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Mathematical models are a powerful method to understand

and control the spread of Huanglongbing

Rachel A Taylor, Erin Mordecai, Christopher A Gilligan, Jason R Rohr, Leah R Johnson

Huanglongbing, or citrus greening, is a global citrus disease occurring in almost all citrus

growing regions and causing substantial economic burdens to individual growers, citrus

industries and governments. Successful management strategies to reduce disease burden

are desperately needed but with so many possible interventions and combinations thereof,

it is difficult to know which are worthwhile or cost-effective. We review how mathematical

models have yielded useful insights into controlling disease spread for other vector-borne

plant diseases, and the small number of mathematical models of Huanglongbing. We

adapt a malaria model to Huanglongbing, by including temperature-dependent psyllid

traits and economic costs, to show how models can be used to highlight which parameters

require more data collection or which should be targeted for intervention. We analyze the

most common intervention strategy, insecticide spraying, to determine the most cost-

effective spraying strategy. We found that fecundity and feeding rate of the vector require

more experimental data collection, for wider temperatures ranges. The best strategy for

insecticide intervention was to spray for more days rather than pay extra for a more

efficient spray. We conclude that mathematical models are able to provide useful

recommendations for managing Huanglongbing spread.
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ABSTRACT9

Huanglongbing, or citrus greening, is a global citrus disease occurring in almost all citrus growing regions

and causing substantial economic burdens to individual growers, citrus industries and governments.

Successful management strategies to reduce disease burden are desperately needed but with so many

possible interventions and combinations thereof, it is difficult to know which are worthwhile or cost-effective.

We review how mathematical models have yielded useful insights into controlling disease spread for

other vector-borne plant diseases, and the small number of mathematical models of Huanglongbing. We

adapt a malaria model to Huanglongbing, by including temperature-dependent psyllid traits and economic

costs, to show how models can be used to highlight which parameters require more data collection or

which should be targeted for intervention. We analyze the most common intervention strategy, insecticide

spraying, to determine the most cost-effective spraying strategy. We found that fecundity and feeding

rate of the vector require more experimental data collection, for wider temperatures ranges. The best

strategy for insecticide intervention was to spray for more days rather than pay extra for a more efficient

spray. We conclude that mathematical models are able to provide useful recommendations for managing

Huanglongbing spread.
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INTRODUCTION33

Huanglongbing (HLB), also known as citrus greening disease, is a devastating citrus disease native to34

Asia (Bové, 2006; Gottwald, 2010; Hall et al., 2013) but now exists in virtually all citrus-growing regions35

(Narouei-Khandan et al., 2015). In the last 10 years, it invaded the Western Hemisphere, primarily Brazil36

and Florida, where it has spread rapidly and caused extensive economic burdens (Hodges and Spreen,37

2012; Spreen et al., 2006). HLB is caused by three bacteria: Candidatus Liberibacter asiaticus (CLas),38

Candidatus Liberibacter africanus, and Candidatus Liberibacter americanus. The Asian citrus psyllid39

(ACP), Diaphorina citri Kuwayama is the primary vector (Grafton-Cardwell et al., 2013). The disease40

causes chlorosis of leaves, dieback and in severe cases, tree death. Infected trees develop fruit that is of41

poor quality and drops early, reducing yields of edible and marketable fruit from diseased trees (Bové,42

2006). HLB is undermining the viability of an important international industry, and possibly endangering43

the persistence of multiple species of citrus (Hall et al., 2013).44

Intervention strategies for Citrus Greening45

Nowhere in the world is citrus greening under adequate control (Gottwald, 2010; Hall et al., 2013). The46

process of finding effective intervention strategies has been challenging, at least partly because of the47

difficulties in determining the infection status of trees and the long duration before trees show symptoms48

(Manjunath et al., 2008; Gottwald, 2010). The current state of control involves insecticide spraying to49

reduce the abundance of Asian citrus psyllid (Grafton-Cardwell et al., 2013).50

To fight citrus greening disease, new intervention strategies are needed. This could be by developing51

new controls or by combining current and new controls into an optimal strategy (Halbert and Manjunath,52

2004; Wang and Trivedi, 2013). However, before they can be implemented in the field they need to53

be tested for efficacy. There are presently tens if not hundreds of hypothetical interventions that could54

be tested, such as antibiotics (Zhang et al., 2014), pesticides (Qureshi et al., 2014), biocontrol agents55

(Michaud, 2002), heat treatment (Hoffman et al., 2013), new tolerant or resistant tree stocks (Dutt et al.,56

2015), nutrient additions (Gottwald et al., 2012), tree removal (Gottwald, 2010), changes to tree spacing57

(Martini et al., 2015), intercropping (Gottwald et al., 2014), psyllid deterrents and barriers (Tisgratog et al.,58

2016; Tomaseto et al., 2016), etc., and even more daunting are the different factorial combinations of59

interventions to test. It would be impossible and costly to test this large number of potential intervention60

methods, as well as combinations of these, in the field. Instead, it would be better to start first with those61

that have the most potential, both in terms of success at reducing the rate of the disease and the costs for62

implementing the strategy. The question is how to identify these strategies.63

Here we argue that collaborations between empiricists and mathematical modelers can more efficiently64

identify solutions to HLB. This is because there is a long history of mathematical models of other vector-65

borne diseases quickly and reliably identifying the parameters of the host-vector-pathogen system that66

are most sensitive to perturbations and thus controls. By coupling these models that describe benefits67

with the economics costs of various interventions, combined cost-benefit models can quickly and reliably68

guide the formidable task of empirically testing HLB interventions. Indeed, mathematical models can69

provide insights into the cost effectiveness of lone and combined intervention strategies faster than almost70

any other approach. They can help efficiently target experiments and field data collection on particular71

critical factors and interventions, and outcomes then serve as ways to test and validate the models. Thus,72

by combining appropriate models with laboratory and field experiments, we expect to develop more73

cost-effective interventions more quickly than using empirical approaches alone.74

