

1    **Morphological evidence for introgressive hybridization between *Feirana quadranus* and**  
2    ***Feirana taihangnica* in Qinling Mountains, China**

3  
4    Yang Song<sup>1\*</sup>; Xin Sui<sup>1</sup>; Yuhong Bian<sup>2</sup>; Junfang Zhang<sup>3</sup>; Junqiang Zheng<sup>1</sup>; Pipeng Li<sup>4\*</sup>  
5

6    **affiliation**

7    1. Institute of Applied Ecology (IAE), Chinese Academy of Sciences (CAS), 72 Wenhua Road, Shenyang  
8    City, 110016, China

9    2 Hua'erping Village, Zhouzhi County, Xi'an City, 710409, China

10    3 Dongfeng Street, Weinan City, 714000, China

11    4 Shenyang Normal University (SNU), 253 Huanghe North-street, Shenyang City, 110034, China

12    \*corresponding author: er\_ao@sina.com (Yang Song); lipipeng@hotmail.com (Pipeng Li).

13    **Abstract**

14    **Background.** *Feirana quadranus* and *Feirana taihangnica*, two species of frogs  
15    inhabiting in waterbodies in the Qinling (Tsinling) Mountains, China, are believed to be sister  
16    species that diverged 4.6 million years ago. In their sympatric area, morphological variations  
17    found between the two species imply that the two species had inter-bred. Additionally, *F.*  
18    *taihangnica*'s polyandrous breeding behavior, without amplexus, would not hinder the  
19    potential hybridization.

20    **Methods.** To verify the hybridization, 117 specimens of *F. quadranus* and *F. taihangnica*  
21    were collected from eight sampling sites in their sympatric area, and 110 of the specimens  
22    were classified morphologically into VV, vw&wv, and ww, representing the putative parental  
23    and suspected hybrid types. Their maternal bloodlines were identified using a phylogenetic  
24    tree based on a region of the mitochondrial *16S rRNA* gene.

25    In total, 34 morphometric indices were selected to analyze the morphological variation  
26    between 16S-types or among morphotypes. A principal component analysis (PCA) and linear  
27    discriminant analysis (LDA) were conducted on total or partial indices for females, males,  
28    and total specimens, as well as simulated populations with falsified morphotypes. The most  
29    important indices for differentiation among morphotypes were revealed with the assistance of  
30    heat-maps.

31    **Results.** In the mitochondrial DNA tree, most of the VV were in the same clade as the  
32    reference *F. quadranus*, labeled as Q, while most of the ww and vw&wv were grouped with  
33    the reference *F. taihangnica*, labeled as T. According to the PCA, there was a clear  
34    differentiation between VV and ww, while vw&wv specimens were in the middle area close  
35    to ww. According to the LDA, VV, vw&wv, and ww were clustered into three separate  
36    groups. An ambiguous differentiation between Q and T was shown both in mtDNA tree and  
37    in multivariate analyses. Seven of the specimens with conflicting classifications blurred the  
38    morphological boundary between Q and T. In both the PCA and LDA, indices that were  
39    based on the extent of bumps and skin coloration discriminated VV, vw&wv, and ww better  
40    than ratio indices that were derived from measurements.

41    **Discussion.** The distribution of VV, vw&wv, and ww in multivariate spaces, especially  
42    vw&wv being scattered between VV and ww, demonstrated an introgressive hybridization  
43    pattern. The extents of bumps in the shape of an inverted "V" between the shoulder blades,  
44    spot pattern on the back, and large bumps above the anal region were the most important  
45    characteristics for differentiating between three morphotypes or between *F. quadranus* and *F.*  
46    *taihangnica*.

50 **1 Introduction**51 **1.1 Discovery and classification history of the genus Feirana**

52 Genus *Feirana* (Dubois, 1992) belonging to Tribe Paini Dubois, 1992, of subfamily  
53 Dic平glossinae, Anderson, 1871, of family Ranidae, Rafinesque-Schmaltz, 1814 (Amphibia,  
54 Anura), contains *Feirana (Rana) quadranus* (Liu, Hu & Yang, 1960), *Feirana taihangnica*  
55 (Chen & Jiang, 2002) and *Feirana kangxianensis* (Yang *et al.*, 2011) to date. They are widely  
56 distributed in the areas of the southern Taihang Mountains, the Zhongtiao, Funiu, and Qinling  
57 Mountains, the eastern Minshan Mountains, the Longmen, Micang, Daba, and Wushan  
58 Mountains and the northern Wuling Mountains (Fei, 1999; Fei *et al.*, 2005; Fei, Ye & Jiang,  
59 2010; Wang, 2007; Wang, *et al.*, 2007) (Fig. 1).

60 *F. (Rana) quadranus*, in Chinese named "Longgang", meaning "swollen vent", was  
61 firstly described by Liu, Hu & Yang (1960), who found a group of frogs with bubble-like  
62 vesicles around the anus, living in the streams of the Wushan Mountains, and named the  
63 species as *Rana quadranus*. Later on, it was determined that only adult males have swollen  
64 vents. The nomenclature *Feirana* was proposed by Dubois (1992) originally as a subgenus  
65 name, and this taxon was upgraded to generic rank later as the number of group members  
66 increased (Fei *et al.*, 2005).

67 After Liu's report (Liu, Hu & Yang, 1960), similar frogs were discovered in the Qinling  
68 (Fang, 1983; Li, 1992) and Taihang (Wu & Qu, 1984) Mountains, and they were considered  
69 "swollen vent" frogs despite having small morphological differences. Fang (1983) and Li  
70 (1992) reported that 5–10% of the "swollen vent" frogs in the Tsingling Mountains had cream  
71 mid-dorsal lines. Li (1992) pointed out that individuals in the Tsingling Mountains were  
72 apparently different from those reported by Liu, Hu & Yang (1960) in the Wushan Mountains.  
73 For example, they were speckled in black and brown-yellow, forming a water-wave-like  
74 coloration pattern, instead of consistent brown, and adult male vents were not swollen. The  
75 diversity of "swollen vent" frogs was also revealed by chromosomal studies among  
76 populations in the Minshan (Yang, Zhao & Gao, 1986), Wushan (Li, Fei & Ye, 1994),  
77 Taihang (Li & Hu, 1996; Chen *et al.*, 2006) and Funiu (Chen *et al.*, 2006) Mountains.

78 Chen & Jiang (2002; 2004) compared the morphometric parameters of specimens from  
79 the Taihang Mountains with those from the Wushan Mountains and were convinced that the  
80 differences between the two groups had reached the species level. Accordingly, they  
81 established a new species, *F. taihangnica* Chen & Jiang, 2002, representing the group from  
82 the Taihang Mountains. Further molecular taxonomy using mitochondrial *12S* and *16S rRNA*  
83 genes confirmed the morphological classification (Jiang *et al.*, 2005).

84 Wang *et al.* (2007) gathered the morphometric traits of samples on a large scale, which  
85 revealed the complexity of geographic populations of the genus *Feirana*. Frogs from the  
86 Zhongtiao and Taihang Mountains were allocated to *F. taihangnica*. To determine the  
87 evolutionary relationship between *F. quadranus* and *F. taihangnica*, Wang *et al.* (2009; 2012)  
88 studied mitochondrial *12S*, *16S* and *ND2* genes. He believed these were sister species that  
89 diverged 4.6 million years ago and that the Qinling Mountains was a large contact zone for  
90 the two species.

91 Yang *et al.* (2011) focused on a group of frogs in Kang County, Gansu Province, which  
92 had originally been identified as *F. taihangnica* but Wang *et al.* (2009) found that they  
93 significantly diverged from other populations of *F. taihangnica*. An analysis of morphometric  
94 traits and the mitochondrial *ND2* gene from more specimens confirmed that this group should  
95 be assigned to a single species, named *Feirana kangxianensis*.

96 **1.2 Living and breeding habits**

97 According to our field observations and to relevant references (Liu, Hu & Yang, 1960;  
98 Fei, 1999; Huang, Gong & Zhang, 2011; Yang, 2011; Zhang *et al.*, 2012), the living habits of

99 frogs among the genus *Feirana* are indistinguishable. They inhibit, and are basically limited  
100 to, waterbodies, such as creeks, brooks, streams, and rivers in mountainous areas at altitudes  
101 of 500 m to 2,500 m. They prey, hibernate, and breed mostly in water, and are hardly seen on  
102 the land unless there is enough rain or moisture.

103 Underwater hibernation varies with the local climate, but takes place in October and  
104 November, and resumes in March and April, with breeding occurring from April to early June.  
105 Spawns are often found under large stones in sun-exposed, slow-flowing and shallow stream  
106 sections (Zhang *et al.*, 2012). Consistent with ecological observations, physiological studies  
107 on the ovaries (Lei, 2003) and testes (Li, 2003) of specimens (*F. quadranus* or *F.  
108 taihangnica*)<sup>1</sup>, collected monthly from Zhouzhi County in the Qinling Mountains, indicated  
109 that ovulation and ejaculation must occur between April and June.

110 Their reproductive activities were very secretive, progressing under large stones in the  
111 water, without conspicuous courtship calls. Even local villagers had never observed their  
112 breeding. After several years of seeking and following oviposition sites, Chen *et al.* (2011)  
113 reported on the breeding biology of *F. taihangnica*, including the time of the breeding season,  
114 spawning site preferences, the size of egg clutches and other data on reproductive ecology.  
115 Zhang *et al.* (2012) observed unique breeding behaviors in this species. Without amplexus, a  
116 female frog deposits sticky eggs beneath a rock under water, and multiple males release  
117 semen on to the spawn. Additionally, Wang *et al.* (2014) identified three spawns of *F.  
118 kangxianensis* using microsatellite markers, one of which was oviposited by two females and  
119 fertilized by three males.

120 Owing to the lack of courtship calls and amplexus, the unique reproductive behaviors  
121 avoid sexual selection. The asynchrony between oviposition and fertilization makes eggs  
122 available for any possible sperms. These factors could facilitate the potential hybridization  
123 between two cohabiting species.

### 124 **1.3 Cohabitation in overlapping ranges and morphological variation between *F. 125 quadranus* and *F. taihangnica***

126 *F. quadranus* ranges from the southern Taihang Mountains, throughout the Zhongtiao  
127 Mountains and Funiu Mountains, and into the Qinling Mountains; *F. taihangnica* ranges from  
128 the northern Wuling and Wushan Mountains, throughout the Daba Mountains and Micang  
129 Mountains, into the Qinling Mountains, with the western range reaching the eastern Minshan  
130 and Longmen Mountains (Fei *et al.*, 2005; Fei, Ye & Jiang, 2010; Wang, 2007; Wang, *et al.*,  
131 2007) (Fig. 1).

132 According to Yang (2011), their ranges overlapped in three areas of the Tsingling  
133 Mountains, one area is in Zhouzhi County and another is in Ningshan County.

134 We noticed the cohabitation of the two species in Hua'erpding, Zhouzhi County, and in  
135 Xunyangba, Huoditang, and Huodigou, Ningshan County. They could be found underwater in  
136 the daytime in the same brooks or pools and could be observed sitting about stones and  
137 waiting for their prey at night. Morphological variations were observed among the cohabitants  
138 (Song, 2010), with some resembling *F. quadranus* or *F. taihangnica*, and some having traits  
139 of both species (Fig. 2).

140 The purpose of our study was to find evidence through a morphological analysis to  
141 verify the suspected hybridization between *F. quadranus* and *F. taihangnica* in their shared  
142 habitat.

