon

cannot be described. Another problem is that, in general these kinetic coefficients are not always iden-

tifiable. A third problem is that, it is not precisely known, which enzymes are catalyzing the observed

glycosylation processes. With several hundred potential gene candidates, experimental validation using

purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical

modeling to allow for the pre-selection of most potential gene candidates.
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In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with

three favorable properties: Firstly, it allows for identifiable estimation of time dependent parameters in

networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods

that estimate the model derivatives together with the network parameters. Thirdly, by combining the

metabolite concentration data with a corresponding microarray data, it can help in detecting the genes

related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates

with time series gene expression data we may assess potential candidate genes behind enzymatic

reactions. As an example, we show how to apply this method to select prominent glycosyltransferase

genes in tomato seedlings.
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INTRODUCTION35

In this paper we study metabolic network inference from given biological time-series data. The two36

main ingredients in general metabolic pathway inference are the reconstruction of the network topol-37

ogy and the estimation of the parameters involved. When the network is large and the concentrations38

of intermediates are unknown, or when there are no time series data available, one may still study the39

fluxes by setting up stoichiometric models for flux balance analysis (Varma and Palsson, 1995; Stelling40

et al., 2002; Orth et al., 2010). If time-series data of metabolites are available ordinary differential equa-41

tions (ODEs) can often provide a suitable model (Chen et al., 2010; Chou and Voit, 2009; Srinath and42

Gunawan, 2010; Hatzimanikatis et al., 1996). If also the enzymes involved are known, it is customary43

to use enzyme-kinetic models (Steuer and Junker, 2009; Schallau and Junker, 2010; Liebermeister and44

Klipp, 2006) with Michaelis-Menten kinetics, although the reliability of this approach has been ques-45

tioned, especially when applied to in vivo measurements (Savageau, 1995; Hill et al., 1977). When (part46

of) the catalytic rates are not known, linear ODEs (Astola et al., 2011) and general biochemical systems47
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theory (Voit et al., 2005) can be used. When the network topology is completely unknown, the situation48

is more complicated, although some recent studies attempt to tackle this problem using methods based49

on genetic algorithms (Schmidt et al., 2011). Still, the uniqueness of the reconstructed network is often50

compromised and the identifiability of the system remains an issue that needs to be investigated (Craciun51

and Pantea, 2008; Srinath and Gunawan, 2010). Model identifiability is an essential prerequisite in52

making any conclusions from (by default limited number of) observations. The foremost categories of53

identifiability are the structural and the practical identifiability, the former related to the symbolic expres-54

sion of the model itself and the latter related to the amount and nature of the available data. We will test55

our models and data on both conditions.56

Here we discuss a special and relevant class of network topologies, which are so-called tree networks57

and show that in such networks linear models yield parameter estimates that are unique in the structural58

sense. As the name suggests, a tree graph looks like a branching tree where the edges (arrows) are59

directed so that the nutrients flow from root to leaf (cf. Fig. 1).60
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Figure 1. A: a graph with a tree structure. B: this graph contains a cycle and is thus not a tree graph.

The catalytic rate corresponding to reaction between node i and j is indicated as ki j. Here the node X0

represents a boundary node connecting this network to the surrounding larger network

As in real trees the branches do not form cycles. By a cycle we mean any closed chain of edges61

regardless of the directions of the edges. In many biological pathways, such as in the flavone and the62

flavonol biosynthesis (KEGG, 2010), a tree graph captures the network of the enzymatic reactions. In-63

deed metabolic networks with tree structures constitute a relevant class, including for example large64

parts of the biosynthetic pathways of, e.g., γ-carotene, limonene, ansamycin and puromycin etc.(KEGG,65

2010).66

Although this paper focuses on the mathematical modeling of tree structured metabolic networks67

in general, the original motivation rose from biological questions concerning the specific networks in68

flavonol biosynthesis. Therefore we have included also a brief Material and methods section to refer to69

the original data generated prior to this study. The paper is organized as follows: in section 1.1 to set70

the stage we review our earlier work in modeling metabolic pathways using time-invariant systems of71

linear differential equations and discuss the particular properties of tree-graph networks. In section 3 we72

consider the essential problem of model identifiability and show that our candidate networks satisfy the73
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criteria for structural and practical identifiability. In section 1.3 we propose a novel application for our74

time-variant estimation scheme by showing how it can be employed in finding the most likely catalysts75

from a large set of enzymes.76

1 MATERIALS AND METHODS77

Throughout this article we use as a model example data the time series of the concentrations of the78

metabolites involved in a putative quercetin glycosylation pathway (PlantCyc, 2016). The data explored79

and modelled in this article originates from the research by Gomez Roldan et al. (Gomez Roldan et al.,80

