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Genome-wide association studies (GWAS) have uncovered thousands of associations
between genetic variants and diseases. Using the same datasets, prediction of disease risk
can be attempted. Phase information is an important biological structure that has seldom
been used in that setting. We propose here a multi-step machine learning method that
aims at using this information. Our method captures local interactions in short haplotypes
and combines the results linearly. We show that it outperforms standard linear models on
some GWAS datasets. However, a variation of our method that does not use phase
information obtains similar performance. Regarding the missing heritability problem, we
remark that interactions in short haplotypes contribute to additive heritability. Source code
is available on github at https://github.com/FelBalazard/Prediction-with-Haplotypes.
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ABSTRACT6

Genome-wide association studies (GWAS) have uncovered thousands of associations between genetic
variants and diseases. Using the same datasets, prediction of disease risk can be attempted. Phase
information is an important biological structure that has seldom been used in that setting. We propose
here a multi-step machine learning method that aims at using this information. Our method captures
local interactions in short haplotypes and combines the results linearly. We show that it outperforms
standard linear models on some GWAS datasets. However, a variation of our method that does not use
phase information obtains similar performance. Regarding the missing heritability problem, we remark
that interactions in short haplotypes contribute to additive heritability. Source code is available on github
at https://github.com/FelBalazard/Prediction-with-Haplotypes.
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INTRODUCTION17

Genome-wide association studies (GWAS) have used micro-array technology to genotype hundreds18

of thousands of single nucleotide polymorphisms (SNPs) in thousands of patients and controls. The19

main goal of those studies has been to identify associations between SNPs and diseases that could help20

understand the genetic component of the disease. The methodology used for this purpose relies on21

univariate hypothesis tests with corrections for multiple testing. GWAS have unravelled over one thousand22

new SNP disease associations (Welter et al., 2014).23

A potential clinical utility of GWAS is implementation of personalized medicine. For example,24

genetic risk prediction could be useful for prevention of complex diseases. Unfortunately, the SNPs found25

significant in GWAS are not sufficient in aggregate to be used for prediction of disease status (Manolio26

et al., 2009). However, it is not necessary that each variable passes a stringent p-value threshold to be27

useful in a multivariate setting. In order to increase predictive power, one approach has been to use a28

lenient significance threshold to preselect SNPs before applying a machine-learning algorithm such as29

support vector machine or lasso regression in type 1 diabetes (Wei et al., 2009) and Crohn’s disease (Wei30

et al., 2013). The preselection step allowed for manageable computation time. Optimization efforts were31

made to allow L1-penalized linear regression with square-hinge loss to be run over the whole dataset32

(Abraham et al., 2012). This was applied to celiac disease (Abraham et al., 2014). All those approaches33

led to significant improvement of predictive power compared to including only GWAS significant SNPs.34

The methodology used in those articles is to apply general purpose machine learning algorithm to35

GWAS datasets. The biological structure of genetic data is therefore not taken into account. A first36

example of such a structure is distance inside chromosomes measured in base pairs. In (Botta et al., 2014),37

the T-trees method was introduced to capture interactions inside small blocks of nearby SNPs as well as38

between blocks. The rationale is that SNPs that are next to each other are more likely to impact the same39

function and therefore to interact (in the statistical sense) together. The T-Trees method is a variation on40

the random forests (RF) (Breiman, 2001) algorithm tailored to focus on local interaction between SNPs.41

It can also assess the importance of individual SNPs as well as the importance of blocks of SNPs. It is42

very successful in increasing predictive performance compared to RF or linear methods. It also identifies43

new associations between loci and disease.44

SNPs can take three possible values – 0, 1 or 2 – coding the number of copies of the mutant allele45
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present in the pair of chromosomes. This coding is appropriate to perform univariate tests. In a multivariate46

setting, this coding does not allow to know if mutant alleles of two heterozygous SNPs on the same47

chromosome pair are on a single chromosome or on the two distinct chromosomes of the chromosome48

pair. The sequences on the two homologous chromosomes are called haplotypes and phase information is49

knowledge of haplotypes instead of genotype. It is an important biological information (Tewhey et al.,50

2011). For example, if the two alleles of a gene have a distinct non-sense mutation, a condition called51

compound heterozigosity, there will be no expression of the gene. In contrast, if the two mutations were52

on the same chromosome, there would still be a functioning allele. This is a simple example where phase53

information is crucial.54

Phase information is the second structure that we will use in our design of a machine learning algorithm55

tailored to GWAS data. It complements chromosomal distance. It is reasonable to expect that two SNPs56

that are physically on the same chromosome and not too distant are more likely to interact than if not.57