The usefulness of mathematical models75

Mathematical models for disease systems were first analyzed by Kermack and McKendrick (1927),76

which paved the way for many future models. In these models, often called SIR models, individuals77

move between different compartments depending on their disease status - often “Susceptible”, “Infected”78

and “Recovered.” More detailed versions of these models have since evolved to include elements such79

as demography of the population, age structure, exposure periods, asymptomatic individuals, waning80

immunity and most important for us, vector-borne transmission, which were initially developed by Ross81

and MacDonald (Ross, 1911; Macdonald, 1952, 1961). The purpose of these mathematical models falls82

into two main categories, sometimes referred to as “tactical” or “strategic” models (Nisbet and Gurney,83

1982). In the latter case, the question the modelers wish to answer is “What could possibly happen?” They84

aim to find general conclusions that can be used to understand the drivers of population change across85
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many systems. The models are often poor representations of real data. Tactical models are inherently86

connected to a system and to data collected. Their focus is to make predictions but their answers are only87

applicable to that one system and are not easily generalized. Furthermore, they usually are unable to show88

why things occur as they give no information on the drivers of the system. By connecting strategic models89

more closely to data, it is possible to make qualitative predictions and yet retain understanding of what are90

the important elements of the system - so that it is possible to understand the effects of targeting specific91

parameters for control. One of the methods for ensuring that the qualitative predictions are sensible is92

through sensitivity analysis - analyzing the importance of different parameters on key disease measures.93

Sensitivity analysis can alert us to cases when we need more data to be sure of our predictions. However,94

it also highlights which parameters are best to change if we want to affect some aspect of the system, such95

as when we wish to manage populations or disease outbreaks. Further additions to strategic models, which96

can make their predictions stronger, are the ability to connect them intimately to cost analysis – and to97

optimize the solution. That is, to be able to choose, based on some measure of profit, which management98

strategy out of many is the best. Of course, the measure of profit can change depending on the aim of99

the study and can be limited by resource use. One power of mathematical models is that they are able to100

consider any possible number of intervention strategies, compare them cost-effectively, and do so quickly.101

In addition to the extent and speed at which models can consider intervention strategies, models can102

also consider spatial and temporal scales that are often not feasible in experiments (Gilligan and van den103

Bosch, 2008), or theoretical approaches to HLB management that might not have been considered by104

the citrus industry. Thus models can provide “outside-the-box” tactics to battle this devastating disease.105

Most experiments cannot logistically test landscape-level disease spread that occurs across multiple years,106

but this is something that is regularly done with mathematical and statistical models. As an example of107

“outside-the-box” tactics that models can provide, efforts have been made to control some vector-borne108

diseases by releasing sterile vectors, which subsequently reduce the vector population and can control109

or even eliminate the disease (Thomé et al., 2010; Harris et al., 2012). Although this is not presently a110

reality for HLB, models can test whether this could be an effective control measure for this system and,111

for instance, provide guidelines on how many sterile psyllids would have to be released to control or112

eliminate HLB, thus providing insights into the feasibility of this and other hypothetical control strategies.113

Here, we provide a case for the more thorough integration of data-driven modeling to HLB control.114

We first provide case studies in other vector-borne crop disease systems where models were critical to115

identifying cost-effective management strategies, and focus on vector-borne diseases in plants, similar116

to HLB. Next, we discuss previous mathematical models of HLB to reveal how modeling has already117

advanced study of the HLB system. We then provide an example of how a mathematical model for malaria118

can be used to describe HLB transmission and the potential insights it can yield. In particular, how it can119

identify parameters that require further experimentation or the success of potential intervention strategies.120

MATHEMATICAL MODELS OF VECTOR-BORNE PLANT DISEASES121

Plant viruses transmitted by arthropod vectors are a major source of yield losses, infecting a wide range122

of crop plants. However, the biological details – such as the role of alternative hosts of vectors, the rate of123

migration, and the seasonality of disease – differ immensely between crop systems and sites. This means124

that our understanding of disease dynamics and control in one system may not apply to other sites or crops.125

One way to bridge this control gap is to incorporate biological knowledge into mathematical models that126

predict disease dynamics and how yield loss will respond to interventions. Models can compare, using a127

common currency, the potential impact of different interventions by examining sensitivity to parameters128

that represent different strategies. Previous studies have strategically used models to disentangle the129

potential role of vector migration, spillover from alternative hosts, and control measures (spraying, netting,130

phytosanitation) across a range of diseases (e.g., Fishman et al. (1983); Kendall et al. (1992); Holt et al.131

(1997, 1999); Smith et al. (1998); Robert et al. (2000); Zhang et al. (2001); Jeger (2000); Smith and Holt132

(1997)). For illustration, we highlight a few key examples here.133

Holt et al. (1997) describe an African cassava mosaic geminivirus (ACMV) outbreak in cassava,134

transmitted by a cassava-specific whitefly strain, which was then sweeping through Uganda. The virus135

also spreads through stem cuttings, the main propagation method for cassava in Africa. Potential control136

options included phytosanitation (use of uninfected cuttings) and roguing (removal of infected plants).137