2014), where flavonol pathway related metabolites were studied in tomato seedlings. The metabolites81

were measured from roots, hypocotyls, and cotyledons on different days and under different conditions.82

The time series of metabolite concentration data that we used in the mathematical models were statis-83

tically corrected for fixed and random effects with a standard mixed model pre-processing resulting in84

the so-called best linear unbiased predictions (BLUP) and provided as a supplementary data. (In SAS85

this can be done with the command: Proc Mixed.) The original metabolite concentration time series86

and the corresponding enzymatic assays are included in the supplementary data. The supplementary87

data also contains Mathematica notebooks to estimate the kinetic rates from data and to do sensitivity88

analysis of the reconstructed model. In this section we further discuss the theoretical analysis and how89

we implement the practical parameter estimation on metabolic networks.90

1.1 Parameter Estimation in general networks91

We first consider the parameter estimation problem in general linear time-invariant ordinary differential92

equation (LTI-ODE) systems. For convenience, we briefly sketch the approach when the catalytic rates93

are constants over time as in our previous work (Astola et al., 2011).94

We recall that any network can be represented as a graph, where nodes are connected by edges when95

there is some interaction between these nodes. In a metabolic network a node represents a substrate or96

a product, and a directed edge from node i to node j means that i can be converted to j by enzymatic97

activity. To an edge from node i to j, we assign a weight, i.e., the catalytic rate ki j g 0, which represents98

the rate of product formation. In parameter inference one estimates the ki j from data.99

Denoting the concentration of substrate i at time t as Xi(t), a general time-invariant linear ODE model

with a constant nonhomogeneous term, satisfying the mass conservation law, can be written as

Ẋi(t) =2∑
j �=i

ki jXi(t)+∑
j �=i

k jiX j(t)+ bi , (1)

for i = 1, . . . ,n, with

bi =

�

constant if i = 1

0 otherwise
. (2)

The first summation in (1) stands for the edges leaving Xi, the second for the incoming edges and bi

for the possible in or outflow to the system. To simplify the notation, we introduce a matrix A with

components given by
�

Ai j = k ji, i �= j

Aii =2∑ j �=i ki j,
(3)

Then, (1) becomes

Ẋi(t) =
n

∑
j=1

Ai jX j(t)+ bi , i = 1, . . . ,n . (4)

Equation (4) can be rewritten in a compact matrix form as

Ẋ(t) =

û

ü
ü
ü
ý

Ẋ1(t)
Ẋ2(t)

...

Ẋn(t)

þ

ÿ
ÿ
ÿ
ø

=

û

ü
ü
ü
ý

2∑ j �=1 k1 j kn1 b1

k12 kn2 0
...

...

k1n 2∑ j �=n kn j 0

þ

ÿ
ÿ
ÿ
ø

û

ü
ü
ü
ü
ü
ý

X1(t)
X2(t)

...

Xn(t)
1

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ø

= Ã · X̃(t) , (5)

3/13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2077v2 | CC BY 4.0 Open Access | rec: 8 Aug 2016, publ: 8 Aug 2016



where X̃(t) is obtained from X(t) by appending an extra 1 and matrix Ã is obtained from A by extending100

it with an extra column containing the constant b1.101

To reconstruct a metabolic network from time-series measurements, we have to estimate the reaction

rates ki j, i.e., the weights of the edges in the network and the flow terms bi. In view of (5), it is sufficient

to estimate the (n+1)× (n+1) matrix Ã. We denote the data, i.e., measured concentrations of substrate

i at time points t j, j = 1, . . . ,m, as an (n×m) matrix X. Estimates of the derivatives of the data curves

we will store in a matrix Ẋ. To compute these estimates we may proceed in two ways. First, construct

two n×m data matrices X0,X1 as follows

X0 =

û

ü
ü
ü
ý

X1,m21 X1,m22 . . . X1,0

X2,m21 X2,m22 . . . X2,0

... . . .
...