Interaction, here and throughout this article, is understood in the statistical sense as a departure from58

linear effects. Previous work has used haplotypes of two contiguous SNPs with a simple methodology for59

prediction of Crohn’s disease (Kang et al., 2011). Their results are suggestive of the interest of haplotypes60

in a predictive context. Phase information is not available using micro-array technology. However,61

computational methods have been developed to allow phase imputation (Delaneau et al., 2013). They62

have limited accuracy which means that only short haplotypes should be used.63

Up to this point, we only discussed the potential interest of haplotypes regarding prediction accuracy64

but haplotypes are also interesting for heritability. Heritability quantifies the proportion of phenotypic65

variance explained by genetic factors. It is estimated through family studies. It can give upper bounds66

for prediction accuracy (Wray et al., 2010). A distinction exists between broad-sense heritability and67

narrow-sense heritability (Visscher et al., 2008). The latter only includes additive effects while the former68

also includes interaction terms such as dominance and epistasis. The rationale behind this distinction is69

that when estimating heritability with pedigrees, one only estimates narrow-sense heritability. Dominance70

and epistasis are lost due to genetic mixing. However, interactions in haplotypes are actually part of71

narrow-sense heritability as they are shared among all members of the same family. Haplotypes are the72

support of heredity and not single SNPs. Narrow-sense heritability includes additive effects of haplotypes.73

Of course, long haplotypes are broken by recombination but short haplotypes are seldom concerned. This74

may sound counter-intuitive but the interactions inside haplotypes are part of additive heritability. This is75

the main theoretical contribution of our work.76

Considering interaction in haplotypes is more general than the idea that for each association signal at77

a locus there is a causal variant responsible for it. If there is a causal variant that is not part of the typed78

SNPs but that is associated with a particular haplotype, capturing interaction in haplotype should recover79

this variant’s effect better than relying on unphased data. If the variant is only in a subset of the haplotype,80

the effect will be diluted but will still be captured more precisely. Moreover, it is possible that there exists81

haplotypic effects not linked to a single variant.82

The contribution of this paper is to introduce a multi-step machine-learning method –noted PH for83

Prediction with Haplotypes– that captures interactions in short haplotypes centered around association84

signal, then combines the results using Lasso regression. This can be seen as logistic regression by85

blocks. In order to know what phase information adds to the analysis, we also applied a similar method86

on genotypes and not haplotypes. We also adapt our method to capture dominance effect between the two87

haplotypes at a same loci.88

We compare our method and its two variations to lasso regression with preselection on GWAS datasets89

made available by the Wellcome Trust Case Control Consortium (WTCCC) (Burton et al., 2007).90

MATERIALS AND METHODS91

In this section, we first briefly describe the machine learning methods used in PH: lasso logistic regression92

and random forests. A more detailed presentation of those techniques is available in the monograph93

(Friedman et al., 2001). We then present and motivate our PH algorithm. We conclude with a description94

of the experimental protocol and quality control filters used in this study.95

We introduce a few notations: we have n observations (in our case patients) of p variables (for example,96

SNPs) that we can summarize in an n by p matrix X = (xi j). The value of variable j for observation i is97

xi j. We also have a binary response variable Y = (yi) that we want to predict using the other variables. In98

our case, it is disease status and yi = 1 if individual i is diseased and 0 otherwise.99
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Lasso logistic regression100

In logistic regression, the posterior probability of being a case or a control is modelled by a linear
combination of the variables :

log
P(y = 1|X = x)

1−P(y = 1|X = x)
= β0 +β1x1 +β2x2 + · · ·+βpxp.

The vector β = (β0,β1, ...,βp) of weights is chosen to maximize the likelihood of the training data.101

When the dimension p becomes large compared to n, the maximum likelihood estimate will closely fit to102

the training data but have no predictive power on test data. This problem is called overfitting. To adress103

this issue, several penalization procedures have been proposed. They force the model to be simpler and104

keep predictive power (Friedman et al., 2001, p61-73). We will use L1 penalization also known as Lasso105

(Tibshirani, 1996). It has the nice additional property of sparsity: some variable’s coefficients will be106

assigned to 0 which makes the model more interpretable.107

We will refer to the function x ∈ (0,1) 7→ log( x
1−x ) as evidence following the terminology of Jaynes108