<sup>1</sup> It should be noted that the two articles of Lei (2003) and Li (2003) used the dated nomen, *Rana*, instead of *Feirana*, which was confusing. It is possible that they did not know the new taxonomy when sampling took place, which was between April and November, 2002, the same year that Chen & Jiang (2002) published *F. taihangnica* as a new species. Both species (*F. quadranus* and *F. taihangnica*) exist in Zhouzhi County, so their samples may contain *F. quadranus*, *F. taihangnica*, or both.

143 **2 Materials & Methods**144 **2.1 Sampling**

145 The *Feirana* specimens used in this study were collected during fieldwork in the early  
146 summer (May to July) between 2009 and 2011. They were mostly captured by electrofishing  
147 in the daytime, and by bare hands at night. Artificial hybridization in the lab failed because  
148 the frogs failed to survive long enough. Hence, we had 117 specimens.

149 All of the eight sampling sites were located in the contact zone between *F. quadranus*  
150 and *F. taihangnica* (Fig. 1, Table1). Five sampling sites (XYB, PHL, HDT, HDG, and LJZ)  
151 in Ningshan County were chosen along the National Highway 210, as well as along the  
152 Xunhe River flowing throughout the Qinling Mountains; two sites (HRP and LXC) in  
153 Zhouzhi County, with secluded environments, were at the south foot of Mount Taibai, the  
154 highest peak of the Qinling Mountains; and the site FP in Foping County was a convenient  
155 site.

156 After death, specimens were given voucher numbers, then dehydrated through an ethanol  
157 series (50%, 70%, 90%, and 95%), and finally, preserved in 95% ethanol. A piece of muscle  
158 was torn from the thigh and preserved separately. Preserved specimens were photographed  
159 dorsally (Photographs of the 117 specimens are available at URL:  
160 <https://figshare.com/s/a76953fe8b682d7d1220>). Only a small number of frogs with distinct  
161 morphological traits can be traced back to their live photos. Morphometric characteristics and  
162 indices were measured or evaluated (see 2.2, and the sexes were identified by anatomy).

163 Samples were accidentally mingled with two corpses of *Rana rugosa* (LN1, 2) which were  
164 a peer's study subjects, being raised in the same room with the *Feirana*. Corpses and thigh  
165 muscles of these two subjects were preserved through the same procedure for genetic analyses  
166 (see section 2.3).

167 **Ethics Statement**

168 All the species included in our study (*F. quadranus*, *F. taihangnica* and *R. rugosa*) are  
169 not endangered or protected species according to the "Law of the People's Republic of China  
170 on the Protection of Wildlife" and "Regulations for the Implementation of the People's  
171 Republic of China on the Protection of terrestrial Wildlife" (State Council Decree [1992] No.  
172 13); and our eight sampling sites were not in core conservation areas. With the permission for  
173 sampling frog specimens issued by the College of Life Science, Shenyang Normal University  
174 (Approval No. SNY-LS-2009001), the Forestry Department of Shaanxi Province, China,  
175 approved of the field work orally.

176 **2.2 Morphotypical classifications**

177 Specimens were assigned to morphotypes (VV, VV+, vw, wv and ww) (Fig. 2) based on  
178 the criteria below, which were compiled from references (Fei *et al.*, 2009; Wang, 2007) and  
179 our observations.

180 **Typical traits of *F. quadranus*:**

181 The trunk appears as narrow as the head; the back is olive brown in colored; there are  
182 wart-like granular bumps above the anal region, which are relatively large and sparse; there is  
183 a group of wart-like granular bumps between the shoulder blades that forms an inverted "V"  
184 shape; and the vents of the male adults are swollen (Fig.2A).

185 **Typical traits of *F. taihangnica*:**

186 The trunk appears wider than the head; the back has brown, yellow and black spotted,  
187 like a mosaic of light and shadow created by waves and ripples (Fig. 2E); above anal region,  
188 there are inconspicuous wart-like granular bumps, which are small and thick (dense); there are  
189 no inverted V-shaped granules between the shoulder blades; and the vents of the male adults  
190 are not swollen.

191 Specimens with typical *F. quadranus* traits were labeled "VV"; the variation of *F.*

192 *quadranus* with a cream-colored mid-dorsal line was labeled "VV+" (Fig. 2B); frogs with  
193 typical traits of *F. taihangnica* were labeled as "ww"; and intermediates with mixed traits  
194 were labeled as "vw" or "wv", depending on their similarities to typical *F. quadranus* or *F.*  
195 *taihangnica*. For example, some intermediates have half the extent of the dorsal spot pattern;  
196 some intermediates have no inverted V-shaped granules between the shoulder blades but do  
197 have an inverted V-shaped black spot at that position; some frogs labeled as "vw" look like  
198 "VV", only without granular bumps above the anus (Fig. 2C); and some labeled as "wv" (Fig.  
199 2D) look like "ww", only with too many granular bumps on the back. For the convenience of  
200 analysis, three-morphotypes classifications (VV, vw&wv and ww) were employed, where  
201 "VV" and "VV+" were both noted as "VV", and "vw" and "wv" as "vw&wv", representing  
202 putative parents and suspected hybrids, respectively.

203 Out of 117 specimens, 110 produced morphological results. XYB117–123, which were  
204 newly metamorphosed frogs, were too young to be morphotypically identified (Table 1).  
205

## 206 2.3 16S classification

### 207 2.3.1 Laboratory work

208 The mitochondrial *16S rRNA* gene was used to genetically classify 117 frog samples by  
209 maternal bloodline. Two specimens of *R. rugosa* went through the same procedures as an  
210 outgroup of *Feirana*.

211 Genomic DNA was isolated from ethanol-preserved muscle tissues using the genomic  
212 DNA purification kit (Axygen, Hangzhou). A region of the *16S rRNA* gene (~547bp) was  
213 amplified by the primer pair P7 (forward, 5'-CGC CTG TTT ACC AAA AAC AT-3') and P8  
214 (reverse, 5'-CCG GTC TGA ACT CAG ATC ACG T-3') (Simon *et al.*, 1994), which were  
215 also used in Jiang *et al.* (2005) and Wang *et al.* (2009). Amplifications were performed under  
216 the following conditions: 94°C for 4 min, 35 cycles of 94°C for 40 s, 53°C for 40 s, 72°C for  
217 70 s, and 72°C for 8 min. Purified PCR products were sent to biotechnology companies  
218 (Sangon, Shanghai; Majorbio, Shanghai) to be sequenced in one direction, 113 *Feirana* and  
219 two *R rugosa* samples by P7, and four *Feirana* samples by P8.

### 220 2.3.2 Data analysis

221 The trimmed sequences of 113 *Feirana*, 2 *R. rugosa*, and 4 *Feirana* were submitted to  
222 GenBank's NCBI database, under the following accession numbers: KU865180–KU865181  
223 (*R. rugosa*), KU865182–KU865185 (*F. taihangnica*, sequenced by the reverse primer), and  
224 KU865186–KU865298 (*F. quadranus* and *F. taihangnica*, sequenced by the forward primer),  
225 respectively.

226 The sequences of the 117 specimens were compared with sequences of 2 *R. rugosa*, and  
227 the reference sequences of 32 *F. quadranus*, 15 *F. taihangnica*, and 2 *F. kangxianensis*  
228 downloaded from GenBank (Table 2), which were also amplified by the primers P7 and P8  
229 (Che *et al.*, 2009; Wang *et al.*, 2009).

230 In Unipro UGENE 1.21.0 (Okonechnikov *et al.*, 2012), 168 sequences were aligned with  
231 MUSCLE mode (Edgar, 2004), leaving the other parameters as default, and then trimmed to  
232 the same length, 495 bp.

233 A phylogenetic analysis was conducted in MEGA 6.06 (Tamura *et al.*, 2013). Several  
234 statistical methods, including maximum likelihood (ML), neighbor-joining,  
235 minimum-evolution, (unweighted pair group with arithmetic mean and maximum-parsimony,  
236 were tested.

237 The tree shown (Fig. 3) was inferred by ML using the best model (K2+G) estimated to  
238 have the lowest Bayesian information criterion value (Schwarz, 1978). It was a combination  
239 of the Kimura 2-parameter nucleotide substitution model (Kimura, 1980) and a discrete  
240 gamma distribution of five categories to model evolutionary rate differences among sites. The

241 initial tree for the heuristic search was obtained by applying the neighbor-joining method to a  
242 matrix of pairwise distances estimated using the Maximum Composite Likelihood approach.  
243 A bootstrap test was performed with 500 replications. All of the gaps and missing data were  
244 included.

### 245 **2.3.3 Divergence (p-distance)**

246 Evolutionary divergence over sequence pairs (means  $\pm$  standard errors of p-distances)  
247 between and within groups were estimated. The number of base differences per site from the  
248 averaging over all of the sequence pairs between and within groups are shown (Table S1).  
249 Standard error estimates (s.e.) were obtained by a bootstrap procedure with 500 replicates. All  
250 of the positions with less than 95% site coverage were eliminated. That is, fewer than 5%  
251 alignment gaps, missing data, and ambiguous bases were allowed at any position. There were  
252 a total of 491 positions in the final dataset.

### 253 **2.3.4 Phylogenetic classification**

254 For the 117 specimens, those in the same branch as the reference *F. quadranus* or *F.  
255 taihangnica* were classified as "Q" or "T", respectively. All of the morphotype "VV" are  
256 genetically "Q", and all of the morphotypes "ww" and "vw&wv" are genetically "T", except  
257 four specimens (see pink and blue rectangles in Fig.3). One specimen (HDT102) was labelled  
258 "Q-vw", and three specimens (HDT101, HDT113, and HRP125) were labelled with "T-VV"  
259 (Fig. 6F).

## 260 **2.4 Morphometric indices and statistical analyses**

### 261 **2.4.1 Chosing and designing morphometric indices**

262 To evaluate the morphological variation and differentiation among the putative parents,  
263 "VV" and "ww", and the suspected hybrids, "vw&wv" (see 4 for explaination), 34 indices  
264 were employed. Originally, 32 morphometric characteristics based on Wang (2009) and Fei *et  
265 al.* (2009) were measured on preserved specimens using Vernier calipers. 13 with significant  
266 measurement errors (i.e. nostril-snout distance, width of outer web of first toe) or that were  
267 disproportional to body size (i.e. tympanum horizontal diameter, distance between internal  
268 nares, size of vomerine teeth, length and width of inner metacarpal tubercle, length and width  
269 of inner metatarsal tubercle) were removed because Hayek, Heyer & Gascon (2001) warned  
270 against measurement errors and data transformation. The remaining measured characteristics  
271 were divided by snout-vent length (SVL) to eliminate body size effects.

272 Nine ratios were derived from certain measured characteristics, which together with 18  
273 ratios of measured characters to SVL were called ratio indices. The name of a ratio index is  
274 composed as the pattern "dividend\_divisor", e.g. HL\_SVL represents HL/SVL. Seven extent  
275 indices, based on extent of bumps and coloration patterns on the skin were given values  
276 between 0 and 1, or 0 and 2. In the end, 34 indices, including 27 ratio indices and 7 extent  
277 indices, remained for analysis (Table S3-Table S5).