Xn,m21 Xn,m22 . . . Xn,0

þ

ÿ
ÿ
ÿ
ø

,X1 =

û

ü
ü
ü
ý

X1,m X1,m21 . . . X1,1

X2,m X2,m21 . . . X2,1

... . . .
...

Xn,m Xn,m21 . . . Xn,1

þ

ÿ
ÿ
ÿ
ø

, (6)

where m is the number of measurements. The matrix

Ẋc
1

∆t
(X1 2X0) , (7)

could then be used as an approximation for Ẋ . For simplicity we assume the time grid to be equidistant102

with time step ∆t. If this is not the case, the necessary modifications are easily implemented.103

Secondly, we may use an alternative and often better approach to obtain approximations for Ẋi by

fitting splines to the time series data Xi (Zhan and Yeung, 2011). To obtain curves that interpolate the

data faithfully, we require that the distances between the curves and the measurements are minimal and

that at the same time the curves are smooth. To achieve this we fit P-splines, which are B-splines with a

penalization for non-smoothness (Eilers and Marx, 1996). From these splines, we evaluate the derivative

estimates at time points t j. These estimates are then used as entries in the matrix Ẋ. Having at hand an

estimate for matrix Ẋ, the problem of network inference comes down to finding the the matrix Ã from

the equation

Ẋ= ÃX̃ , (8)

in which Ẋ is known and X̃ is obtained from the data matrix X by extending this with an extra row104

of ones. However, solving Ã directly from (8) often results in over-fitting, since all possible edges are105

included in the modeled network. Another serious shortcoming of such a matrix (pseudo-) inversion106

approach is the fact that we cannot control the positivity of the reaction rates. Although in (Schmidt107

et al., 2005) negative coefficients were interpreted as inhibition of the compounds, in many biological108

pathways, negative coefficients are not permitted. Thus we take a more general approach in which one109

can exclude all edges that are biologically not acceptable, and in which one can constrain the reaction110

rates to be positive, without substantially compromising computation time.111

To this end, we reformulate the equation as a minimization problem:

argmin
Ã

�
||Ẋ2 ÃX̃||

�
. (9)

The matrix norm used here is the Frobenius norm:

||Ã||=

�
n

∑
i=1

m

∑
j=1

Ã2
i j . (10)

This alternative formulation allows inclusion of expert knowledge in a simple way. We put Ãi j = 0, when112

an edge from node i to node j cannot exist. Nearly all mathematical software packages (Mathematica,113

Matlab, Maple, etc. ) can numerically find the minimizer Ã (and thus the reaction rates ki j and the flow114

term b1) with the constraint that ki j g 0.115

1.2 Parameter estimation in tree networks116

As described in the introduction, tree networks are networks, whose graphs resemble trees in that they117

branch away from the root and the directions of the edges always point from the root towards the leaves.118
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In Fig. 1 we presented, using an example, the difference between a tree and a non-tree graph. In a119

kinetic reaction system with a tree network, the parameters can be uniquely estimated even when they120

are time dependent. We could write this down in general. However, the proof is based on one central121

idea. We feel that the reader gains more insight if we simply show this idea through an example. To122

that end we use as example the network in the left hand side of Fig. 1. The extension to the general is123

straightforward.124

For the network on the left in Fig. 1, we have the following kinetic mass balance model:

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

=

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

2(k1,2 + k1,3) 0 0 0 0 0 0 0 b1

k1,2 2(k2,4 + k2,5) 0 0 0 0 0 0 0

k1,3 0 2(k3,6 + k3,7) 0 0 0 0 0 0

0 k2,4 0 0 0 0 0 0 0

0 k2,5 0 0 0 0 0 0 0

0 0 k3,6 0 0 0 0 0 0

0 0 k3,7 0 0 0 0 0 0

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

û

ü
ü
ü
ü
ü
ü
ü
ü
ü
ü
ý

X1

X2

X3

X4

X5

X6

X7

1

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

, (11)

where the constant b1 represents the influx into the system and the ki, j are the catalytic rates. Note that125

there are as many unknown parameters (ki, j , b1) as there are measured variables Xi(t j). Therefore, as126

can be directly verified, we can rewrite the previous matrix equation by exchanging the Xi and ki, j as127

follows:128

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

=

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

1 2X1 2X1 0 0 0 0

0 X1 0 2X2 2X2 0 0

0 0 X1 0 0 2X3 2X3

0 0 0 X2 0 0 0

0 0 0 0 X2 0 0

0 0 0 0 0 X3 0

0 0 0 0 0 0 X3

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

� �� �

matrix B

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

b1

k1,2

k1,3

k2,4

k2,5

k3,6

k3,7

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

. (12)

We immediately see that B is an upper triangular matrix since the entries below the diagonal are zero.