Phytosanitation would be more effective if infected cuttings were driving disease spread, whereas roguing138

would be more important in a largely vector-driven epidemic. The authors addressed the dynamics and139
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control of this disease using a model that tracks susceptible and infected plants and non-infective and140

infective vectors, using a version of the Lotka-Volterra predator-prey model with density dependence in141

both plant and vector. Because there are no alternative vectors or hosts, a minimum density of cassava142

is required to sustain whitefly populations. The model uncovered otherwise cryptic disease dynamics.143

Namely, disease cycles occurred when transmission was only via vectors, whereas when infected cuttings144

were used in a frequency-dependent manner (i.e., as a low proportion of the total cuttings), disease145

incidence had a sharp threshold. In this situation, it was difficult to detect when the system was close to a146

critical transition from low to high disease incidence, causing a collapse of uninfected plants. As a result,147

crop intensification could increase disease incidence gradually while imperceptibly pushing the system148

toward collapse. Roguing does not reduce disease incidence but can prevent collapse by pulling the149

system away from the critical threshold, providing a hidden benefit that would not be detectable without150

the model.151

In a later paper, Holt et al. (1999) describe how tomato yields in India suffered massive losses (47-85%)152

from a whitefly-vectored tomato leaf curl geminivirus (TLCV). In contrast to the cassava example, tomato153

was only an occasional host for this whitefly, and spillover from other perennials and weedy plants drove154

vector and virus dynamics. In this context, the authors asked “what is the best method for disease control?”155

Because most of the vector lifespan occurs on other hosts, the authors adapted a previous general model156

framework (Jeger et al. 1998) to decouple vector dynamics from crop dynamics. The parameterized157

model could match epidemic curves for susceptible and resistant varieties, although it did not reproduce158

the 100 percent prevalence that can occur in fully susceptible populations. Sensitivity analyses were159

then used to explore different disease management options. Because the tomato crop was a sink for160

whiteflies and TLCV, interventions that reduce vector immigration and survival were predicted to be161

most effective. The authors’ models suggested that the most effective disease control method would be162

to distribute netting treated with a persistent insecticide and colored yellow on the crop side; the netting163

would increase vector mortality and decrease vector immigration and, because the flies are attracted164

to yellow, the yellow coloring on the crop side would increase emigration. However, because vector165

migration from uncontrolled populations in alternate plant hosts would sustain the supply of migrants,166

interventions would need to be continuous to be effective in the long term. Thus, although this system –167

a whitefly-vectored geminivirus – is superficially similar to the previous cassava example, it highlights168

the importance of rigorously considering vector, virus, and host biology in a model to design effective169

interventions. The insecticide-treated, yellow-colored netting devised here is an example of the value of170

combining complementary approaches to disease control described above, which often only become clear171

after examining model outcomes.172

MATHEMATICAL MODELS AND HLB173

Few mathematical models of HLB currently exist that analyze how HLB spreads within individual trees,174

within a citrus grove, or from grove to grove. We review here those models which have been applied to175

HLB because they demonstrate the major insights models have already provided to this disease system.176

Recent modeling of HLB includes Jacobsen et al. (2013), Parry et al. (2014) and Lee et al. (2015).177

These articles elucidate the spread of HLB using three different approaches, namely through mechanistic178

modeling, statistical analysis, and individual-based modeling, respectively. All of these approaches have179

benefits and offer insights on different aspects of the system.180

Jacobsen et al. (2013) use mechanistic modeling that is an elaboration on an SIR-type compartment181

model to understand disease dynamics. Mechanistic models such as these are among the simplest182

approaches because they do not necessarily require direct parameterization from experimental data.183

Nevertheless, they still can provide important insights. Jacobsen et al. (2013), model the number of184

trees within a grove that are in four classes: susceptible; infected but not symptomatic; infected and185

symptomatic; and dead. With their model, Jacobsen et al. (2013) analyze how the numbers in each class186

change over time due to bacterial transmission between trees and psyllids. The focus is on what is the187

range of potential outcomes of disease spread, rather than using a directly parameterized model to make188

quantitative predictions, i.e. it is a strategic model. However, with the speed of implementing mechanistic189

modeling and the freedom to consider ranges of solutions, it is possible to find general insights quickly.190

For example, the elegantly basic model of Jacobsen et al. (2013) suggested a rather counter-intuitive191

outcome: if infected trees leave behind infected root stock when rogued that can infect trees newly planted192

at that location, the best control strategy is actually not to rogue at all. This is because the soil is acting193
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as a reservoir to continue disease spread. However, this relies on the assumption that dead trees do not194

spread infection which may be false, at least for a short time. Thus, the mathematical model has lead to a195

set of concrete outcomes linked to explicit assumptions, both of which can guide further experimentation.196

The work of Parry et al. (2014) builds upon the framework of the mechanistic model by fitting a197

spatially explicit disease model in which trees are either Susceptible, Exposed, Infectious, Detected or198