### 278 **Abbreviations of characters or indices with descriptions**

#### 279 **Measured characters**

280 SVL: snout-vent length, used to eliminate body size effects;  
281 HL: head length, from posterior end of mandible to tip of snout;  
282 HW: head width, measured at corners of the mouth;  
283 SL: snout length, distance between anterior edge of orbit and tip of snout;  
284 NED: nostril-to-eye distance, distance between centre of nostril and anterior edge of orbit;  
285 IND: internarial distance, distance between inner ends of nostrils;  
286 IOD: interorbital distance, shortest distance between inner edges of upper eyelids;  
287 IAE: distance between anterior corners of eyes;  
288 IPE: distance between posterior corners of eyes;  
289 LHL: length of lower arm and hand, from elbow to tip of third finger;

290 HAL: hand length, from base of outer palmar tubercle to tip of third finger;  
291 TEL: femur length, from vent to knee;  
292 TL: tibia length;  
293 TFL: tibiofibula length (length of tarsus and foot), from base of tarsus to tip of fourth toe;  
294 FL: foot length, from proximal end of inner metatarsal tubercle to tip of fourth toe;  
295 T5FFL: length of free flap of the fifth toe, length of cutaneous fringe along the outer margin  
296 of the fifth toe;  
297 F1L: first finger length, from proximal end of thenar tubercle to tip of first finger;  
298 F3L: partial 3rd finger length, distance between basal border of third finger to tip of third  
299 finger;  
300 F4L: fourth finger length, from proximal end of thenar tubercle to tip of fourth finger.

301 **Extent indices** (scored between 0, indicating the trait was not seen, and 1, indicating the  
302 maximum extent):

303 BBE: extent of big bumps above the anal region;  
304 SBE: extent of small bumps above the anal region;  
305 VBE: extent of bumps in the shape of inverted "V" between shoulder blades;  
306 VSE: extent of patch in the shape of inverted "V" between shoulder blades;  
307 LBE: extent of line-shaped bumps on the back; BSE: the extent of spot pattern on the back;  
308 LSE: extent of strip or or spot pattern on legs (scored between 0, indicating no obvious  
309 pattern, 1, indicating pure strip pattern, and 2, indicating pure spot pattern).  
310

#### 311 **2.4.2 Description of morphometric data**

312 Morphometric raw data was in Table S2. Means and standard deviations (mean  $\pm$  s.d.) of  
313 34 indices were calculated in five groupings, with each set containing two or three groups:  
314 16S (Q and T), morp3 (VV, vw&wv, and ww), sex (female and male), F\_morp3 (females' VV,  
315 vw&wv, and ww) and M\_morp3 (males' VV, vw&wv, and ww) (Table S3). To reveal the  
316 differences in means between or among groups in each set, statistical tests were performed on  
317 the R 3.2 platform (R Core Team, 2015). The function "t.test" was employed to execute t-tests  
318 of sets containing two groups (16S and sex sets). For the sets containing three groups, firstly,  
319 "bartlett.test" (Bartlett, 1937) was used to check the homogeneity of the variances; and if the  
320 p-value generated by Bartlett's test was above 0.05, meaning variances were homogeneous,  
321 then an ANOVA was applicable, and the function "avo" (Chambers, Freeny & Heiberger,  
322 1992) was then used to compare the means of the groups, otherwise "kruskal.test" for the  
323 Kruskal-Wallis test (Myles & Douglas, 1973), which applies to extreme non-normal  
324 distributions of sample values, was used instead.

325 In Excel 2011 for mac, profiles of the p-values for the five sets in Table S4 were plotted.  
326 P-values were ordered from highest at the bottom, to lowest at the top), and a logarithmic  
327 scale with base 10 was applied to the y axis to magnify the high-degree differences  
328 represented by p-values near 0, and minimize the low-degree differences represented by  
329 p-values near 1 (Fig. 4).

#### 330 **2.4.3 Multivariate analyses**

331 Two types of multivariate analyses were performed on the R 3.2 platform (R Core Team,  
332 2015) to estimate the morphometric variation among morp5 set (VV, VV+, vw, wv, and ww),  
333 morp3 set (VV, vw&wv, and ww), 16S set (Q and T), or 16S\_versus\_morp set (Q, Q-vw,  
334 T-VV, and ww) (Fig. 5F). The function "prcomp" with "scale = TRUE" was used for the  
335 principal component analyses (PCA; see 4 for interpretation of PCA), clustering individuals  
336 in the multivariate space of the first two principal components (PC1 and PC2); and the  
337 function "lda" in package "MASS" (Venables & Ripley, 2002) was used for the linear  
338 discriminant analysis (LDA; see 4 for interpretation of LDA).

339 Considering the possible sexual dimorphism, the females (Fig. 5A; Fig. 6A) and the

340 males (Fig. 5E; Fig. 6E) were analyzed separately, as well as together (Fig. 5B, F; Fig. 6B, F).  
341 The independent impacts of ratio indices (Fig. 5D; Fig. 6D) or extent indices (Fig. 5H; Fig.  
342 6H) on the PCA and LDA were explored.

343 To test the reliability of the morphotype-based classifications, morphotypical information  
344 was simulated in two ways using falsified data sets from two populations (see Table S2).  
345 Based on the real data, for the first simulated population, we changed a small proportion of  
346 VV into vw&vw and a small proportion of ww into vw&vw or VV, and remixed the original  
347 vw&vw with all three types (Fig. 5C; Fig. 6C); for the second simulated population, the three  
348 morphotypes (VV, vw&vw, and ww) were randomly assigned to specimens (Fig. 5G; Fig.  
349 6G).

#### 350 2.4.4 Analyses of indices

351 To explore which indices are important in each PC or for each LD function, heat-maps  
352 implemented by the function "ahetmap" of the package "NMF" (Gaujoux *et al.* 2010) were  
353 employed to visualize weighted or not-weighted rotation matrices in the PCA and coefficients  
354 matrices in the LDA. The function "ahetmap" defaults to a complete linkage clustering  
355 method, using a Euclidean distance measure to hierarchically cluster rows and columns. To  
356 emphasize the highly contributing PCs or LD functions, the absolute values of the respective  
357 rotations were multiplied by the corresponding proportion of explained variance for each PC  
358 and the absolute values of the respective coefficients were multiplied by the corresponding  
359 proportion of explained discriminability for each LD. For matrices with small proportions of  
360 explained discriminability for LD2, which would weaken its coefficients too much to be  
361 measurable, the absolute values of the coefficients were not multiplied by the corresponding  
362 proportion of the explained discriminability.

### 363 3 Results

#### 364 3.1 16S

365 The applications of several statistical methods produced similar phylogenetic trees. The  
366 ML tree with the highest log likelihood (-1398.4472) is shown (Fig.3). The outgroup, *R.*  
367 *rugosa*, and isolates from *Feirana* (*F. kangxianensis*, *F. quadranus*, and *F. taihangnica*) had a  
368 high bootstrap support value of 100%. *Feiranus* divides into two major clades, one containing  
369 all of the reference *F. quadranus* (bootstrap value of 94%), and the other (bootstrap value of  
370 69%) containing all the reference *F. taihangnica* (bootstrap value 83%), and reference *F.*  
371 *kangxianensis* (bootstrap value 97%) branched off shallowly. Most of the VV are in the same  
372 clade as the reference *F. quadranus*, while most of the ww and vw&vw are in the same clade  
373 as reference *F. taihangnica*. The only four exceptions are HDT101, HDT113 and HRP125,  
374 which are morphotypically "VV", and HDT102, which is morphotypically "vw".

#### 375 3.2 Morphometric analysis

##### 376 3.2.1 PCA

377 According to the PCA, in both females (Fig. 5A) and males (Fig. 5E), there is a clear  
378 differentiation between VV and ww. The distribution of vw&vw is closer to ww. In males  
379 (Fig. 5E) and total specimens (Fig. 5B), most of the vw&vw are mixed with ww, or in the  
380 area between ww and VV, and a small proportion are mixed with VV. In females (Fig. 5A),  
381 limited samples of vw&vw are near the borderline of the ww zone.

382 The incomplete differentiation between Q and T is shown by the genetic classification  
383 (Fig. 5F). The three border-crossers, HRP108, HDT106, and HDT110, being genetically T,  
384 appear in VV's territory. The four specimens with controversial classifications (see 2.3.4),  
385 T-VV (HDT111, HDT113, and HRP125), which are genetically T but morphotypically VV,  
386 and Q-vw (HDT102), which is genetically Q but morphotypically vw, appear in the  
387 ambiguous zone between Q and T (Fig. 5F). The positions of the four specimens in the

388 multivariate spaces of females (Fig. 5A) and males (Fig. 5E) are also close to the borderline  
389 between VV and ww.

390 Ratio indices failed to differentiate between VV and ww (Fig. 5E); however, extent  
391 indices differentiate solely using PC1, and vw&wv are perfectly scattered along the boundary  
392 zone between VV and ww (Fig. 5H).

### 393 3.2.2 LDA

394 Based on the LDA, VV, vw&wv, and ww are clustered into three separate groups in both  
395 females (Fig. 6A) and males (Fig. 6E). The differentiation between vw&wv and VV or ww is  
396 less complete in total specimens (Fig. 6B).

397 Similar to the PCA results, extent indices differentiate the three morphotypes more  
398 completely than the ratio indices (Fig. 6D, H).

### 399 3.2.3 Simulated data

400 For the first simulated population, as the number of falsified morphotypes increased, the  
401 differentiation between VV and ww became indistinct in the PCA (compare Fig. 5C with Fig.  
402 5B) and spaces among the three morphotypes narrowed in the LDA (compare Fig. 6C with  
403 Fig. 6B). The PCA (Fig. 5G) and LDA (Fig. 6G) of the second simulated population, with  
404 random morphotypical data, exhibited an increased degree of disorder.

### 405 3.2.4 Analyses for importance of indices

406 A full version of heat-maps are shown in Fig. S2.

407 In the LDA, it seems that, to discriminate three morphotypes or five morphotypes from  
408 the total specimens, finger lengths and other length indices were the most contributive  
409 characters (Fig. S2E-H). Finger lengths, however, are not crucial for discriminating between  
410 morphotypes. When F1L\_SVL, F3L\_SVL and F4L\_SVL were eliminated from the  
411 morphometric data, plots of the LDA for each set stayed the same, only the indices originally  
412 ranked after F1L\_SVL, F3L\_SVL, and F4L\_SVL upgraded their contributions to each LD  
413 (data not shown). Contrarily, the seven extent indices seemed to be minimally involved in  
414 discriminating between morphotypes. However, when these seven extent indices were  
415 excluded, leaving only 27 ratio indices, the three morphotypes could not be easily  
416 distinguished (Fig. 6D); or when the 27 ratio indices were excluded, leaving only the seven  
417 extent indices, the distribution pattern of three morphotypes stay the same (Fig. 6H).  
418 Therefore, we decided not to use coefficients matrix of LDA to analyze importance of indices.

419 In the PCA, generally speaking, indices on limb and finger lengths contribute most to  
420 PC1, while indices involving bumps and coloration patterns contribute most to PC2. The  
421 weighted rotation matrix of 34 indices for the first 10 PCs (eigenvalues > 1), accounting for  
422 78.11% (total specimens) of the variation is shown here (Fig. 7A). The most important indices  
423 in PC1 were TL\_SVL, (tibia length)/SVL; LHL\_SVL, (length of lower arm and hand)/SVL;  
424 and TFL\_SVL, (tibiofibula length)/SVL. The most important indices in PC2 were BSE, the  
425 extent of spots on the back and BBE, the extent of big bumps above the anal region.

426 The weighted rotation matrix of seven extent indices is shown for the first two PCs  
427 (eigenvalues > 1), accounting for 63.80% of the variation (Fig. 7B). VBE, the extent of  
428 bumps in the shape of an inverted "V" between the shoulder blades; BSE, the extent of spots  
429 on the back; and BBE, the extent of big bumps above the anal region, account for most of the  
430 PC1 variance, which clearly differentiated the three morphotypes (Fig. 5H).