This implies that the determinant of the matrix B in (12) is the product of the entries on the diagonal:

X2
1 ·X2

2 ·X2
3 , and thus unequal to 0 since Xi �= 0, "i = 1, . . . ,n. So, B is invertible and the system of

equations has the unique solution.

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

b1

k1,2

k1,3

k2,4

k2,5

k3,6

k3,7

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

=

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

X21
0 X21

0 X21
0 X21

0 X21
0 X21

0 X21
0

0 X21
1 0 X21

1 X21
1 0 0

0 0 X21
1 0 0 X21

1 X21
1

0 0 0 X21
2 0 0 0

0 0 0 0 X21
2 0 0

0 0 0 0 0 X21
3 0

0 0 0 0 0 0 X21
3

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

� �� �

matrix B21

û

ü
ü
ü
ü
ü
ü
ü
ü
ý

Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7

þ

ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ÿ
ø

(13)

1.3 Time varying kinetic rates129

In earlier work we developed a fast method to reconstruct metabolic networks (Astola et al., 2011). The130

idea in this approach was to substitute the measurements directly into the model equations and not only in131

the objective function. This approach had as a limitation that all parameters were assumed to be constant132

in time. Here we extend our previous approach by allowing the catalytic rates to be time dependent, to133

better reflect the real situation, since in practice the enzyme concentrations are fluctuating in time. This134

has also immediately resulted in reconstructions that better fit the observed data as can be seen in Fig. 2.135

While the standard practice in enzyme kinetics is to either use constant catalytic rates in mass balance136

equation or to model product formation through a Hill function (Goutelle et al., 2008) such as in the137
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Figure 2. In this figure we have used three different models to reconstruct a flavonol concentration

data indicated as dots. The compounds shown here belong to a pathway with putative structure as on

the panel A in Fig. 1. The colors of the reconstructed curves correspond to those of the dots. A: a

reconstruction with a tree network and constant catalytic rates. B: a reconstruction with the full network

(all nodes are connected to each other) and constant catalytic rates. Note that the fit is still poor,

although the number of parameters is much higher than in the case on the left. C: a reconstruction with

the same tree structure as in A, but with time dependent catalytic rates

Michaelis-Menten equation (Savageau, 1995), none of these take into account the fact that the enzyme138

concentration is also changing in time. Since we also want to study the relation of gene expression and139

enzyme concentration in time, we need to capture their dynamics.140

As the catalytic rate is now modeled as a function in time, and not as a constant, it is no longer141

possible to infer this with the standard procedure of solving for those parameters that fit the ordinary142

differential equations to data in the sense of maximum likelihood. We cannot clearly separate the sub-143

strate/product, enzyme concentrations and noise, since we have no measurements of the enzyme concen-144

trations. To solve them, we would have to impose a model on them, which we don’t have a priori. A145

reasonable approach in this situation is to first estimate a model for the metabolite concentrations for146

which we have several measurements. By fixing the concentrations first using spline approximations,147

we may then estimate the trends in the enzyme concentrations. This method assumes that the solutions148

are rather smooth. If this is not the case and the sampling frequency is low, the derivatives obtained by149

fitting splines can introduce errors that distort the reconstruction. The inference method proposed here is150

by no means restricted to tree networks, but in case the network has a tree structure, the parameters can151

be estimated in an unambiguous way. We summarize the general work flow for the proposed parameter152

inference in the schematic diagram in Fig. 3.153

1.4 Time dependent parameter estimation154

In this section we present three different schemes to estimate the ki j(t) in model (4). In (9) we used155

the data at all time points simultaneously to estimate the time independent parameters. However, a156

remarkable feature of tree structured networks is that the data at one time point is already enough to157

calculate unique estimates for the parameter values at that particular time point. This is immediately158

clear from (13): as soon as we have estimates for the time derivatives Ẋ(tk) available, we may calculate159

estimates for the ki j(tk).160

Scheme 1. To estimate the derivatives at some time point one still needs the data of neighboring time points.161