Removed using data from Southern Garden’s citrus groves. It is primarily a methods paper, using HLB199

as a case study. Specifically, this modeling entailed estimating parameters from a newly emerged HLB200

outbreak, that could then be used to predict future disease spread and the impact of control strategies from201

the early stages of the epidemic. The methods are much more complex, both in terms of mathematics202

and computational implementation. The available data are discrete snapshots of the disease status of the203

whole grove – often the case with HLB-infected groves. Using censored detection data with no means to204

determine the actual exposure and infection time for each tree necessitates specialized statistical methods205

and bespoke software. Their method is able to determine the transmission process from tree to tree in206

the presence of psyllid management practices - previous modeling of this sort required the pure disease207

system without external interference through control. From their modeling, they also determine the effect208

of tree age on transmission parameters and show that host susceptibility is seasonal, leading to better209

estimates of parameters for future use. The ability to gain so much information from little data results in210

better predictions for the continued epidemic and the capability to control the current and future outbreaks.211

While experiments can be used to calculate estimates for such parameters as infection times or probability212

of successful transmission, this is not possible when an infection has just emerged. Thus, this modeling213

allows us to implement control strategies straightaway without losing our ability to estimate necessary214

epidemiological parameters to predict the spread of the epidemic.215

Finally, Lee et al. (2015) combine experiments and individual-based mathematical models. The216

main experimental result was that, despite being asymptomatic, the host plant can become infectious217

in a shorter time than previously thought, within 15 days. They used these experimental data in their218

individual-based model, which describes how the pattern of HLB spread in a grove depends upon the219

location within the grove that psyllids initially invade. Their model revealed that the average time until a220

grove is 100% infected is much lower if the psyllids arrive by wind into the center of the grove than if221

they invade the grove’s edge. Thus, if the grower knows that the psyllids were blown in by wind, they222

should expect that a more intense control strategy is necessary to have any chance of stopping infection.223

Through mathematical modeling, Lee et al. (2015) also found that it is possible for the whole grove to224

be infected before the first symptoms appear on any tree. From this, they emphasize the need to control225

psyllid populations regardless of whether any trees have shown symptoms because transmission may226

already be occurring from asymptomatic trees. Importantly, both of the latter two modeling approaches227

involved a close integration of the model with biological data to estimate parameters and validate model228

results. Model-data integration greatly improves the ability of mathematical models to accurately predict229

best management practices to combat HLB.230

Additionally, modeling papers exist in which the focus is controlling other citrus diseases rather than231

specifically HLB. Cunniffe et al. (2015) is a good example of a modeling paper that aims to provide232

useful recommendations to stakeholders such as policy makers and growers, with explanations of why233

those recommendations are best. The authors include publicly-available software to allow stakeholders to234

interact with the model, to understand how a strategy of roguing within a radius of detected infected trees235

would be affected by different roguing radii and the stochastic nature of disease spread. Their focus is on236

citrus canker but they include HLB as a second example, with the result that optimal roguing radii can be237

found dependent on the level of risk aversion of the grower. Similarly, Cunniffe et al. (2014), using Bahia238

bark scaling of citrus, illustrate that mathematical models are able to provide useful recommendations for239

roguing and tree spacing strategies, even when epidemiological knowledge of the disease is limited.240

A PARAMETERIZED HLB MODEL THAT CONSIDERS ECONOMIC COSTS241

AND BENEFITS242

We provide an example of a mathematical model for HLB to illustrate how even simple models can243

provide useful information for stakeholders, laboratory and field experiments and development of new244

intervention strategies. We highlight how sensitivity analysis can inform which parameters are lacking245

in data, thereby encouraging more experimental studies, or which parameters should be targeted for246

intervention. We demonstrate how to incorporate interventions and economic costs and benefits into a247
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plant disease model and the types of information that models can give us. To do this, we use a similar248

mechanistic modeling approach as Jacobsen et al. (2013) whilst incorporating realistic parameter values249

including data on the temperature dependency of psyllid vital rates.250

Model development and assumptions251

We adopt a previous model developed by Parham and Michael (2010) for malaria, with some differences252

in parameter interpretation. Of particular note, the “biting rate” for mosquitoes will instead be the “feeding253

rate” for psyllids. The model is parameterized using data from the HLB system (see below). The use of a254

malaria model highlights the broad applicability of mathematical models that can allow understanding of255

many vector-borne systems by studying one in detail. The main components of the model are similar to256

traditional models of vector-borne disease developed by Ross & Macdonald (Macdonald, 1952), also for257

malaria. Citrus trees are categorized as either Susceptible or Infected, and adult psyllids are Susceptible,258

Exposed, or Infected, where Exposed indicates that the psyllids are infected but are not yet able to pass259

the disease on to another tree (Figure 1). The development of eggs and nymphs is included within the260

birth rate of psyllids. A very small rate of natural death of susceptible trees occurs. An adaption of the261

malaria model is that we include roguing of infected trees. After an incubation period included in our262

model through a time delay, infected trees can transmit infection (Gottwald, 2010). Realistically, most263

infected trees are asymptomatic at first but we do not change the model to include an asymptomatic stage264

as we wish to stay consistent with the malaria model. Instead, we set the average time to rogue trees to be265

long enough that newly infectious trees are unlikely to be rogued. The sum of trees dying by natural death266

or roguing equals the total number of trees removed, which are tracked to estimate the costs of roguing.267