## 431 4 Discussion

432 Introgressive hybridization is often identified by the presence of morphological  
433 intermediates in the contact zone between two parental species (Anderson, 1949; Hubbs, 1955;  
434 Arnold, 1992). We devised the three morphotypical classification to represent two "parents"  
435 and their suspected "hybrid", a simplified hybridization pattern, which, however, did not

436 mean that each vw&ww was a hybrid, or that each VV or ww was a pure parent, especially for  
437 samples at sites inhabited by two or three morphotypes (e.g. HDT, HRP, and XYB). Based on  
438 the theory of introgressive hybridization (Anderson, 1949), frogs at these sites may have been  
439 intercrossed and backcrossed for many generations, leading to limited pure "parents", and  
440 these morphotypical "parents", VV and ww, may only have been more back-crossed than the  
441 morphotypical "hybrids" (Lehtinen *et al.*, 2016). Another possible hypothesis is that  
442 hybridization does not necessarily equally (50%) affect the hybrids' appearances because  
443 there are genetic and developmental buffers between a frog's genotype and its phenotype,  
444 such as hybridogenesis (Holsbeek & Jooris, 2010; Mikulíček *et al.*, 2014), genomic  
445 imprinting (Tunner, 2000), pleiotropy, dominance, epistasis (Gallez & Gottlieb, 1982), and  
446 epigenetic phenomenon. Therefore, this simplified hybridization pattern was only adopted for  
447 the convenience of verifying possible introgression.

448 PCA and LDA are often used to detect or estimate hybridization, especially in  
449 morphology (e.g. Albert, D'Antonio & Schierenbeck, 1997; Wu *et al.*, 2011). In PCA theory,  
450 PCs are uncorrelated linear combinations of rotated indices, and analyzing the entire data is  
451 reduced to only considering the first several PCs that explain the majority of the variation  
452 (Crawley, 2009). The most common visual way is to place individuals on a scatterplot of the  
453 first two PC axes, and use group-based symbols to represent individuals. The closer two  
454 points are, the more similar their corresponding indices. This allows one to see whether  
455 individuals of one group are clustered in the space and whether they are isolated from  
456 individuals of the other group.

457 Similar to the PCA, the LDA seeks the best linear functions to discriminate between  
458 predefined groups instead of between individuals (Selvin, 1994). The grouping information  
459 for each individual is preset, and coefficients of indices are estimated for LD functions which  
460 is one less than the number of groups. Consequently, between-group differences are  
461 maximized in a scatter plot of the first two LD functions, exhibiting how well pre-defined  
462 groups of individuals can be separated by multivariate measurements (Lihová *et al.*, 2007).

463 The expected pattern is presented in the multivariate space of the first two PCs of the  
464 PCA (Fig. 5A, B, E, and H) and of the first two LD functions of the LDA (Fig. 6A, B, E, and  
465 H). A further analysis on the simulated two populations, which were created based on the  
466 actual population by falsifying morphotypical data (see 2.4.3) confirmed the reliability of the  
467 hybridization pattern established by the three morphotypes.

468 In the mtDNA's phylogenetic tree (Fig. 3), vw and most vw's are intermixed with ww in  
469 the clade *F. taihangnica*. Could this suggest that *F. taihangnica* might be the maternal species  
470 of suspected "hybrids", vw and wv, with VV being the paternal species? Considering the  
471 unique breeding behavior of *F. taihangnica*, which is simultaneous polyandry with multiple  
472 males not engaged in amplexus (Zhang *et al.*, 2012) (see 1.2), it seems more likely that  
473 female *F. taihangnica* lay eggs on rocks and then male *F. quadratus* and/or *F. taihangnica*  
474 fertilize them.

475 In the morphometric analysis, vw&wv are often intermixed with ww (Fig. 5A, B, E). In  
476 particular, when excluding the seven extent indices, leaving only 27 ratio indices, which were  
477 derived from measured characteristics (see 2.4.1), vw&wv were completely intermixed with  
478 ww (Fig. 6D). However, when leaving only the seven extent indices, which describe typical  
479 traits of *F. quadratus* and *F. taihangnica* (see 2.2), the vw&wv's proneness to ww  
480 disappeared (Fig. 5H). Could this suggest that mtDNA have an influence on the measurable  
481 characteristics instead of extent characteristics? Since backcrossing causes the offsprings to  
482 resemble the recurrent parental species (Anderson, 1949), could this imply the hybrids' have a  
483 preference for backcrossing with ww? Or could it be the genome-dosage effects that were  
484 often seen between diploid and triploid frogs (e.g. Borkin *et al.*, 2004; Plötner, 1994)?

485 Although morphological evidence has historically been used in studies of hybridization

486 and introgression (Rieseberg & Wendel, 1993), as Hubbs (1955) stated it is "an almost  
487 universally valid rule that natural interspecific hybrids are intermediate between their parental  
488 species in all characters in which those species differ", there are still alternative explanations  
489 for morphological intermediacy. For instance, shared ancestral traits (Muir & Schlötterer,  
490 2005), phenotypic plasticity in the parental species (Gibbs, 1968; Birch & Vogt, 1970),  
491 relictual genes in the gene pool before the divergence, or less likely, parallel mutations, could  
492 result in the common characteristics of the two species (Albert *et al.*, 1997). Findings that  
493 morphometric analyses of genetically identified hybrids can misclassify groups of hybrids as  
494 pure parents emphasizes the limitations inherent in describing hybrid classes solely by  
495 morphological criteria (Lamb & Avis, 1987; Pagano & Joly, 1999).

496 Since there have not been any other reports supporting hybridization between *F.*  
497 *quadratus* and *F. taihangnica*, we did not have enough confidence in our conclusion until  
498 evidence from nuclear gene markers (Song *et al.*, unpublished results) was found.

## 499 5 Conclusion

500 The mtDNA, *16S rRNA* gene, identified specimens as genetically *F. quadratus* (labeled  
501 as Q) or genetically *F. taihangnica* (labeled as T), while a morphological classification  
502 grouped specimens into three morphotypes (VV, vw&wv, and ww), representing putative  
503 parents and suspected hybrids. Four exceptional specimens with conflicting classifications on  
504 the mtDNA tree and three genetically Q having T phenotypes by morphometric analysis,  
505 blurred the morphological boundary between Q and T.

506 The multivariate analyses of measured characteristics, and characteristics related to the  
507 extent of bumps and coloration patterns, demonstrated a hybridization pattern where the  
508 suspected hybrids, vw&wv, were intermediate between putative parents, VV and ww, with a  
509 proneness to ww. vw&wv were also intermixed with ww in the mtDNA tree. vw&wv's  
510 proneness to ww in the morphometric analysis disappeared when measured indices were  
511 excluded.

512 Indices on the extents of bumps and coloration patterns, such as BSE, BBE, and LBE,  
513 were better at discriminating among suspected hybrids and putative parental types than the  
514 measured indices. Because this is the first report on hybridization between *F. quadratus* and  
515 *F. taihangnica*, cautions regarding the use of solely morphological evidence in identifying  
516 hybridization require evidence from nuclear gene markers.

## 517 Acknowledgement

518 We wish to thank the following people: Prof. Jianping Jiang and Dr. Bin Wang (both in  
519 Chengdu Institute of Biology, CAS), for showing specimens in the article (Wang *et al.*, 2007)  
520 and sharing opinions on hybridization of the two species; Prof. Yuyan Lu, Dr. Baotian Yang  
521 and Dr. Bingjun Dong (all in SNU), for consultation throughout the whole work; Yu Zhou  
522 (formly in SNU, now in Northeast Forestry University) and Hao Sun (IAE, CAS), for sharing  
523 experience in molecular experiments and analysing data; Yangao Jiang (IAE, CAS), for  
524 sharing experience in drawing maps and recommending the journal; Dr. Bing Zhou (formerly  
525 in SNU), for accidentally contributing two *Rana rugosa*; Dr. Benyon of www.sicnecedocs.com  
526 for her conscientious editing of this paper. We also wish to thank uncountable people behind  
527 the internet for sharing experiences in every aspect relating to the work, and thank various  
528 resources and platforms that could not be mentioned in the methods for facilitating our work.  
529 Finally, we would like to give the ultimate thanks and deep grief to frogs that were sacrificed  
530 for this work.

531

532 **References**

533 Albert ME, D'Antonio CM, Schierenbeck KA. 1997. Hybridization and introgression in  
534 *Carpobrotus* spp.(Aizoaceae) in California. I. Morphological evidence. American  
535 Journal of Botany, 84(8): 896-904. URL: <http://www.jstor.org/stable/2446279>

536 Anderson E. 1949. Introgressive hybridization. John Wiley & Sons, Inc., New York.  
537 Chapman & Hall, Limited, London.

538 Arnold ML. 1992. Nature hybridization as an evolutionary process. Annual Review of  
539 Ecology and Systematics, 23: 237-261. DOI: 10.1146/annurev.es.23.110192.001321

540 Bartlett MS. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal  
541 Society of London Series A, 160: 268-282. DOI: 10.1098/rspa.1937.0109

542 Birch LC, Vogt WG. 1970. Plasticity of taxonomic characters of the Queensland fruit flies  
543 *Dacus tryoni* and *Dacus neohumeralis* (Tephritidae). Evolution, 24(2): 320-343. DOI:  
544 10.2307/2406808

545 Borkin LJ, Korshunov AV, Lada GA, Litvinchuk SN, Rosanov JM, Shabanov DA, Zinenko  
546 AI. 2004. Mass occurrence of polyploid green frogs (*Rana esculenta* complex) in eastern  
547 Ukraine. Russian Journal of herpetology, 11(3): 194-213.

548 Chambers, JM, Freeny, A and Heiberger, RM. 1992. Analysis of variance; designed  
549 experiments. Chapter 5 of Statistical Models in S (Chambers JM & Hastie TJ, eds),  
550 Wadsworth & Brooks/Cole.

551 Che J, Hu JS, Zhou WW, Murphy RW, Papenfuss TJ, Chen MY, Rao DQ, Li PP, Zhang YP.  
552 2009. Phylogeny of the Asian spiny frog tribe Paini (Family Dic平glossidae) sensu  
553 Dubois. Mol Phylogenetic Evol, 50(1): 59-73. DOI: 10.1016/j.ympev.2008.10.007

554 Chen XH, Jiang JP. 2002. A new species of the genus *Paa* from China (in Chinese).  
555 Herpetologica Sinica, 9:231.

556 Chen XH, Jiang JP. 2004. Supplementary description of *Paa (Feirana) taihangnicus* (Ranidae,  
557 Anura) from Taihang Mountains, Henan of China (in Chinese). Acta Zootaxonomica  
558 Sinica, 29(3): 595-599.

559 Chen XH, Xia ZR, Tao LK, Yang J, Ying H, Ouyang F. 2006. The comparison of the  
560 karyotypes of three species of *Feirana* in China (in Chinese). Journal of Henan Normal  
561 University (Natural Science), 4: 151-153.

562 Chen XH, Yang J, Qiao L, Zhang LX, Lu X. 2011. Reproductive ecology of the  
563 stream-dwelling frog *Feirana taihangnicus* in central China. Herpetological Journal,  
564 21(2): 135-140.

565 Crawley, M. J. 2007. The R book. John Wiley & Sons Ltd, The Atrium, Southern Gate,  
566 Chichester, England.

567 Dubois A. 1992. Notes sur la classification des Ranidae (Amphibiens Anoures). Bull. Men.  
568 Soc. Linn. Lyon (Bulletin Mensuel de la Société Linnéenne de Lyon), 61(10): 305-352.