(Jaynes, 2003, p116-117). It is the link function in logistic regression. It is sometimes refered to as109

log-odds or logit. It maps (0,1) to (−∞,∞). For independent variables, odd ratios multiply and hence110

evidence is additive.111

Decision trees and random forests112

Decision trees are non-linear machine learning algorithms. They can capture interactions between113

variables and are easily interpretable. They are represented by a binary tree with a binary test of the form114

x j > c on each node (Friedman et al., 2001, p305-316).115

However, single decision trees are often poor classifiers. They also are very unstable as alls splits are116

conditioned by the first split. To take advantage of this unstability, the random forests (RF) algorithm117

was designed (Breiman, 2001). It consists in randomizing the growth process of the tree, growing118

many independent such random trees and aggregating the results of all the trees (Friedman et al., 2001,119

p587-604). It is very effective in increasing predictive accuracy. An importance score can be attributed to120

variables. However, the classifier is less interpretable than a single decision tree. RF’s use in computational121

biology and its challenges are reviewed in (Boulesteix et al., 2012).122

One of the ways that the trees are randomized is that they use bootstrap versions (subsets obtained123

by sampling with replacement) of the training data to train different trees. This means that a specific124

observation will not be used to train all the trees. For the trees that did not use the observation, we say the125

observation is out of bag. For each observation, we can look at all the trees for which it is out-of-bag and126

aggregate the predictions of those trees for the observation. This allows to have predictions on the training127

set that should behave similarly to predictions on the test set i.e. without overfitting. This is critical in our128

setting.129

Prediction with Haplotypes130

Motivation The diploid nature of the genome is an important structure left mostly unused in earlier131

attempts at genetic risk estimation. It is challenging to use this information from a machine learning point132

of view. Indeed, once phasing is performed, we have the same set of variables twice but with different133

values and a metric structure. Interactions inside short haplotypes are what we aim to exploit thanks to134

phase information.135

Algorithm A preliminary step is to use Shapeit 2 (Delaneau et al., 2013) to obtain estimates of haplo-136

types.137

The first step of the algorithm is doing univariate test of association of SNPs to disease on the unphased138

training set. This is done using PLINK (Purcell et al., 2007). This is to work with a computationally139

manageable number of variables. We define blocks around the most associated SNPs. Those blocks140

consist of all the SNPs (not only highly associated one) under a fixed distance in kb (thousand of base141

pair) from the associated (or central) SNP as shown in Fig.1. The window size Lw is an important142

hyper-parameter with biological signification. The order of magnitude we used for Lw is 10 kb. Blocks143

are allowed to overlap but the central SNP of a block must be outside of the other blocks. Therefore, a144

highly associated SNP will not be used to define a block if its distance with a more highly associated145

SNP is smaller than the half window size i.e. the SNP is already included in a block. Besides reduced146

computation, the motivation of centering the blocks on associated SNPs compared to using a fixed grid147
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Figure 1. Block definition around associated SNP Blocks include all SNPs at distance smaller than
Lw of the central SNP.

like in (Botta et al., 2014) is to be able to capture the important interactions. If two interacting nearby148

SNPs fall by misfortune on both sides of the border between two blocks, their interaction will not be149

captured. It seems reasonable to assume that the locally highest associated SNP will be part of the local150

interaction if there is one. The number of blocks Nb is another hyper-parameter.151

Inside a block, we want to capture interactions inside haplotypes. For each observation, there are two152

haplotypes and therefore, we have two times the same set of variables with different values. We treat each153

haplotype as a distinct observation and attribute it the response variable of the individual it belongs to.154

We train random forests on the haplotypes of the training set and this gives us an estimated probability155

that the haplotype belongs to a diseased person. This estimated probability is the out-of-bag estimate156

for haplotypes belonging to the training set and the prediction using the full forest for the test set. The157

Gini impurity was used as node-splitting criterion. The default value for classification was used for the158

mtry parameter. We tried different values for Nlea f the minimum number of data points in a leaf. At the159

level of the haplotype, we are interested in estimating probabilities and not in classification, therefore160

the mean (over the forest) predicted probability was used as the method of aggregation of results. As the161

computation for one block are independent from the computation in the other blocks, computation was162

parallelized.163

Every individual has two estimated probability of being sick that come from the two independent164

haplotypes. We combine those by adding the evidence of being sick given by the two haplotypes i.e.165

we take the evidence or log-odds of each probability and add them. This gives us a new variable that is166

the evidence of being sick given the haplotypes in the block. There is one such variable for each block.167