All of these removed trees are assumed to be immediately replaced by susceptible trees in the grove, thus268

the grove size remains constant. Transmission of infection can occur when an infected psyllid feeds off a269

susceptible tree, or vice versa. Psyllids have a constant feeding rate which is independent of the number270

of trees. We assume that the grove has 100% susceptible trees initially, with psyllids feeding freely from271

the trees. At time 0, we introduce one infected tree. We consider the change in numbers of susceptible,272

infected and removed trees for the following 20 years to understand the effects of the initial infection273

on the whole grove. A full description of the model, with parameter values and information on how we274

include intervention strategies, is given in Article S1.275

Baseline Model Parameterization and Exploration276

An important aspect of our model compared with previous models of HLB is our attention to the seasonality277

inherent in the psyllid life history. Psyllids are ectotherms and thus will be sensitive to fluctuations in278

temperature both daily and throughout the year. The thermal physiology of ectotherms has been explored279

in depth, and it is widely recognized that most traits exhibit unimodal patterns – i.e., performance is280

low at cold temperatures, ramps up to an optimum, and then falls off as temperature increases further281

(Dell et al., 2011; Amarasekare and Savage, 2012). Recent work on malaria indicates that it is important282

to incorporate the thermal performance of vectors into disease transmission models (Mordecai et al.,283

2013; Johnson et al., 2015). Based on data from Liu and Tsai (2000) and average monthly temperatures284

in Florida, we include yearly variation in psyllid vital rates, specifically fecundity, development rate,285

probability of developing from egg to adult, and death rate (see Article S1 and Figure S1.1).286

For our other parameters, such as feeding rate, extrinsic incubation period, and probability of successful287

transmission between tree and psyllid (and vice versa), we obtained data from a variety of sources including288

Pelz-Stelinski et al. (2010); Lee et al. (2015); Gottwald (2010); Martini et al. (2015). For full details of289

parameter values and their sources, see Table S1.2.290

We build in expected costs, income and profits into our model to assess the impact of disease on291

the grower and the most cost-effective control strategies. We include the cost of removing a tree and292

replanting with a new disease-free tree, and the cost of our intervention strategy namely the cost of one293

day of insecticide spraying. These costs, as well as the expected profits from susceptible, infected and294

treated trees, are estimated from Stansly et al. (2014); Spreen et al. (2006). We assume the profits are295

constant over time for simplicity (with a discount factor); in reality, profits will change over the course296

of the outbreak due to changes in supply of citrus (FASS, 2015). Further details of the inclusion of cost297

estimates in our model can be found in Article S1.298

We first present the model predictions for spread of HLB within a single grove with only roguing.299

Studying this base case provides the platform for understanding how effective intervention strategies are300

at reducing disease prevalence. Next we perform a sensitivity analysis to examine which parameters seem301
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Figure 1. A schematic of the model system showing transitions to different categories for trees and adult

psyllids. Trees are either Susceptible, Infected or Removed. Adult psyllids are either Susceptible,

Exposed or Infected. Black arrows show the transitions between compartments. Red arrows show the

necessary interactions between trees and psyllids to obtain transmission. Light blue dashed boxes

highlight how our intervention strategy (see §) impacts transitions within the model.

to most impact disease dynamics. We then evaluate the effectiveness of a commonly used control strategy,302

insecticide, at counteracting disease prevalence. We assess the cost-effectiveness of this strategy, which303

can lead to non-intuitive conclusions about the best strategy to implement.304

Results from the base model with only roguing305

With no intervention strategy other than roguing, the disease spreads quickly throughout the grove such306

that over 90% of the trees are infected within the first 5 years (Figure 2). After 5 years, the constant307

replacement of infected trees with new susceptible trees is balanced by new infections, such that the308

number of infected trees remains constant across years (with some seasonal variation). After 20 years (see309

Figure S2.1), roguing has resulted in replacing 160 trees for a grove size of 101 trees - clearly a costly310

control strategy.311

In both summer and winter the temperature in Florida is not well suited for psyllids, which causes312

clear fluctuations in psyllid population abundance twice each year (Figure 2B); the bigger dip occurs each313

summer when temperatures are too high for psyllids to produce eggs. However, their high fecundity the314

rest of the year allows the psyllid population to bounce back quickly and be effective at spreading disease.315

Approximately a third to a half of psyllids are infectious, leading to a large endemic situation in the316

trees. However, roguing prevents the grove from becoming 100% infected. A potential strategy to reduce317

disease prevalence would be roguing trees more quickly after they become infectious. We investigate how318

changing the average time until a tree is rogued affects both the maximum prevalance and the number of319

removed trees after 20 years (Figure S2.2). Roguing trees sooner reduces the peak number of infected320

trees, but this is outweighed by the significant increase in number of trees that need replaced. However,321

roguing can have benefits when implemented alongside other control strategies which target different322

aspects of the disease spread, such as the role of the vector.323

Sensitivity Analysis324

Through sensitivity analysis, we can assess which parameters are influential in the spread of disease within325

a grove, highlighting which parameters are important to target for intervention or for more experimental326

study. To do this, we focus on R0, the expected number of secondary cases, i.e. the number of trees327

which will become infected due to a single infected tree present within a grove (see Article S1). R0 is328
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Figure 2. The changes in numbers of susceptible and infected trees and psyllids over 8 years when one

tree is infected at time 0. In A, alive trees are either Susceptible (blue) or Infected (red), and Removed

trees are also plotted (purple). In B, psyllids are Suceptible (blue), Exposed (green) or Infected (red).

a combination of parameters related to both the psyllids and the trees, but with a higher proportion of329

the former. We perform two different types of sensitivity analysis because we have both temperature330

dependent parameters and constant parameters.331

As outlined earlier, we have data on how some psyllid vital rates are dependent on temperature; in332