569 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high  
570 throughput. Nucleic Acids Research, 32(5):1792-1797. DOI: 10.1093/nar/gkh340

571 Fang RS. 1983. A variation of *Rana quadrana* (in Chinese). Journal of Shaanxi Normal  
572 University, (1): 151-152. DOI: 10.15983/j.cnki.jsnu.1983.01030

573 Fei L, Ye CY, Huang YZ, Jiang JP, Xie F. 2005. An Illustrated Key to Chinese Amphibians  
574 (in Chinese). Chengdu: Sichuan Publishing House of Science and Technology.

575 Fei L, Hu SQ, Ye CY, Huang YZ. 2009. Fauna Sinica Amphibia, Vol.3 Anura, Ranidea (in  
576 Chinese). Beijing: Science Press, 1429-1442.

577 Fei, 1999. Atlas of Amphibians of China (in Chinese). Zhengzhou: Henan Press of Science  
578 and Technology.

579 Fei L, Ye CY, Jiang JP. 2010. Atlas of Amphibians of China (in Chinese). Chengdu: Sichuan  
580 Publishing House of Science and Technology .

581 Gallez GP, Gottlieb LD. 1982. Genetic evidence for the hybrid origin of the diploid plant

582        *Stephanomeria diegensis*. Evolution, 36(6): 1158-1167. DOI: 10.2307/2408150

583        Gaujoux R, Seoighe C. 2010. A flexible R package for nonnegative matrix factorization.

584        BMC Bioinformatics, 11(1): 367. DOI: 10.1186/1471-2105-11-367

585        Gibbs, GW. 1968. The frequency of interbreeding between two sibling species of *Dacus*

586        (Diptera) in wild populations. Evolution, 22: 667-683

587        Lee-Ann C, Hayek, Heyer WR, Gascon C. 2001. Frog morphometrics: a cautionary tale.

588        *Alytes*, 18(3-4): 153-177.

589        Holsbeek G, Jooris R. 2010. Potential impact of genome exclusion by alien species in the

590        hybridogenetic water frogs (*Pelophylax esculentus* complex). Biological Invasions, 12(1):

591        1-13.

592        Huang HX, Gong DJ, Zhang YH. 2011. Primary observation of the ecological habits of *Rana*

593        *quadranus* in Tianshui city of Gansu Province (in Chinese). Journal of Anhui

594        Agricultural Sciences, 11(11): 183-185.

595        Hubbs CL. 1955. Hybridization between fish species in nature. Syst. Zool. 4:1-20.

596        Jiang JP, Dubois A, Ohler A, Tillier A, Chen XH, Xie F, Stöck M. 2005. Phylogenetic

597        relationships of the tribe Paini (Amphibia, Anura, Ranidae) based on partial sequences of

598        mitochondrial 12s and 16s rRNA genes. Zoological Science, 22(3): 353-362. DOI:

599        <http://dx.doi.org/10.2108/zsj.22.353>

600        Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions

601        through comparative studies of nucleotide sequences. Journal of Molecular Evolution,

602        16(2): 111-120. DOI: 10.1007/BF01731581

603        Lamb T, Avise JC. 1987. Morphological variability in genetically defined categories of

604        anuran hybrids. Evolution, 41(1): 157-165. DOI: 10.2307/2408980

605        Lamb T, Avise JC. 1987. Morphological variability in genetically defined categories of

606        anuran hybrids. Evolution, 41(1): 157-165.

607        Lehtinen RM, Steratore AF, Eyre MM, Cassagnol ES. 2016. Identification of widespread

608        hybridization between two terrestrial salamanders using morphology, coloration, and

609        molecular markers. Copeia, 104(1): 132-139. DOI: <http://dx.doi.org/10.1643/CH-14-205>

610        Lei X. 2003. Studies on histology and immunocytochemistry of ovaries of the *Rana*

611        *quadranus* and the *Batrachuperus tibetanus* (in Chinese). Master's thesis, Shaanxi

612        normal university. pp12-16.

613        Li SS, Hu JS. 1996. The study on the karyotypes, C-banding and Ag-NORs of four *Paa*

614        species in China (Amphibia: Anura) (in Chinese). Zoological Research, 17(1): 84-88.

615        URL: <http://www.zoores.ac.cn/CN/Y1996/V17/I1/84>

616        Li PP. 1992. The biology of *Rana quadramus* in Qinling Mountains (in Chinese). Chinese

617        Journal of Wildlife, 69(5): 34.

618        Li YL. 2003. Studies on histology and immunohistochemistry of testes in *Batrachuperus*

619        *tibetans* and *Rana quadranus* (in Chinese). Master's thesis, Shaanxi normal university.

620        15-21.

621        Li SS, Fei L, Ye CY. 1994. The study on the karyotypes, C-banding and Ag-NORs of *Paa*

622        *quadranus* of Bashan mountain (in Chinese). Herpetol China 3: 95-97.

623        Lihová J, Kučera J, Perný M, Marhold K. 2007. Hybridization between Two Polyploid

624        Cardamine (Brassicaceae) Species in North-western Spain: Discordance Between

625        Morphological and Genetic Variation Patterns. Annals of Botany, 99(6): 1083-1096.

626        DOI: 10.1093/aob/mcm056

627        Liu CZ, Hu SQ, Yang FH. 1960. Amphibians from Wushan, Szechwan (in Chinese). Acta

628        Zoologica Sinica, 12(2): 278-293.

629        Mikulíček P, Kautman M, Demovič B, Janko K. 2014. When a clonal genome finds its way

630        back to a sexual species: evidence from ongoing but rare introgression in the

631        hybridogenetic water frog complex. Journal of Evolutionary Biology, 27: 628-642 DOI:

632 10.1111/jeb.12332

633 Muir G, Schlötterer C. 2005. Evidence for shared ancestral polymorphism rather than  
634 recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (*Quercus*  
635 spp.). *Molecular Ecology*, 14: 549-561. DOI:10.1111/j.1365-294X.2004.02418.x

636 Hollander M, Wolfe DA. 1973. Nonparametric Statistical Methods. New York: John Wiley &  
637 Sons, 115-120.

638 Ohler A, Dubois A. 2006. Phylogenetic relationships and generic taxonomy of the tribe Paini  
639 (Amphibia, Anura, Ranidae, Dicroidiinae), with diagnoses of two new genera.  
640 *Zoosystema*, 28(3): 769-784.

641 Okonechnikov K, Golosova O, Fursov M, UGENE team. 2012. Unipro UGENE: a unified  
642 bioinformatics toolkit. *Bioinformatics*, 28(8): 1166-1167. DOI:  
643 10.1093/bioinformatics/bts091

644 Pagano A, Joly P. 1999. Limits of the morphometric method for field identification of water  
645 frogs. *Alytes*, 16: 130-138.

646 Plötner J, Becker C, Plötner K. 1994. Morphometric and DNA investigations into European  
647 water frogs (*Rana* kl. *Esculenta* Synklepton (Anura, Ranidae)) from different population  
648 systems. *J. Zoo. Syst. Evol. Research*, 32: 193-210

649 R Core Team. 2015. R: A language and environment for statistical computing. R Foundation  
650 for Statistical Computing, Vienna, Austria. URL: <https://www.R-project.org/>.

651 Rieseberg LH, Wende JF. 1993. Introgression and its consequences in plants. In Hybrid zones  
652 and the Evolutionary Process (Harrison R, ed.). New York: Oxford University Press,  
653 70-109. URL: [http://lib.dr.iastate.edu/bot\\_pubs/8](http://lib.dr.iastate.edu/bot_pubs/8)

654 Schwarz GE. 1978. Estimating the dimension of a model. *Annals of Statistics*, 6(2): 461-464.  
655 DOI:10.1214/aos/1176344136

656 Selvin S. 1994. Practical biostatistical methods. New York: Duxbury Press.

657 Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and  
658 phylogenetic utility of mitochondrial gene sequences and a compilation of conserved  
659 polymerase chain reaction primers. *Annals of the Entomological Society of America*  
660 (Ann Entomol Soc Am), 87: 651-701. DOI: <http://dx.doi.org/10.1093/aesa/87.6.651>

661 Song Y. 2010. A study by skeletochronology on the life history traits of *Feirana quadratus* in  
662 Tsinling Mountain area (in Chinese). Master's thesis, Shaanxi Normal University.

663 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular  
664 Evolutionary Genetics Analysis version 6.0. *Molecular Biology and Evolution*, 30(12):  
665 2725-2729. DOI: 10.1093/molbev/mst197

666 Tunner HG. 2000. Evidence for genomic imprinting in unisexual triploid hybrid frogs.  
667 *Amphibia-Reptilia*, vol 21(issue2): 135-141 DOI: 10.1163/156853800507327

668 Venables WN, Ripley BD. 2002. Modern Applied Statistics with S. Fourth Edition. New  
669 York: Springer.

670 Wang B, Jiang JP, Chen XH, Xie F, Zheng ZH. 2007. Morphometrical study on populations  
671 of the genus *Feirana* (Amphibia, Anura, Ranidae) (in Chinese). *Acta Zootaxonomica*  
672 *Sinica* (Acta Zootaxonomica Sinica), 32(3): 639-636.

673 Wang B, Jiang JP, Xie F, Chen XH, Dubois A, Liang G, Wagner S. 2009. Molecular  
674 Phylogeny and Genetic Identification of Populations of Two Species of *Feirana* Frogs  
675 (Amphibia: Anura, Ranidae, Dicroidiinae, Paini) Endemic to China. *Zoological*  
676 *Science*, 26(7): 500-509. DOI: 10.2108/zsj.26.500

677 Wang J, Xie F, Wang G, Jiang JP. 2014. Group-spawning and simultaneous Polyandry of a  
678 Stream-dwelling Frog *Feirana kangxiensis*. *Asian Herpetological Research*, 5(4):  
679 240-244. DOI: 10.3724/SP.J.1245.2014.00240

680 Wang B. 2007. Phylogeny and Zoogeography of Populations of *Feirana* (in Chinese).  
681 Master's thesis, Chengdu Institute of Biology, Chinese Academy of Sciences.

682 Wu SH, Qu WY. 1984. A preliminary study of the Amphibian fauna of Henan Province (in  
683 Chinese). *Journal of Xinxiang Normal College*, 41(1): 89-93.

684 Wu YH, Xia L, Zhang Q, Yang QS, Meng XX. 2011. Bidirectional introgressive  
685 hybridization between *Lepus capensis* and *Lepus yarkandensis*. *Molecular Phylogenetics*  
686 and *Evolution*, 59(3): 545-555. DOI:10.1016/j.ympev.2011.03.027

687 Yang X, Wang B, Hu JH, Jiang JP. 2011. A New Species of the Genus *Feirana* (Amphibia:  
688 Anura: Dic平glossidae) from the western Qingling Mountains of China. *Asian  
689 Herpetological Research*, 2(2):72-86. DOI: 10.3724/SP.J.1245.2011.00072

690 Yang X. 2011. Speciation and geographic distribution pattern of the genus *Feirana* (in  
691 Chinese). Master's thesis, Chengdu Institute of biology, Chinese Academy of Sciences.

692 Yang YH, Zhao EM, Gao ZF. 1986. The karyotype of *Rana quadranus* (in Chinese). *Acta  
693 Herpetologica Sinica* (Acta Herpet Sin), 5(4): 251-253.