So, the first step in this scheme is to fit, e.g., P-splines to the data time series (O’ Sullivan, 1986;162

Eilers and Marx, 1996). From these splines we calculate estimates for the time derivatives Ẋi(tk).163

Then by substituting these estimates as well as the measurements into equation (4), we are left with164

a set of linear equations to solve ki j(tk) and b1 at all times tk. Finally, for smooth and continuous165

catalytic rates, one may fit, e.g., a second order polynomial through these estimates.166

Scheme 2. An alternative approach in which the number of parameters is smaller than in scheme 1, is to

assume that the functions ki j(t) can be adequately represented as polynomials in time of some

order. In practice order 2 is often sufficient. With this choice we have then:

ki j(t) = αi jt
2 +βi jt + γi j . (14)

This implies that per ki j we have 3 parameters to be estimated using the whole time series data.167
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Figure 3. A schematic view of the inference procedure. After fitting splines to data, the parameters

can be estimated for any given network of choice. Next, the optimal network can be selected by

comparing the reconstruction result with each candidate network model to the original measurements.

By substituting (14) into matrix Ã in (9) we then obtain estimates for αi j , βi j and γi j, and thus for168

ki j(t).169

Scheme 3. As in the previous scheme, we assume (14). We construct an objective function like the following:

∑
k

||X(tk)2X(tk)|| , (15)

which is the sum of the distances between X(tk) and the measurements. We look for a matrix Ã,170

such that the solutions Xi(t) to (4) minimize this objective function. Using suitable optimization171

algorithm we simultaneously estimate Xi, ki j, and b1.172

To compare the fit, accuracy and speed of these three schemes we applied them using as test networks173

random tree networks that have equal numbers of nodes and edges as the network on the left in Fig. 1.174

In these networks, we simulated time series data with time varying catalytic rates. To generate artifi-175

cial data, we assigned random values to αi j ,βi j and γi j in a range, such that the resulting solutions have176

approximately the same range as the metabolite concentration data for quercetin glycosides measured in177

tomato seedlings (cf. Fig. 2). To assess the reconstruction power of the three schemes, we also tested178

them on networks that are not trees. The corresponding data generation process is the same but the net-179
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work models contain cycles. In the third set of simulations we added ±10% uniformly distributed noise180

to tree structured network data.181

1.5 Parameter inference as a mean to select active genes182

In addition, as a potentially powerful application, we show how we may infer the gene candidates likely183

to be involved in the enzymatic reactions. This can be done by comparing estimated time dependent184

catalytic rates with simultaneously measured gene expression data. If, according to the model, the for-185

mation of a metabolite necessitates higher/lower enzyme concentration, this should be also observable in186

the expression level of the gene that codes for this enzyme. Using this heuristics we were able to select187

from a large set of potential genes the most likely candidate genes for further experimental validation of188

their functioning in particular reactions. In view of this application small inaccuracies in parameters are189

not detrimental, since here we are mainly interested the dynamic trends of the catalytic rates instead of190

their precise numeric values.191

As an example we take the quercetin glycosylation pathway in cotyledons, occurring during the192

development of tomato seedlings (Koes et al., 1994). Quercetin glycosides are a subset of flavonoids,193

which are plant secondary metabolites naturally produced by plants. Flavonoids are being intensively194

studied for their proposed beneficial effects on prevention of chronic diseases (Bovy et al., 2007; Rein195

et al., 2006; Moon et al., 2006).196

We have measured the concentrations of several quercetin derivative compounds accumulating in197

cotyledon- and hypocotyl tissues. We have daily measurements from day 5 after sowing up to day 9. The198

same sample used for the metabolite analysis with liquid chromatography mass spectrometry were used199

for gene expression analysis. The expression levels of genes, putatively involved in the glycosylation200

of quercetin, were quantified using microarray analysis. Glycosyltransferases (GTs) are members of the201

multigene superfamily in plants that can transfer single or multiple sugars to various plant molecules,202

resulting in the glycosylation of these compounds (Wang, 2009). To date, it is not known exactly which203

GTs catalyze each glycosylation reaction. With more than 200 GT candidates an experimental validation204

of every single GT is costly. Therefore we wanted to make a pre-selection of the potentially strongest205

gene candidates, using mathematical modeling and simulations. We use the heuristics that if the kinetic206