Article S1, Figure S1.1, we fit response curves to those data. These response curves describe how four333

parameters are affected by temperature: fecundity of female psyllids (EFD); the probability of egg to334

adult survival of psyllids (pEA); psyllid development rate (MDR); and psyllid death rate (µ). Performing335

sensitivity analysis with these parameters, we can assess how changes in temperature propagate through336

the different parameters to affect R0 (Figure 3A).337

The fecundity of female psyllids (EFD) has a significant impact on R0 at low and high temperatures338

(Figure 3A). Experimental studies demonstrate that psyllid fecundity is greatly reduced for low and high339

temperatures. Since R0 is very sensitive to this result, it highlights the need to perform more experimental340

studies of psyllid fecundity for a wide temperature range to ensure its validity. Figure 3A indicates341

that µ is influential in reducing R0 at mid to high temperatures, whereas it is not influential at low342

temperatures. Therefore, an intervention strategy targeting psyllid death rate would be most successful if343

it is implemented during the warmer seasons.344

We also perform sensitivity analysis of the constant parameters that are included in R0 (Figure 3B).345

For the following parameters we vary its value by 10% and plot the effect on R0: the feeding rate of the346

psyllid (a); the probability of successful transmission from psyllid to tree (b); the probability of successful347

transmission from tree to psyllid (c); the roguing rate of infected trees (r1); and the rate of extrinsic348

incubation within the psyllid (φ ).349

The feeding rate of psyllids (parameter a, Figure 3B) has clearly the most effect on R0 of all the350

constant parameters. This occurs because the parameter is involved in both directions of transmission:351

from tree to psyllid and vice versa. However, it is hard to experimentally determine the feeding rate of352
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Figure 3. The sensitivity of R0 to changes in temperature-varying and constant parameters. In A, the

change in R0, dR0
dT

, is plotted against temperature alongside how each of the psyllid parameters contributes

to this change in R0, denoted by color. The further the curve is from zero, the more contribution that

parameter has to changes in R0. In B, the sensitivity of R0 to changes in constant parameters at

T = 23.43◦C, when R0 is at its maximum (R0 = 10.1). Each parameter is varied by 10% to assess the

impact on R0 at this maximum temperature. Decreasing each parameter by 10% (e.g. 0.9a) is indicated in

green; increasing each parameter by 10% (e.g. 1.1a) is indicated in pink.

psyllids on trees as they do not follow the pattern of one feed per oviposition, such as mosquitoes, and the353

nymphs remain attached to tree flush for the duration of this life stage. Thus, it highlights the need to354

focus future work on pinning down this parameter more precisely since it is so influential on R0, as well as355

improving the model to account for psyllid biology. Note that parameter r1 has the opposite effect to the356

other parameters – an increase in r1 decreases R0, whereas the other parameters are positively correlated357

with R0. The width of the effect on R0 is slightly larger for r1 than the other parameters apart from a. We358

discuss varying this roguing rate in Figure S2.2 with the result that roguing does reduce disease prevalence359

but at the cost of removing many more trees.360

Insecticide Intervention361

Based on the sensitivity analysis, in which psyllid death rate has a significant effect on R0, and since362

insecticide is currently the main control strategy in use, we analyze what is the most cost-effective strategy363

to implement insecticide intervention. Whilst many groves are being sprayed with insecticides to control364

psyllids and thus HLB (Grafton-Cardwell et al., 2013), the range of methods for insecticide application365

across the US is large with differences in number of applications per year and the efficiency of the366

insecticide (Qureshi et al., 2014; Rogers, 2008). Thus, there are not obvious scenarios that can be used as367

comparisons to test which is the best method. Instead, we assess the insecticide application through a368

process more akin to global sensitivity – we vary the level of insecticide efficiency and the number of369

days spraying throughout the year over a wide range to capture the current state of play of insecticide370

application. Our intention here is to present preliminary results and proof-of-concept for the use of a371

vector-driven epidemiological model to compare the effectiveness of different control scenarios in an372

isolated grove.373

When insecticide is applied to the groves it targets all adult psyllids through increasing their death rate.374
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It also reduces the birth rate of psyllids, to represent the insecticide killing eggs and nymphs (Figure 1).375

We apply insecticide spray in both spring and autumn. Therefore, insecticide spraying occurs at mid-range376

temperatures, which Figure 3A indicated was the best time to target the psyllid death rate. Both spring and377

autumn sprays will involve spraying for the same number of consecutive days. But between simulations378

we vary the total number of days spraying each year. For example, a simulation with 20 days spraying per379

year will have 10 consecutive days at the start of spring and 10 consecutive days at the start of autumn,380

whereas a simulation with 10 days spraying per year will have 5 days each in spring and autumn. Each381

additional day of spraying costs more money to the grower. We also varied the effectiveness of the spray382

and assumed that it correlated positively with its cost; sprays that are not very effective cost approximately383

$15 per day to spray, while highly effective sprays can cost up to $70 per day, for the whole grove. An384

estimate of $30 per spray is estimated from Stansly et al. (2014). To see full details on how insecticide is385

included into the mathematical model and how costs of spraying are calculated, please see Article S1.386

The number of insecticide application days varies between 10 and 60 days per year split equally387

between the two spraying sessions, and the efficacy of insecticide applications varies between 60 and 99%.388