694 Ye SP, Huang H, Zheng RQ, Zhang JY, Yang G, Xu SX. 2013. Phylogeographic analyses  
695 strongly suggest cryptic speciation in the giant spiny frog (Dic平glossidae: *Paa spinosa*)  
696 and interspecies hybridization in *Paa*. *PLoS ONE*, 8(7): e70403.  
697 DOI:10.1371/journal.pone.0070403

698 Zhang LX, Yang J, Lu YQ, Lu X, Chen XH. 2012. Aquatic eggs are fertilised by multiple  
699 males not engaged in amplexus in a stream-breeding frog. *Behavioural Processes*, 91(3):  
700 304-307. DOI: 10.1016/j.beproc.2012.08.003

701 **Tables and Figures**

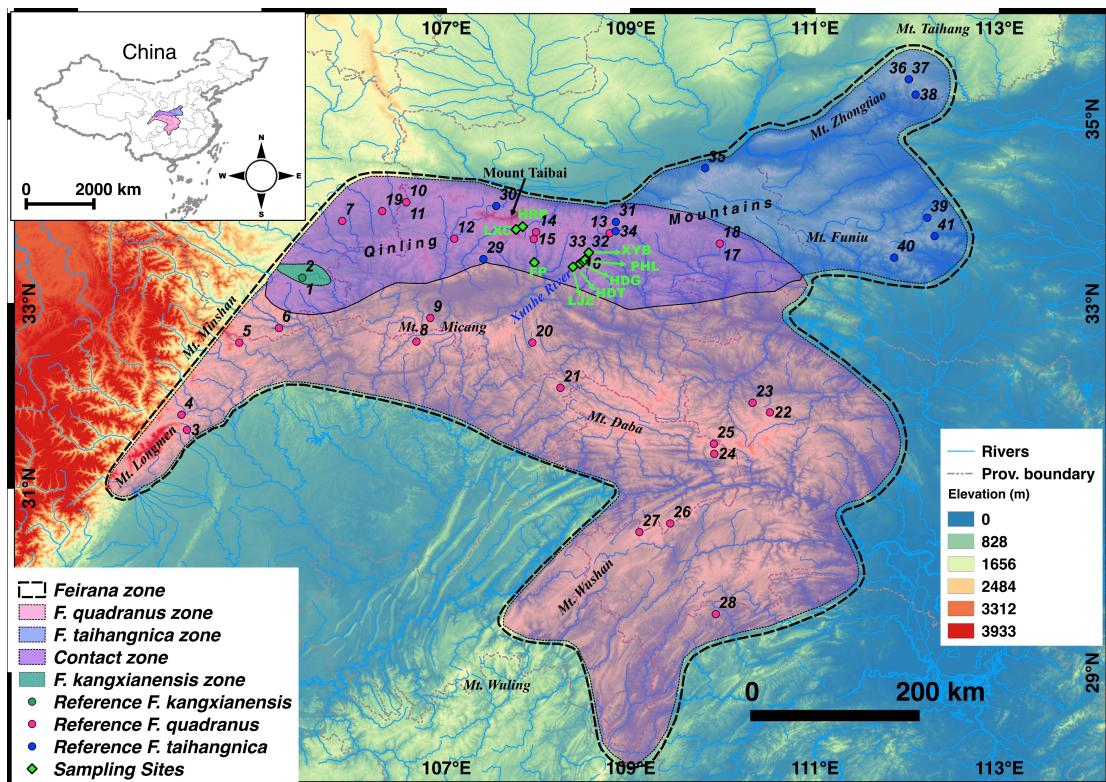
702

703 **Table 1** The information for eight sampling sites in this study

| Sampling sites                                 | Abbr. | Morphotypes    |             | 16S types |       | Location Coordinates |                 |
|------------------------------------------------|-------|----------------|-------------|-----------|-------|----------------------|-----------------|
|                                                |       | N <sup>a</sup> | VV/vw&vw/ww | n         | Q/T   | Longitude (E, °)     | Latitude (N, °) |
| Laoxiancheng, Zhouzhi County, Shaanxi Prov.    | LXC   | 1              | 0/1/0       | 1         | 0/1   | 107.7568             | 33.8030         |
| Hua'erping, Zhouzhi County, Shaanxi Prov.      | HRP   | 24             | 4/11/9      | 24        | 3/21  | 107.8290             | 33.8349         |
| Pengjiagou, Foping County, Shaanxi Prov.       | FP    | 20             | 20/0/0      | 20        | 20/0  | 107.9557             | 33.4461         |
| Liangjiazhuang, Ningshan County, Shaanxi Prov. | LJZ   | 14             | 14/0/0      | 14        | 14/0  | 108.3743             | 33.3976         |
| Huoditang, Ningshan County, Shaanxi Prov.      | HDT   | 26             | 11/6/9      | 26        | 10/16 | 108.4534             | 33.4322         |
| Huodigou, Ningshan County, Shaanxi Prov.       | HDG   | 3              | 1/1/1       | 3         | 1/2   | 108.4845             | 33.4567         |
| Pingheliang, Ningshan County, Shaanxi Prov.    | PHL   | 3              | 0/0/3       | 3         | 0/3   | 108.5045             | 33.4733         |
| Xunyangba, Ningshan County, Shaanxi Prov.      | XYB   | 19             | 10/2/7      | 26        | 11/15 | 108.5459             | 33.5522         |
| Total                                          |       | 8              | 110         | 60/21/29  | 117   | 59/58                | /               |

704 <sup>a</sup>n represents the sample size from each site.

705


**Table 2** Information on 16S rRNA reference sequences

| No. | GenBank No. | Voucher No.       | Species name in reference article <sup>a</sup> | Species name in new nomenclature | Locality (village/county/city, province) | Latitude (N, °) | Longitude (E, °) | Reference article         |
|-----|-------------|-------------------|------------------------------------------------|----------------------------------|------------------------------------------|-----------------|------------------|---------------------------|
| 1   | GQ225974    | CIBKangxian01     | <i>"Feirana". taihangnica</i>                  | <i>F. kangxianensis</i>          | Kangxian, Gansu                          | 105.4367        | 33.2804          | Wang <i>et al.</i> , 2009 |
| 2   | GQ225975    | CIBKangxian02     | <i>"Feirana". taihangnica</i>                  | <i>F. kangxianensis</i>          | Kangxian, Gansu                          | 105.4367        | 33.2804          | Wang <i>et al.</i> , 2009 |
| 3   | GQ225907    | CIB20060644       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Anxian, Sichuan                          | 104.1856        | 31.6316          | Wang <i>et al.</i> , 2009 |
| 4   | GQ225908    | CIB20070336       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Beichuan, Sichuan                        | 104.1262        | 31.795           | Wang <i>et al.</i> , 2009 |
| 5   | GQ225909    | CIB20060509       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Qingchuan, Sichuan                       | 104.7541        | 32.5778          | Wang <i>et al.</i> , 2009 |
| 6   | GQ225910    | CIB20060533       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Wenxian, Gansu                           | 105.1842        | 32.7354          | Wang <i>et al.</i> , 2009 |
| 7   | GQ225911    | CIBHuixian01      | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Huixian, Gansu                           | 105.8702        | 33.8964          | Wang <i>et al.</i> , 2009 |
| 8   | GQ225912    | CIB20060463       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Nanjiang, Sichuan                        | 106.6751        | 32.5883          | Wang <i>et al.</i> , 2009 |
| 9   | GQ225913    | CIBNanzheng02     | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Nanzheng, Shaanxi                        | 106.8261        | 32.8446          | Wang <i>et al.</i> , 2009 |
| 10  | GQ225914    | CIB20060469       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Fengxian, Gansu                          | 106.5649        | 34.0983          | Wang <i>et al.</i> , 2009 |
| 11  | GQ225915    | CIBFengxian03     | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Fengxian, Gansu                          | 106.5649        | 34.0983          | Wang <i>et al.</i> , 2009 |
| 12  | GQ225916    | CIBLiuba03        | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Liuba, Shaanxi                           | 107.0848        | 33.7031          | Wang <i>et al.</i> , 2009 |
| 13  | GQ225917    | CIB20060340       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Changan, Shaanxi                         | 108.7731        | 33.7628          | Wang <i>et al.</i> , 2009 |
| 14  | GQ225918    | CIB20060353       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Zhouzhi, Shaanxi                         | 107.9742        | 33.7747          | Wang <i>et al.</i> , 2009 |
| 15  | GQ225919    | CIB200503551      | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Fuping, Shaanxi                          | 107.9491        | 33.6986          | Wang <i>et al.</i> , 2009 |
| 16  | GQ225920    | CIBNingshan01     | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Ningshan, Shaanxi                        | 108.4452        | 33.4344          | Wang <i>et al.</i> , 2009 |
| 17  | GQ225921    | CIBShanyang02     | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Shanyang, Shaanxi                        | 109.9675        | 33.6501          | Wang <i>et al.</i> , 2009 |
| 18  | GQ225922    | CIBShanyang03     | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Shanyang, Shaanxi                        | 109.9675        | 33.6501          | Wang <i>et al.</i> , 2009 |
| 19  | GQ225923    | CIBLangao01       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Langao, Shaanxi                          | 106.3042        | 34.0021          | Wang <i>et al.</i> , 2009 |
| 20  | GQ225924    | CIBZhengba02      | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Zhengba, Shaanxi                         | 107.9339        | 32.5774          | Wang <i>et al.</i> , 2009 |
| 21  | GQ225925    | CIB20070187       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Wanyuan, Sichuan                         | 108.2387        | 32.0877          | Wang <i>et al.</i> , 2009 |
| 22  | GQ225926    | CIB20060716       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Shennongjia, Hubei                       | 110.5101        | 31.8211          | Wang <i>et al.</i> , 2009 |
| 23  | GQ225927    | CIBFangxian0203   | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Fangxian, Hubei                          | 110.3231        | 31.925           | Wang <i>et al.</i> , 2009 |
| 24  | GQ225928    | CIB20060387       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Wushan, Chongqing                        | 109.9074        | 31.3721          | Wang <i>et al.</i> , 2009 |
| 25  | GQ225929    | CIBWanzhou34      | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Wuxi, Chongqing                          | 109.9026        | 31.4804          | Wang <i>et al.</i> , 2009 |
| 26  | GQ225930    | CIBWanzhou41      | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Fengjie, Chongqing                       | 109.4298        | 30.6169          | Wang <i>et al.</i> , 2009 |
| 27  | GQ225931    | CIB20060715       | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Lichuan, Hubei                           | 109.0946        | 30.5244          | Wang <i>et al.</i> , 2009 |
| 28  | GQ225932    | CIBB20010018      | <i>Feirana quadranus</i>                       | <i>F. quadranus</i>              | Sangzhi, Hunan                           | 109.9232        | 29.6346          | Wang <i>et al.</i> , 2009 |
| 29  | GQ225976    | CIBLaoxiancheng01 | <i>"Feirana". taihangnica</i>                  | <i>F. taihangnica</i>            | Old city of Zhouzhi, Shaanxi             | 107.4032        | 33.4832          | Wang <i>et al.</i> , 2009 |
| 30  | GQ225977    | CIBTaibai03       | <i>"Feirana". taihangnica</i>                  | <i>F. taihangnica</i>            | Taibai, Shaanxi                          | 107.5421        | 34.0573          | Wang <i>et al.</i> , 2009 |