ODE model describes the system of enzymatic reactions reasonably well, the estimated catalytic rates207

should reflect the real enzymatic activity. This in turn should correlate with the expression trends of the208

GTs observed using the time series microarray analysis.209

Our procedure for the GT inference is as follows:210

1. Given the time series metabolite concentration data, estimate the time dependent parameters using211

all biologically relevant networks. Select the network that gives the best fit to measurements with212

respect to residual or goodness of fit etc. Save the estimated catalytic rates corresponding to the213

best network as reference.214

2. Compute correlations between the time series of expression levels of each GT and the previously215

saved series of catalytic rates.216

3. Select those GTs whose dynamics correlate best with catalytic dynamics for further experimental217

validation.218

2 RESULTS219

2.1 Comparison of parameter inference schemes220

As can be seen from Fig. 4 (A,D,G), concerning the fitting errors, all schemes give similar results and221

their box-plots have some overlap. In principle they are solving the same optimization problem, only222

scheme 1 first solves the point wise rate values and then fits a polynomial, whereas scheme 2 searches223

for a polynomial-valued rates that fit to the whole series of data and scheme 3 tries simultaneously224

estimate the parameters as well as the derivatives. We measured the accuracy of the parameter estimation225

by computing the Frobenius norm (10) of the difference between the original timevariant kinetic rates226

used in simulation and the reconstructed rates. Besides the actual estimation accuracy, also computation227

times are relevant. In terms of computation time, scheme 2 is the fastest and scheme 3 is slowest,228

although the differences are not large. Notice that the comparisons in Fig. 4 were done in a setting229

where equal parameter constraints (ki j > 0) were given to the solvers and the parameters were estimated230
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using constrained non-linear global optimization (NMinimize in Mathematica) choosing for the fast231

Nelder-Mead algorithm (with option ”PostProcess” ³ False).232

Figure 4. We have compared three different reconstruction schemes in 100 simulations, when the

underlying network has a tree structure (A-B-C), with non tree stductures (D-E-F), and with 10% noise

added to data (G-H-I). In each sub-figure the box plots of simulation results are plotted. A,D,G: the

average point-wise errors in the estimated concentrations. B,E,H: the average absolute differences in

the recovered parameters (catalytic rates) vs. the parameters used to simulate the data. C: the

computation times in seconds. In all figures logarithmic scale is used. In terms of network inference,

schemes 1 & 2 give in general lower errors.

This result is more or less to be expected, since when the data is reasonably accurate, it does not233

always make sense to re-estimate the data by using it as an unknown variable in the equations of the234

system. Rather, it may pay off to substitute the data directly into the equations reducing the number of235

unknown elements. Also it is logical that schemes 1 and 2 perform less well on non-tree graph networks,236

since the assumption on unique point-wise estimability is not valid anymore. Since our method is based237

on initial fitting of splines, the major sensitivity is indeed with respect to data. This was also confirmed238

by the sensitivity analysis we conducted.239

Our network models, although relatively small, belong to the general group of the so-called sloppy240

biochemical models (Gutenkunst, 2008), despite of which the parameters still may be identifiable. For a241

separate discussion and more background on this subject, please see Section 3. The range of eigenvalues242

of the Hessian of the residual (between predicted and measured values) varies from 1024 to 105. For the243

sensitivity analysis numerical derivatives need to be computed. Since we are considering time varying244

parameters, we have taken time-averages of point-wise derivatives. Eigenvectors corresponding to very245

small eigenvalues, implying sloppiness in sensitivity, all point towards those parameters that are asso-246

ciated with network nodes where the measured metabolite concentrations are very low. This is logical247

since the parameters associated with concentration values close to zero have little effect on the residual,248

because our objective function does not contain the standard deviation term in the denominator. By this249

choice we explicitly wanted to avoid that those measurements that are close to noise level shall have250

equal weight with the more abundant ones.251
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Figure 5. The mean expression levels of different glucosyl transferase (GT) candidate genes and the

estimated catalytic rates for reactions in a putative network. Here the best matching gene expression

profiles are retrieved from the data.