Multiple sprays in a year occur in most groves, with varying ranges of up to 7 sprays (Stansly et al., 2014),389

monthly (Rogers, 2008), or up to 20 sprays per year (Spreen et al., 2006), using a variety of approved390

sprays that differ in effectiveness (Rogers, 2008); some sprays can have an average efficiency as low as391

53% (Qureshi et al., 2014). 60 days is unrealistic logistically in terms of potential insecticide strategies.392

But it allows us to investigate the effect of very aggressive control. We quantify how the variation in393

number of days spraying and effectiveness of spray affect the peak number of infected trees and the394

expected profits from the grove over a 20 year time span (Figure 4).395

There is a clear pattern that increasing the number of application days leads to a reduction in infected396

trees and hence reduced disease spread (Figure 4A). However, this is not the case for increasing the397

effectiveness of the insecticide spray. It does lead to reductions in the peak numbers of infected trees (the398

change in color occurs sooner for highly effective sprays) but the change is slight. Overall, by increasing399

the effectiveness of the spray and by spraying for more days, the peak number of infected trees is lessened400

from 90 to 81 trees. This is not a great improvement but it is lower than was achieved by roguing at a very401

high rate (Figure S2.2).402

The increasing costs associated with, and the lack of improvement attained through, using more403

effective sprays, combine to lead to smaller profits as effectiveness increases (Figure 4B). The additional404

costs of more effective sprays are not outweighed by the slight reduction in infected trees. In fact, the405

most cost-effective spraying strategy is 60 days at 60% effectiveness. For a wide range of number of406

spraying days, more profits are gained through choosing the 60% effective spray than a more effective407

spray.408

Figure 4A, B highlights that the best strategy is not to search for a more effective spray but to409

implement the most aggressive control strategy which is logistically possible. With 60% effectiveness,410

increasing the number of days spraying always led to significant increases in profits. Therefore the411

limiting factor of extending the number of spraying days is not diminishing returns, but the ability to412

perform the insecticide application.413

For comparison, we consider spraying in summer and winter (Figure 4C, D), rather than spring and414

autumn which was suggested as the best time from the sensitivity analysis. It is instantly clear that415

spraying in summer and winter is nowhere near as successful as spraying in spring and autumn. In Figure416

4C, the reduction in peak number of infected trees is approximately 91 trees down to 90 trees. Thus,417

the best intervention when spraying in summer and winter is worse than the worst intervention when418

spraying in spring and autumn, in terms of number of infected trees. This propagates into profits as well,419

with much lower profits achieved for spraying in summer and winter. This highlights the importance420

of considering the seasonality inherent in the system, as it will affect when to implement intervention421

strategies. In Figure 4D, increasing the number of days spraying reduces profits, a reversal of the pattern422

seen in B. This occurs because increasing spraying days only reduces infection prevalence very little, and423

therefore there is no significant increase in income to outweigh the extra costs of spraying. Thus, our424

results validate our sensitivity analysis which indicated that the death rate had most effect on the spread of425

the disease in mid-range temperatures.426

We present the results for the expected citrus profits when there is HLB and 1) no intervention, 2)427

insecticide application, and the ideal but currently unrealistic scenario of 3) no HLB (Table 1). Costs are428

included in the model as outlined in Article S1. We focus on the most successful intervention strategy429
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Figure 4. The effect of different insecticide strategies after a 20 year time span. Insecticide targets both

the death rate and birth rate of psyllids. In A and B, we spray the insecticide in spring and autumn. In C

and D, we spray the insecticide in summer and winter. In A and C, the peak number of infected trees is

shown as a function of both the number of days spraying during each year and the effectiveness of the

spray, using the same color scale. In B and D, the end profit after 20 years is plotted against effectiveness

of spray when a more effective spray correlates positively with cost. As the points change from black to

blue, the number of days spraying per year increases from 10 to 60 days as indicated by the key. The

number of days spraying is the total per year, split equally between the two spraying regimes.

presented, which was spraying for 60 days in spring and autumn, with 60% effectiveness.430

The large cost of insecticide application is outweighed by the significant increase in income compared431

with the no intervention case (Table 1), even if it is not able to match the no disease case. Thus, insecticide432

application looks promising. By viewing the profits over a 20 year time frame (Figure 5), it is possible to433

gain more understanding of how insecticide profits compare with the other scenarios. All the scenarios434

result in similar profits for the first 4 years, until the infected trees have increased to significant numbers.435

For the first 9 years, the insecticide strategy manages to keep profits high, nearly matching the no disease436

case. This is encouraging, as without intervention most of the grove is infectious after 4 years (Figure 2).437

However, the effectiveness of insecticide as an intervention declines the longer it is used. The margin438
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No Disease No Intervention Insecticide

(Fig. 2) (Fig. 4B)

Cost of Removing Trees $1155 $5431 $3524

Cost of Intervention - - $8822

Income from Trees $768,241 $374,686 $544,043

Total Profit $766,086 $369,254 $531,697

Table 1. The expected costs and income for different intervention scenarios, rounded to the nearest

dollar. The insecticide treatment is 60% effective, with 60 days of spraying (Figure 4B). The no

intervention strategy includes roguing of infected trees, as in Figure 2. The no disease case includes

natural death and replacement of susceptible trees. All other parameters are as in Tables S1.2 and S1.3.

between profits from the no disease case and insecticide is ever widening whereas between insecticide439

and no intervention it stays constant towards the end of the 20 year simulation.440
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Figure 5. The profit attained by growers over 20 years for different disease and intervention scenarios:

the no disease case (green), the no intervention case (black), and insecticide spraying (blue). The

insecticide treatment is 60% effective, with 60 days of spraying (Figure 4B). All other parameters are in

Tables S1.2 and S1.3.

