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Abstract 

The fields of phylogenetic tree and network inference have dramatically advanced in the last 

decade, but independently with few attempts to bridge them. Here we provide a framework, 

implemented in the PHANGORN library in R, to transfer information between trees and networks. 

This includes: 1) identifying and labelling equivalent tree branches and network edges, 2) 

transferring branch support to network edges, and 3) mapping bipartition support from a sample 

of trees (e.g. from bootstrapping or Bayesian inference) onto network edges. The ability to 

readily combine tree and network information should lead to more comprehensive evolutionary 

comparisons and conclusions. 
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Traditional phylogenetic inference has almost exclusively relied on the assumption that 

evolution is successfully captured by a bifurcating tree (Mindell 2013). However, tree-based 

methods usually perform poorly when this assumption is violated, and phylogenetic networks 

should be used instead (Bapteste et al. 2013). Despite advances in both fields (e.g. Balvočiūtė 

et al. 2014; Salichos et al. 2014; Yang et al. 2013), the interface between trees and networks 

has rarely been bridged (Holland & Moulton 2003; Holland et al. 2008; Huber et al. 2016). The 

decision to use trees or networks is usually not dependent on any arguments over the 

superiority of one approach over the other (but see Morrison 2014), but rather the evolutionary 

complexity of the group under investigation and the resulting dataset. Nonetheless, tree-based 

methods remain the prime analytical choice. When the levels of conflict are great, however, 

researchers may resort to networks – often as a last option after all other tree-based methods 

have failed – to have some way of making sense of the patterns within a dataset. The only 

alternative is filtering the ‘rogue’ taxa that are causing topological conflict or a decrease in 

branch support (Aberer et al. 2013). The wide range of available network methods (Huson & 

Bryant 2006) have remained underutilised, likely because of the difficulties that arise when 

comparing trees and networks (such as matching tree branches to network edges). 

 

The advances in tree and network inferences call for an integration of both methodologies. 
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However, a framework enabling automated integration has been lacking. Here we provide an R-

based framework, implemented in the PHANGORN library (Schliep 2011), to intertwine trees and 

networks. Using this framework we can: 

1)   Compare trees and networks by identifying shared or exclusive branches or edges between 

trees and networks constructed for the same dataset (Fig. 1A). We hope this will help 

researchers bridge the psychological gap between tree- and network-thinking (Morrison 

2010; Morrison 2014). 

2) Map branch support (e.g. nonparametric bootstrap support: Felsenstein 1985; Bayesian 

posterior probabilities: Rannala & Yang 1996), incongruence values (internode certainty: 

Salichos et al. 2014), or any other value that can be linked to a tree branch, onto a 

phylogenetic network (Fig. 1B). This will help researchers e.g. to investigate non-ambiguous 

support (any value < 1.0/100) of tree branches, and to determine whether this is due to 

incompatible or insufficient signals in the underlying data (e.g. Draper et al. 2007).  

3) Map bipartition frequencies from a sample of trees (e.g. from non-parametric bootstrapping 

or Bayesian inference) onto network edges (Fig. 1C; Grimm et al. 2006). This will help 

provide much-needed confidence in networks, and facilitate investigation of topological 

alternatives that are not captured by the tree-inference itself. 

 

This open-source R-based tree-network framework (scripts and vignettes can be found in the 

Supplement Material) provides a meeting point for the output of tree and network inference 

software (e.g. SplitsTree: Huson & Bryant 2006; MrBayes: Ronquist et al. 2012; RAxML: 

Stamatakis 2014) and results can either be visualised within R or exported to other visualisation 

software (e.g. SplitsTree; FigTree: Rambaut 2014).  

 

We envisage that this framework will have a multitude of uses, such as investigating specific 

phylogenetic signals, identifying competing evolutionary scenarios and pinpointing 

methodological shortcomings. For example, tree branches that are not present in the edges of a 

network can be identified, or vice versa; this often highlights significant and identifiable 

discrepancies between trees, which may arise from specific processes (e.g. rapid ancient 

radiations) or method-inherent biases (branching artefacts, model-induced differences). 

Networks can also be used to improve phylogenetic tree inference (Morrison 2010). For 

example, ‘lost branches’ can be identified, i.e. alternative phylogenetic splits that receive 

relatively high support but are not represented in the inferred tree. In addition, researchers may 

be interested in the differential support of topological alternatives that are masked by polytomies 
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in the commonly used majority rule trees, strict consensus trees, or single ‘representative’ trees 

with mapped support values (e.g. Mardulyn 2012). 

 

This framework will help phylogenetic practitioners to readily transfer information between tree-

based and network-based analyses, and thereby visualise and investigate similarities and 

differences between them. We believe that phylogenetic networks with edges supported by tree-

based algorithms (e.g. maximum likelihood or Bayesian inference) offer the most 

comprehensive representation of evolutionary signal in a phylogenetic dataset irrespective of its 

complexity (Fig. 1C; e.g. Potts et al. 2014). 
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Figure 1 Mapping tree information onto a network using a mitochondrial gene (cytB) 

woodmouse (Apodemus sylvaticus) dataset (the standard test set from the APE library).  

A. Identification of edge bundles (in black) in a neighbour-net (NN) network based on 

uncorrected p-distances that correspond to branches (labelled 1-12) in a maximum likelihood 

(ML) tree. Asterisks refer to zero-length tree branches (soft polytomies), of which one (branch 7) 

has no corresponding edge bundle in the NN network.  

B. Nonparametric ML bootstrap (ML-BS) support for all branches (branch labels) defining the 

ML tree mapped on the corresponding edge bundles of the NN network. 

C. Frequencies of bipartitions found in the ML-BS pseudoreplicates mapped on the 

corresponding edge bundles of the NN network using a threshold of 10% (i.e. any edge is 

labeled that occurs in at least 100 of the 1000 ML-BS pseudoreplicates). Edge bundles not 

found in the ML tree are labelled using grey numbers. 
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