This step combines the results for the two haplotypes in a principled way and it builds a variable that is168
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Figure 2. Interactions inside haplotypes captured with Random Forests Inside a block, each
haplotype is treated as a distinct observation. The SNPs in the block are the input variables used to train a
RF predictor. The results are then combined into a variable that summarizes the information contained in
the block.

homogeneous to logistic regression. These two steps are illustrated in Fig. 2.169

For each block, we obtain one variable that summarizes the information we obtained from it. We use170

those Nb variables as predictors of disease using Lasso regression. We train the Lasso regression on the171

block variables obtained for the training set. Using the trained regression model, we predict on the block172

variables obtained for the validation set. The full procedure with emphasis on training set and test set173

separation is summarized in Fig. 3.174

Variation of the method The two variations of the method we considered differ from PH only in the175

computation inside blocks illustrated in Fig 2.176

The first variation of PH is designed to look at whether phase information increases predictive177

accuracy or if the same information can be captured using SNPs. It is the closest variation of PH not using178

haplotypes. Block definition stays the same but inside the block, we train random forests on SNPs instead179

of using haplotypes. We only have one result and we compute its evidence to create a new variable in the180

same way as before. This variation is no longer capturing only additive heritability as it can potentially181

capture dominance effect. We call it PwoH for Prediction without Haplotypes.182

The second variation we consider aims at capturing dominance effect. Dominance is understood183

in a broad sense as interaction between the two haplotypes of the same loci. Inside blocks, we train184

random forests on pairs of haplotypes instead of single haplotypes by concatenating the haplotype of the185

homologous chromosome. Each individual is thus still represented by two observations varying only by186

the order in which the two haplotypes appear. There are therefore twice the number of variables inside187

each block compared to PH. We call it PHd for Prediction with Haplotypes and dominance.188

Comparison point We compared the three variations of the method to lasso regression with pre-189

selection.First, the N most associated SNPs in the training set were selected. Lasso regression is then190

fitted to the training set. The penalization parameter is selected through cross-validation in the training set.191

The resulting regression model is then used to predict on the validation set. The number N of preselected192

variables is a hyper-parameter.193

Implementation details The source code is a mix of bash, R and python scripts, uses Plink (Purcell et al.,194

2007) and Shapeit 2 (Delaneau et al., 2013) and is available on github at https://github.com/FelBalazard/Prediction-195

with-Haplotypes. The glmnet R package was used for lasso regression (Friedman et al., 2010). The196

python machine learning package scikit-learn was used for random forests (Pedregosa et al., 2011).197

Datasets and protocol198

We tested our method on the GWAS datasets made available by the WTCCC and first described in (Burton199

et al., 2007). The WTCCC data collection contains 17000 genotypes, composed of 3000 shared controls200

5/10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2074v1 | CC-BY 4.0 Open Access | rec: 25 May 2016, publ: 25 May 2016



Figure 3. Pipeline of the method The different kinds of line indicate the separation between training
set and validation set.
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and 2000 cases for each of 7 complex diseases: bipolar disorder (BD), Crohn’s disease (CD), coronary201

artery disease (CAD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2202

diabetes (T2D). Individuals were genotyped with the Affymetrix GeneChip 500K Mapping Array Set and203

are described by about 500,000 SNPs (before the application of quality control filters).204

Quality control (QC) is important for GWAS datasets. Corrupt variables can allow for almost perfect205

discrimination while not respecting Hardy-Weinberg Equilibrium (HWE) (Botta et al., 2014). We first206

excluded the exclusion lists for individuals and SNPs used in (Burton et al., 2007) and provided with the207

data. Then, for each disease, an exclusion list was defined for SNPs that were missing in more than 5% of208

the individuals (patients and controls), that had a minor allele frequency smaller than 0.1% or that had a209

p-value for HWE smaller than 10−6 for controls or smaller than 10−10 for patients.210

With Shapeit 2, phasing accuracy increases with sample size (Delaneau et al., 2013). To achieve211

maximum accuracy, we phased all the 17000 patients and controls together excluding only the intersection212

of all disease specific exclusion lists for SNPs. We then used the disease specific exclusion list to obtain213

each phased disease dataset with proper exclusions.214

The predictive performance of all methods were assessed by the area under the ROC curve (AUC).215