Model Summary441

We have used a previously existing malaria model and adapted it to Huanglongbing by adding in442

temperature-dependent parameters for psyllid vital rates, roguing of trees and economic costs. This model443

is clearly preliminary and only a first step towards understanding the spread of HLB within a grove,444

with a more HLB-specific model required to be able to capture the full dynamics of the citrus, psyllid445

and pathogen interactions. However, the relatively simple model presented here, that captures the main446

features of HLB spread, is able to establish useful recommendations for managing HLB.447
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Using sensitivity analysis, we are able to suggest what new data need to be collected, or which448

parameters to focus on for potential intervention strategies. In particular, our preliminary analyses suggest449

fecundity of psyllids should be measured over a finer temperature range to better pin down the temperature450

window for psyllid egg production, since transmission of infection is strongly affected by when psyllids451

can produce eggs. Similarly, we suggest the feeding rate of psyllids requires further experimental work452

because it is an important parameter but the amount of data collected for it so far is small. It could also453

be dependent on temperature which has not been considered in experimental studies. Often the feeding454

rate is only inferred from studies assessing success or failure of transmission of HLB between tree and455

psyllid. But this parameter should be independent of whether transmission occurs. Furthermore, through456

sensitivity analysis, we propose that the death rate of psyllids, especially during mid to high temperatures,457

is influential on the spread of the disease and should be targeted for intervention. Performing similar458

anaylses with an HLB-specific model and more data to parameterise it will allow us to shortlist the459

intervention strategies we examine, at least in the initial stages.460

Targeting the psyllid death rate through the use of insecticide spray led to a reduction in the disease461

spread within a grove and increased profits compared with no intervention. One important aspect found462

was the need to include psyllid temperature dependency and seasonal temperature. This plays a prominent463

role in the success of intervention strategies, with some times of year much better for reducing infection.464

However, the degree to which disease is reduced is low even in the best simulations we found. Disease465

spreads rapidly throughout the grove and the interventions are only capable of maintaining profits rather466

than eradicating HLB.467

As stated above, a more HLB-specific model that captures additional factors involved in HLB spread468

would produce more reliable and more concrete results for implementing management practices for HLB.469

To achieve this, the most important update to the model would be to consider the adult and nymphal470

stages of the psyllids separately. In our model, it is assumed that only adult psyllids are able to be infected471

and are infectious to trees. In reality, the nymphal stage of psyllids has a significant role to play in the472

transmission of HLB. Experiments have concluded that most psyllids become infected with HLB when473

they are nymphs and then remain infected for their entire lifespan (Pelz-Stelinski et al., 2010; Hung474

et al., 2004). Psyllids that become infectious as adults often transmit the pathogen to trees at a lower rate475

than adults who became infected as nymphs (Pelz-Stelinski et al., 2010; Inoue et al., 2009). However,476

nymphs usually remain attached to one tree flush in the early nymphal stages and thus do not transmit the477

disease to other trees (Hall et al., 2013). There is also a slim chance of vertical (transovarial) transmission478

(Pelz-Stelinski et al., 2010). Therefore, an improvement would be to model the egg and nymph life-stages479

directly and incorporate the details of how transmission of HLB from psyllid to tree is affected by the480

psyllid life history.481

CONCLUSION482

Collaborations between empiricists and mathematical modelers have the potential to identify solutions to483

HLB more efficiently and reliably. By incorporating the wealth of knowledge provided by empiricists in484

other plant disease systems, models have been proven to disentangle the potential drivers of the disease,485

inform which aspects of the system to target to control disease and the potential efficiency of those486

intervention strategies. This success can also transpire for HLB, allowing profits to be maintained and the487

possibility of disease eradication. We have shown that even simple models for HLB can provide useful488

recommendations for moving forward with disease management. By collaborating more closely with489

empiricists, these recommendations will improve in scope, reliability and accuracy. Models can highlight490

our lack of understanding in crucial areas, directing future lab and field work. For example, our model491

demonstrated that the feeding rate of psyllids is an important component of disease spread, but it can be492

difficult to find experimental data on this parameter measured the way a modeler would wish – how many493

feeds per time per vector stage per temperature. Therefore, better communication between modelers and494

empiricists is required, benefiting both groups through improved data collection and models.495

We highlight here the tools that mathematical models can bring to the table for fighting HLB. For496

simpler models, the strength lies in the sensitivity analysis, which allows models to be improved by497

suggesting better data collection. For future models, perhaps most useful of all is the ability to test498

different interventions and combinations of strategies in a short time frame to predict which will be499

the most successful. Improvements can be made to our model to include more aspects of psyllid and500

tree biology and different intervention strategies can be considered relatively quickly. Other adaptations501
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could be introduced to consider multiple groves, as well as introducing uncertainties in the host response,502

pathogen and vector dynamics. This reduces the amount of time required performing field experiments to503

determine if the interventions could work. Furthermore, the ability for economic considerations to be504

integrated into mathematical models to allow for optimal management of the intervention is a strength505

that can not be rivaled by other methods. Decisions for future management and control can be made based506

upon informed analysis of the costs and benefits involved rather than intuition. Therefore, we believe that507

mathematical models are a powerful method that need to be utilized further for managing the spread of508

Huanglongbing.509
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