2.2 Enzyme inference from microarray data252

In Figure 5 we illustrate the results of the analysis as described in Section 1.5. These are the expres-253

sion levels of best matching six GTs together with the estimated catalytic rates for the reactions that254

corresponds to the conversions from node Xi to X j exactly as in Fig. 1 A. We have standardized, i.e. sub-255

tracted the mean and divided by standard deviation both predicted and measured expressions for visual256

comparison. As can be seen from Fig. 5, the deviation of the expression levels between samples can257

vary from gene to gene. One could also weight the correlation according to this variation so that more258

precise observations are favored. A remark is that for accurate reconstruction of both the kinetic rates as259

well as the selection of appropriate genes, a time series with more data points is desired. What exactly260

the minimal sample number and sampling method should be depends on the data and the system model,261

but a rule of thumb from experienced modelers would be a minimum of 15 data points. To test experi-262

mentally whether the inferred genes are actually related to the enzymes that glycosylate the flavonols, a263

set of selected genes are currently being cloned.264

As a computational validation of the selection procedure, we tested whether substituting the (scaled)265

expression levels of the selected genes into the model will result in a decreased residual (better likelihood266

of observing the measurements). The reason we want to do this post-analysis is two-fold. First of267

all, our GT candidates are ranked according to their correlation with the predicted enzymatic trends,268

but it may happen that several candidates have almost equal correlation coefficients. This makes it269

difficult to distinguish between the candidates, especially because the initial GT-population is already270

a result of an ontology-based selection. Another point is that, the selection of the most likely GT’s is271

based on individual matchings with single dynamic parameters whose magnitudes are unknown. It is272

not absolutely clear, say, whether the combination of the very best candidates will always give better273

results than when for example one candidate is actually the second best one (in terms of correlation).274

In each network combination, at most seven GT’s are considered, but still the number of all possible275

combinations is very large. Also the expression levels need to be scaled to match the metabolic model.276

To ensure a rich set of gene combinations, we ran a Markov Chain Monte Carlo-algorithm (MCMC)277

(Calvetti and Somersalo, 2007). To address the question, of whether the differences in correlations are278

significant enough, we first ordered the genes into a sequence according to their correlation with the279

predicted enzyme concentration levels and took two sets of genes according to their order number in the280

sequence: 1,2, . . . ,10 and 11,12, . . . ,20. We tested whether the residuals, obtained after 200 iterations of281

1000 samples with MCMC algorithm using the data of these two sets, have equal means and variances.282

For the mean test we obtained a P-value less than 0.00001 and for the variance test a P-value of less283

than 0.006. We may conclude that in the context of a dynamic kinetic reaction model, those genes with284

expression levels highly correlating to the predicted enzyme dynamics, are significantly more likely to285

be responsible for the observations.286
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3 DISCUSSION287

In this section we discuss the results in terms of identifiability which is a major issue in parameter288

inference. A parameter estimation method may always be able to find some estimates, but this makes289

sense only if it is clear that it is possible to estimate the parameters from the data, i.e., they are structurally290

and practically identifiable.291

3.1 Structural identifiability292

A general problem in parameter estimation is that it is difficult and sometimes even impossible to be sure293

that the estimated parameters are unique. If the model is structurally unidentifiable, there is an infinite294

number of parameter sets that give equal results. This is a substantial challenge, especially when the295

network structure is not known, since an overly complex network can result in over-fitting. This problem296

is not present in any of the (biologically) potential networks as sketched in Fig. 6, since as tree graphs297

these all turn out to be locally structurally identifiable as they can be embedded in an upper triangular298

matrix as discussed in the preceding section.

Figure 6. Here we depict all biologically feasible networks of the quercetin glycosylation pathway.

299

3.2 Practical identifiability300

Structural identifiability does not imply practical identifiability and therefore we have studied the prac-301

tical identifiability of the parameters in our system by means of profile likelihood (Raue et al., 2009).302

We learned that all the kinetic parameters connecting substrates and products with concentrations above303

detection limit show also practical identifiability (see supplementary data). Another observation is that if304

we allow a product to decay without constraints, the practical identifiability as well as the tree structure305

of the graph is lost.306

4 CONCLUSIONS307

In this article, we consider the time dependence and unique estimability of kinetic rates in metabolic308

networks. Firstly, we show that when the underlying network has a structure of a tree graph, these309

rates can be unambiguously estimated. Secondly we propose a fast approach for the estimation of time310

dependent kinetic rates and demonstrate its performance on simulated data. Finally we also propose an311

application, where we utilize the estimation method to detect the genes that are potentially involved in312

particular enzymatic reactions using microarray data.313
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