We performed 10-fold cross-validation and averaged the AUCs over the 10 folds. The same 10 folds are216

used for the different methods to limit variability.217

RESULTS218

In this section, we present our results on the seven WTCCC datasets. We first investigate the importance219

of two hyperparameters on the CD dataset. We then use parameters that obtained good performance on220

the CD dataset to evaluate predictive performance and influence of window size on the 7 datasets.221

Influence of the hyperparameters222

Concerning lasso regression with preselection, we had one hyperparameter to select: the number N of223

pre-selected SNPs. We tried the values 500, 1000 and 1500 on all diseases. The best result for all diseases224

except BD was obtained for N = 500. We use the values obtained for N = 500 in the following. The225

results are available in the supplementary material.226

On the CD dataset, we studied the influence of two hyperparameters of PH and its variants: the227

minimum number of data points in a leaf Nlea f and the number of blocks Nb.228

For Nlea f , the values 1, 5, 10, 15, 25, 50, 100 were assessed. The results (available in the supplementary229

material) imply that the choice of Nlea f = 5, the standard value for regression, could not be improved230

upon notably by another choice of value for this parameter. We chose Nlea f = 5 for subsequent analysis.231

For Nb, we tried the values 300, 500, 700. The results (available in the supplementary material) were232

similar for all three values. We chose Nb = 500 for subsequent analysis.233

Predictive performance and influence of the window size234

Given the biological significance of window size Lw, we studied its influence on all diseases. The values235

10kb, 20kb, 30kb, 40kb, 60kb, 80kb, 100kb and 150 kb were tried. Results are shown together with the236

result for pre-selection and lasso in Fig.4 and are also available in the supplementary material. When the237

window is too large, prediction accuracy is impaired. This is true except for T1D for which performance238

seems stable.239

For CAD, T2D and to a lesser extent HT and RA, the best performance is obtained for intermediate240

values of the window size. The optimal value is 60kb for CAD, 40kb for T2D and 20kb for HT and RA.241

Lasso slightly outperforms our methods on three out of seven datasets: BD, CAD and HT. This shows242

that our methods do not always recover all the information contained in the central SNPs. For RA and243

T1D, performances are very similar for all methods. However, for CD and T2D, our methods outperform244

lasso for most values of window size considered.245

The three variants obtained similar performances. PHd does not outperform PH, it fails to capture246

any dominance effect. PH does not consistently outperforms PwoH. The decrease in performance with247

increasing window size is true for all three variants. However, for large window sizes, PH outperforms or248

equals the other variants.249
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DISCUSSION250

In this work, we developed a method to try and capture interactions inside haplotypes. This implies a251

different setting than is customary in machine learning. Variables have two values for each observation252

and there is a metric structure to take into account. The design of PH allows it to take that structure into253

account.254

PH outperformed standard lasso regression on two datasets but not on all of them. This is suggestive255

of haplotypic effects in Crohn’s disease and type 2 diabetes. The result for CD is reminiscent of the results256

of (Kang et al., 2011) as well as the two new loci discovered in the CD dataset by (Botta et al., 2014). On257

the other hand, in three datasets, PH was slightly less accurate than lasso regression. This might be due to258

the multi-step design which is not a standard approach and that results in some loss of information.259

Our more theoretical contribution is to note that interactions inside haplotypes are a part of additive260

heritability. Our results therefore show that some of the missing heritability can be explained by the lack261

of consideration for interaction inside haplotypes. For type 2 diabetes, the proportion of genetic variance262

explained went from 40% to 66% (for prevalence K = 20% and heritability h2 = 0.30) (Wray et al., 2010).263

For Crohn’s disease, this proportion went from 16% to 22% (for K = 1% and h2 = 0.8).264

These estimates of explained heritability and all of the above AUCs are optimistic due to various265

study specific quality problems that result in overestimation of predictive performance as shown in the266

drop in out-of-study performance in (Wei et al., 2009). The limited availability of comparable datasets is267

therefore a hindrance to progress in this area of research.268

PwoH obtains similar performance than PH on all datasets. This means that even if there are haplotypic269

effects, it is not necessary to perform phase imputation to capture them. It can be sufficient to capture270

local interactions using genotype to recover haplotypic effects. PHd did not outperform PH. This suggests271

that dominance effects are not an important part of genetic risk for complex diseases.272

Small window sizes obtained the best performances while larger window sizes led to decreased273

performance. This is consistent with the results in (Botta et al., 2014). This shows that the information274

that we recover is very local.275

Further work on the importance of phase information for the prediction of complex diseases could try276

and adapt the method in (Botta et al., 2014) so that it can use phase information.277
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