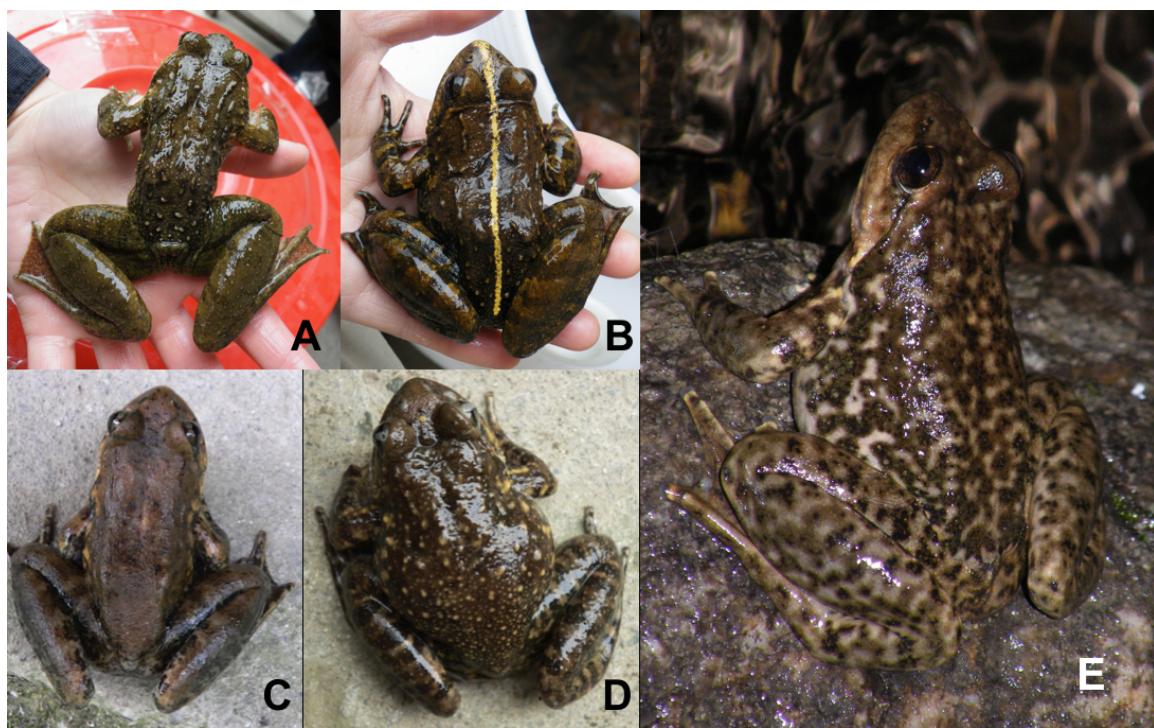
|    |          |                |                                           |                       |                                    |          |         |                                                    |
|----|----------|----------------|-------------------------------------------|-----------------------|------------------------------------|----------|---------|----------------------------------------------------|
| 31 | GQ225978 | CIB2871K       | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Changan, Shaanxi                   | 108.8389 | 33.8846 | Wang <i>et al.</i> , 2009                          |
| 32 | GQ225979 | CIB20060316    | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Ningshan, Shaanxi                  | 108.5425 | 33.5482 | Wang <i>et al.</i> , 2009                          |
| 33 | GQ225980 | CIB2874K       | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Ningshan, Shaanxi                  | 108.5425 | 33.5482 | Wang <i>et al.</i> , 2009                          |
| 34 | GQ225981 | CIB2876K       | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Zhashui, Shaanxi                   | 108.8367 | 33.7837 | Wang <i>et al.</i> , 2009                          |
| 35 | GQ225982 | CIBHuashan03   | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Huashan, Shaanxi                   | 109.8083 | 34.4672 | Wang <i>et al.</i> , 2009                          |
| 36 | GQ225983 | CIB20060325    | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Qinshui, Shanxi                    | 112.0184 | 35.4302 | Wang <i>et al.</i> , 2009                          |
| 37 | GQ225984 | CIB20060320    | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Qinshui, Shanxi                    | 112.015  | 35.4302 | Wang <i>et al.</i> , 2009                          |
| 38 | GQ225985 | CIB20060346    | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Jiyuan, Henan                      | 112.0902 | 35.2649 | Wang <i>et al.</i> , 2009                          |
| 39 | GQ225986 | CIB20070485    | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Songshan, Henan                    | 112.2176 | 33.9305 | Wang <i>et al.</i> , 2009                          |
| 40 | GQ225987 | CIB0408II012   | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Neixiang, Henan                    | 111.8575 | 33.4984 | Wang <i>et al.</i> , 2009                          |
| 41 | GQ225988 | CIB20060349    | " <i>Feirana</i> ".<br><i>taihangnica</i> | <i>F. taihangnica</i> | Luanchuan, Henan                   | 112.2963 | 33.7311 | Wang <i>et al.</i> , 2009                          |
| 42 | DQ118514 | KizYP215       | <i>Chaparana</i><br><i>quadranus</i>      | <i>F. quadranus</i>   | Maowen Co.,<br>Sichuan             | /        | /       | Che <i>et al.</i> , 2009                           |
| 43 | DQ118515 | KizYP016       | <i>Chaparana</i><br><i>quadranus</i>      | <i>F. quadranus</i>   | Guanyang, Wushan<br>Co., Chongqing | /        | /       | Che <i>et al.</i> , 2009                           |
| 44 | EU979831 | SCUM20030031GP | <i>Chaparana</i><br><i>quadranus</i>      | <i>F. quadranus</i>   | An Co., Sichuan                    | /        | /       | Che <i>et al.</i> , 2009                           |
| 45 | EU979832 | YNU-HUJJ7      | <i>Chaparana</i><br><i>quadranus</i>      | <i>F. quadranus</i>   | Sangzhi, Hunan                     | /        | /       | Che <i>et al.</i> , 2009                           |
| 46 | EU979842 | KIZ-HN0709001  | <i>Paa</i> <i>taihangnica</i>             | <i>F. taihangnica</i> | Taihangshan,<br>Jiyuan, Henan      | /        | /       | Che <i>et al.</i> , 2009                           |
| 47 | EU979843 | KIZ-HN0709002  | <i>Paa</i> <i>taihangnica</i>             | <i>F. taihangnica</i> | Taihangshan,<br>Jiyuan, Henan      | /        | /       | Che <i>et al.</i> , 2009                           |
| 48 | DQ118516 | KizYP216       | <i>Chaparana</i><br><i>quadranus</i>      | <i>F. quadranus</i>   | /                                  | /        | /       | Hu <i>et al.</i> , not<br>published in<br>articles |
| 49 | EU979833 | YNU-HU20025113 | <i>Chaparana</i><br><i>quadranus</i>      | <i>F. quadranus</i>   | /                                  | /        | /       | Hu <i>et al.</i> , not<br>published in<br>articles |

706 <sup>a</sup> Due to taxonomic chaos in tribe Paini (Che *et al.*, 2009), *Feirana quadranus* was also named  
 707 *Chaparana quadranus* (Jiang *et al.*, 2005; Ohler & Dubois, 2006; Che *et al.*, 2009; Wang *et*  
 708 *al.*, 2009), and *Feirana taihangnica* was named *Paa taihangnica* (Jiang *et al.*, 2005; Ohler &  
 709 Dubois, 2006; Ye *et al.*, 2013).

710



711


712 Fig. 1 Distribution of the 8 sampling sites from which 117 specimens were collected.  
713 Abbreviations for sampling sites (light green diamonds) correspond to those in Table 1.  
714 Reference sampling sites (green, pink, and blue spots), 1–41, correspond to the numbers in  
715 Table 2. Distribution zones were drawn according to Fig. 1 in Wang *et al.* 2009.

716

717

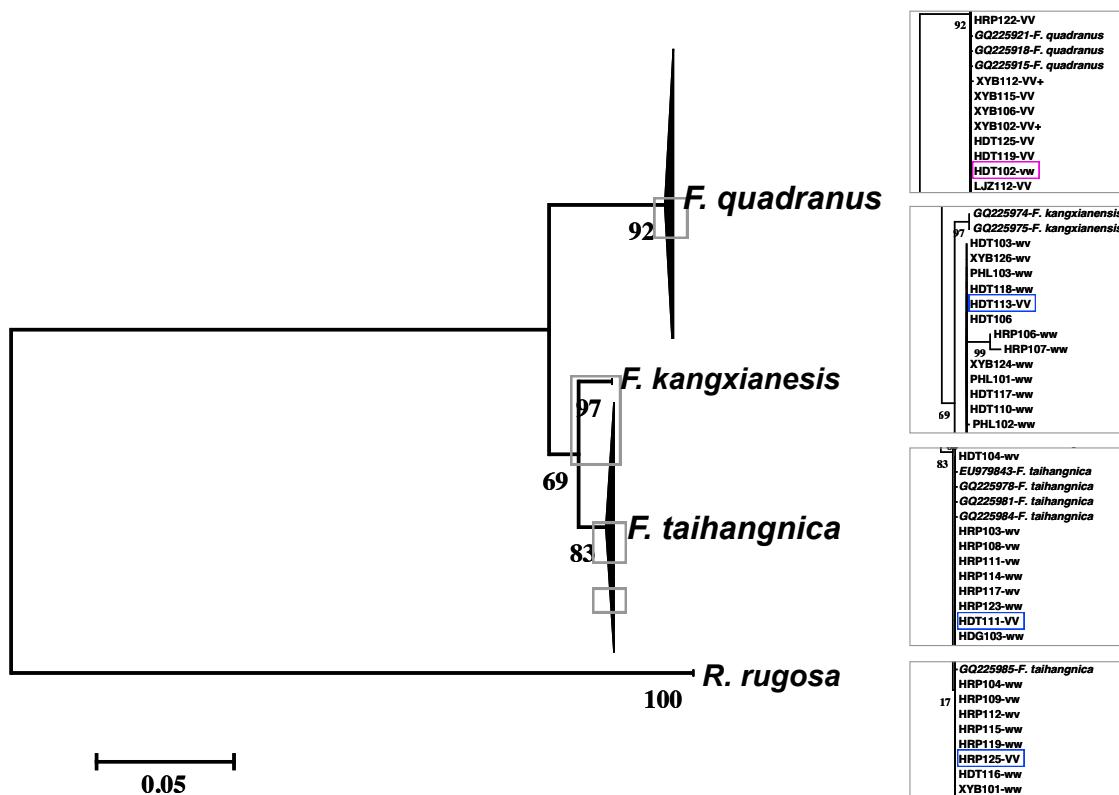
718

719



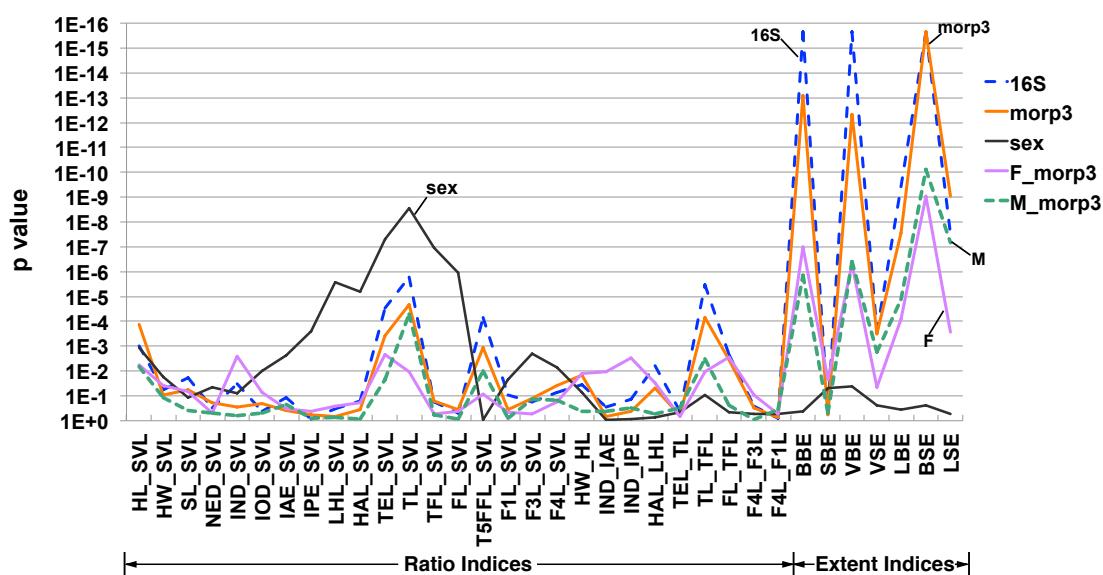
720

721


722

723

724


Fig. 2 Examples of the five morphotypes of *F. quadranus* and *F. taihangnica*. (A) VV; (B) VV+; (C) vw, looks like VV, only without granular bumps above the anus; (D) ww, looks like ww, only with too many granular bumps on the back; (E) ww. Photo credit: Yang Song & Xin Sui.

