TY - JOUR
UR - https://doi.org/10.7287/peerj.preprints.2052v1
DO - 10.7287/peerj.preprints.2052v1
TI - Order and Metric Compatible Symbolic Sequence Processing
AU - Greenhoe,Daniel J
DA - 2016/05/18
PY - 2016
KW - metric linear space
KW - signal processing
KW - GSP
KW - genomic signal processing
KW - genomic sequence processing
KW - symbolic sequence processing
AB -
A traditional random variable X is a function that maps from a stochastic process to the real line (X,<=,d,+,.), where R is the set of real numbers, <= is the standard linear order relation on R, d(x,y)=|x-y| is the usual metric on R, and (R, +, .) is the standard field on R. Greenhoe(2015b) has demonstrated that this definition of random variable is often a poor choice for computing statistics when the stochastic process that X maps from has structure that is dissimilar to that of the real line. Greenhoe(2015b) has further proposed an alternative statistical system, that rather than mapping a stochastic process to the real line, instead maps to a weighted graph that has order and metric geometry structures similar to that of the underlying stochastic process. In particular, ideally the structure X maps from and the structure X maps to are, with respect to each other, both isomorphic and isometric.Mapping to a weighted graph is useful for analysis of a single random variable.for example the expectation EX of X can be defined simply as the center of its weighted graph. However, the mapping has limitations with regards to a sequence of random variables in performing sequence analysis (using for example Fourier analysis or wavelet analysis), in performing sequence processing (using for example FIR filtering or IIR filtering), in making diagnostic measurements (using a post-transform metric space), or in making goptimalh decisions (based on gdistanceh measurements in a metric space or more generally a distance space). Rather than mapping to a weighted graph, this paper proposes instead mapping to an ordered distance linear space Y=(R^n,<=,d,+,.,R,+,x), where (R,+,x) is a field, + is the vector addition operator on R^n x R^n, and . is the scalar-vector multiplication operator on R x R^n. The linear space component of Y provides a much more convenient (as compared to the weighted graph) framework for sequence analysis and processing. The ordered set and distance space components of Y allow one to preserve the order structure and distance geometry inherent in the underlying stochastic process, which in turn likely provides a less distorted (as compared to the real line) framework for analysis, diagnostics, and optimal decision making.
VL - 4
SP - e2052v1
T2 - PeerJ Preprints
JO - PeerJ Preprints
J2 - PeerJ Preprints
SN - 2167-9843
ER -