725



726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736

Fig. 3 Compressed maximum likelihood (ML) phylogenetic tree based on *16S rRNA* gene partial sequences. The bootstrap support values are shown below branches. Scale bar indicates an evolutionary distance of 0.05 nucleotides per position in the sequence. The four grey rectangles on the compressed tree correspond to four close-up shots along the right side, which are abstracted from Fig. S1, a full version of the ML tree. In the close-up shots, *Feirana* specimens are named by a combination of voucher number and corresponding morphotype, the *F. quadratus*, *F. taihangnica* and *F. kangxianensis* references are named by a combination of GenBank number and species name; pink and blue rectangles indicate four specimens with conflicting morphotypical classifications.

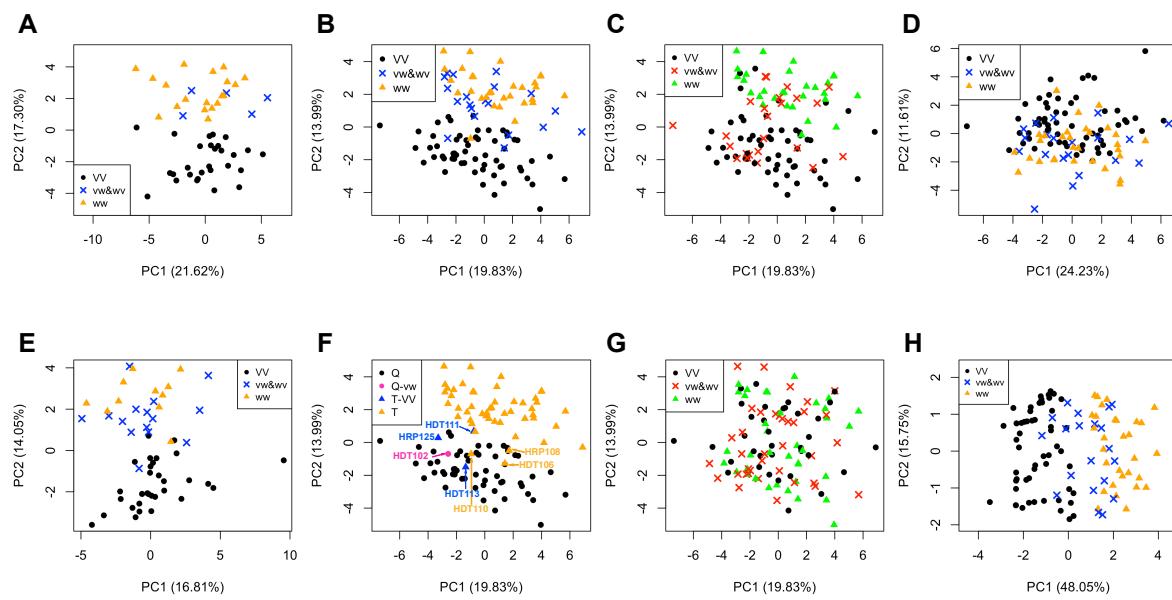


738

739

740

741


742

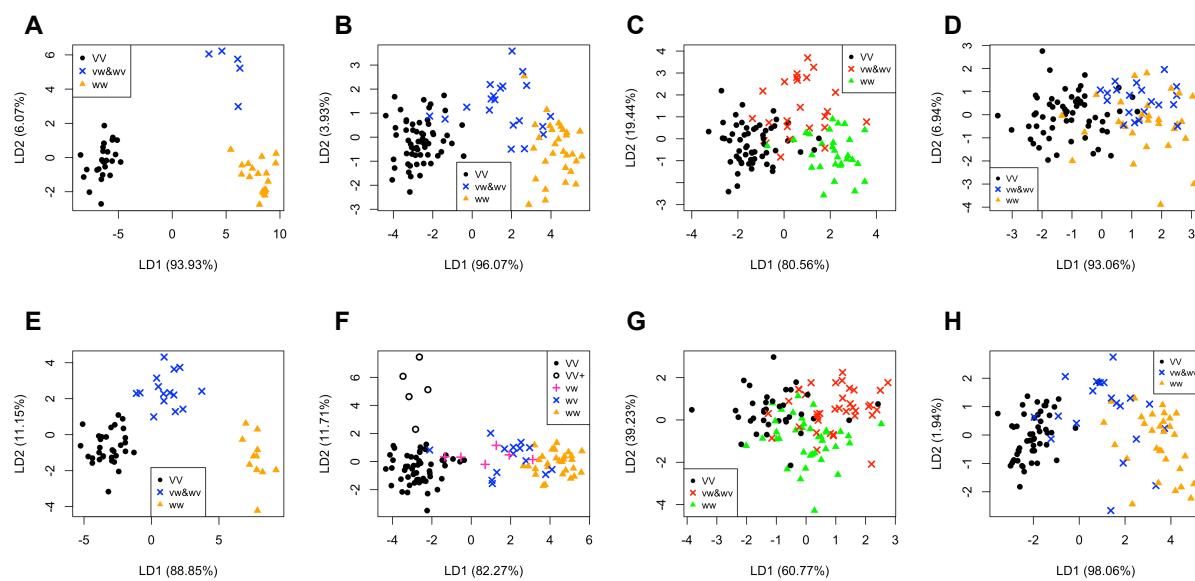
743

744

Fig. 4 Profile plots of p-values for the five groupings in Table S3, with the vertical scale being logarithmic in base 10. The blue dashed line labelled "16S", indicates the Q and T set; the orange solid line labelled "morp3", indicates the VV, vw&wv, and ww set; the black solid line labelled "sex", indicates the female and male set; the pink solid line labelled "F\_morp3" or "F" indicates the female VV, vw&wv, and ww set; and the green dashed line labelled "M\_morp3" or "M", indicates the male VV, vw&wv, and ww set.

745




746

747 Fig. 5 Results of the PCA. Scatterplots for the first two principal components, PC1 and PC2.  
748 (A, E) PCA for 52 females and 58 males, respectively, grouped by the three morphotypes; (B,  
749 F) PCA for the total 110 specimens, grouped into the three morphotypes and four  
750 16S\_versus\_morphotypes, respectively; (C, G) PCA for the two simulated populations, the  
751 different palettes signify the data's distance from reality; (D, H) PCA for the 110 individuals  
752 based on the 27 ratio indices and on the 9 extent indices, independently.

753

754

755



756

757 Fig. 6 Results of the LDA. Scatterplots for the first two linear discriminant functions, LD1  
758 and LD2. (A, E) LDA for 52 females and 58 males, respectively, grouped by the three  
759 morphotypes; (B, F) LDA for the total 110 specimens, grouped into the three morphotypes  
760 and five morphotypes, respectively; (C, G) LDA for the two simulated populations' three  
761 morphotypes, the different palettes signify the data's distance from reality; (D, H) LDA for  
762 the total 110 specimens based on the 27 ratio indices and 7 extent indices, independently.

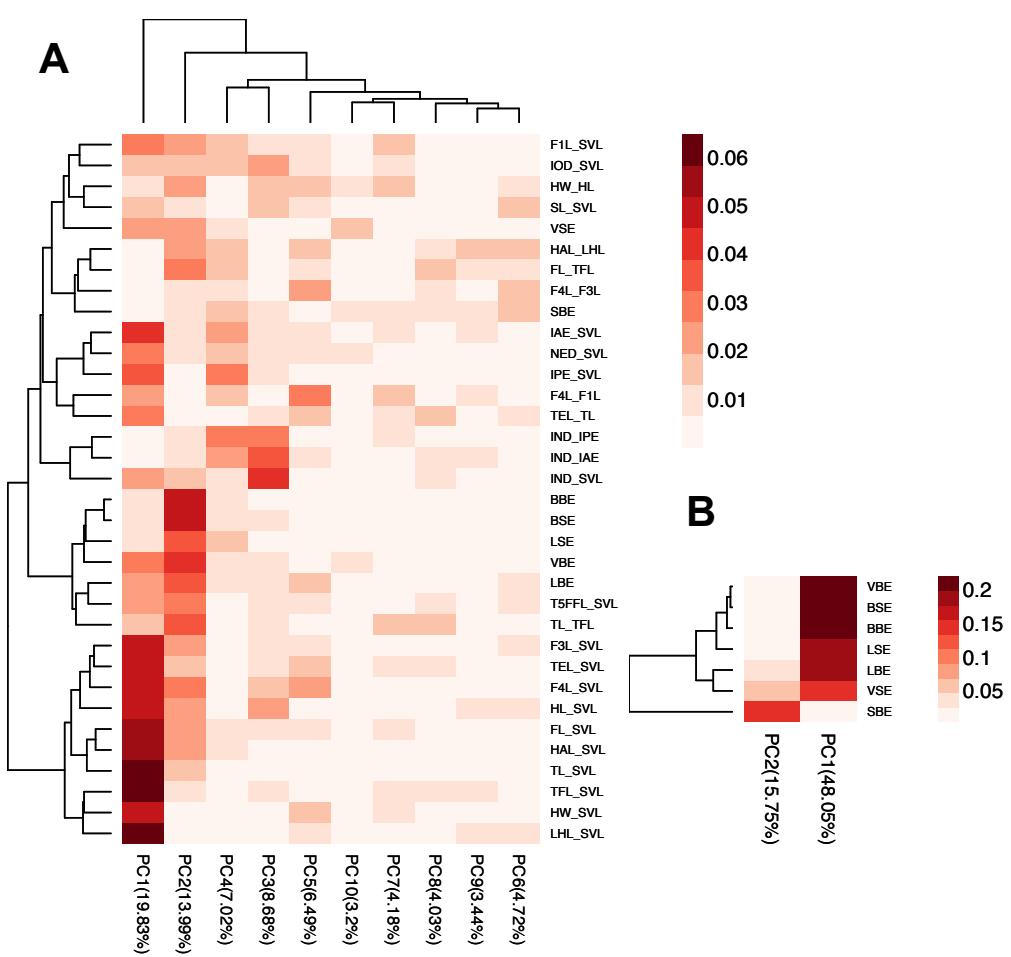



Fig. 7 Heat-maps of weighted rotation matrices of the PCA. In the weighted (multiplier) matrix, the corresponding proportion of explained variance for each PC is in parenthesis. (A) The first 10 PCs for the total specimens, corresponding to Fig. 5B; (D) The first two PCs of the extent indices for the total specimens, corresponding to Fig. 5H.