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ABSTRACT 

Current coral reef health monitoring programs rely on biodiversity data obtained through the ac-

quisition and annotation of underwater photographs. Manual annotation of these photographs is a 

necessary step, but has become problematic due to the high volume of images and the high cost of 

human resources. While automated and reliable multi-spectral annotation methods exist, coral 

reef images are often limited to visible light, which makes automation difficult. Much of the pre-

vious work has focused on popular texture recognition methods, but the results remain unsatisfac-

tory when compared to human performance for the same task. In this work, we present an im-

proved automatic method for coral image annotation that yields consistent accuracy improve-

ments over existing methods. Our method builds on previous work by combining multiple feature 

representations. We demonstrate that the aggregation of multiple methods outperforms any single 

method. Furthermore, our proposed system requires virtually no parameter tuning, and supports 

rejection for improved results. Firstly, the complex texture diversity of corals is handled by com-

bining multiple feature representations: local binary patterns, hue and opponent angle histograms, 

textons, and deep convolutional activation feature. Secondly, these multiple representations are 

aggregated using a score-level fusion of multiple support vector machines. Thirdly, rejection can 

optionally be applied to enhance classification results, and allows efficient semi-supervised image 

annotation in collaboration with human experts. 
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INTRODUCTION 

Coral reef across the globe are endangered. In time, this will have a significant economic impact 

on many societies (Hoegh-Guldberg et al. 2007). To provide a scientific basis for reef preserva-

tion, protection and monitoring programs have been established. These however require infor-

mation about the marine substrate coverage, which is typically obtained by manual labeling of 

images acquired underwater. Recently, it was shown that acquisition methods based on stereo-

vision or multi-spectral imagery can be used to perform reliable automatic image annotation 

(Gleason et al. 2007; Johnson-Roberson et al. 2006; Sasano et al. 2013). Unfortunately, these re-
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quire expensive equipment, and are not applicable to the large volume of unlabeled images gath-

ered in the last decades acquired using simple digital or analog cameras. Furthermore, they were 

only shown to discriminate a few classes such as live coral, dead coral, sand and algae. Visible 

light imaging at a close range from the substrate has the advantage of containing detailed infor-

mation on individual species. This leads to a much better understanding of coral reef ecosystems. 

To extract data from these RGB photographs, various manual annotation protocols based on im-

age content sampling have been adopted such as that proposed by Jonker et al. (2008). These pro-

vide specific directives on the software to use, the image and point sampling methodologies, the 

labeling categories (often called codes), the label decision process as well as other software pa-

rameters. While manual expert annotation can be used for biodiversity data extraction it is a time 

consuming task and cannot be applied to large datasets of benthic images given the available re-

sources. 

Challenges 

Underwater natural scene images present multiple challenges around which our method is devel-

oped. While acquisition-related challenges may vary significantly from one dataset to another, the 

following list presents common difficulties encountered with underwater benthic images. 

1. Scale, orientation and illumination varies. This is expected from organic objects in nat-

ural scene images.  

2. Red channel information loss is a frequent artifact caused by red wavelength attenua-

tion when traveling through water. 

3. Imbalanced data is a common problem, as some coral species are extremely rare, while 

algae and sand samples are abundant for examples. 

4. Incorrect expert labeling occurs because of the difficulty of the task. This affects the 

correctness of the ground truth and impacts the machine learning process. A study by 

Ninio et al. (2003) presented quantitative data on the disagreement frequency between 

multiples experts for the task of coral annotation in analog video frames. The reported 

overall disagreement rate was between 10% and 20% depending on the taxonomic rank-

ing used which affects the difficulty of the task. While most classes were labeled with an 

estimated error rate well below 10%, error rates of up to 60% were reported for some of 

the rarest classes, mostly at the life form ranking. Nonetheless, these results are im-

portant, as they provide an approximation of the satisfactory accuracy threshold, which is 

considered to be between 80% and 90%.  

5. The sampling method used for manual annotation is typically random or systematic 

(grid or uniform sampling) which causes considerable ambiguity: points are often close to 

the boundary between two or more observable classes. This ambiguity is responsible for 

much of the incorrect expert labeling, and poses a challenge for training in automation, 

because these points are used as a ground truth. Furthermore, sampled points are usually 

not the center of a homogenous region, which adds considerable background noise to the 

local texture.  

6. The complex environment of underwater natural scene images contains many irrelevant, 

occluding objects, such as fishes, markers, acquisition equipment (e.g. quadrat). When 

performing manual annotation, these are either ignored, or simply flagged as part of the 
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class "others". The large diversity of objects and the few samples make the task of model-

ing these objects difficult. 

7. Many classes are difficult to model. Firstly, a high intra-class variance caused by many 

environmental and geographical factors result in significant variations in coral appear-

ances. The shape, hue, and texture of a single coral or algae class varies. Regardless of 

the taxonomic ranking, all classes should be considered multi-modal. Secondly, low in-

ter-class variance can cause two coral classes to appear identical to a non-expert eye. 

Previous work 

A typical recognition problem is often broken down into a set of sub-problems: preprocessing, 

segmentation, feature extraction and classification. In this section, we briefly survey previous 

work on each sub problem, and discuss how previous efforts have addressed some of the chal-

lenges.  

Preprocessing of underwater images was largely studied and methods have been developed to 

correct common underwater image artifacts (Bazeille et al. 2006; Carlevaris-Bianco et al. 2010; 

Prabhakar & Kumar 2012). However, the resulting image quality is subjective to the observer, 

and because acquisition conditions can be so different, these methods may not apply well to all 

datasets. The current trend seems to be to apply image correction and enhancement steps accord-

ing to the dataset based on empirical results (Beijbom et al. 2012; Shihavuddin et al. 2013), i.e. 

finding the best preprocessing method for a given dataset. This simple approach targets dataset-

specific acquisition artifacts. Most importantly, preprocessing can address the red channel infor-

mation loss challenge, which is necessary for extracting useful color features. 

Segmentation finds a region of interest in the surrounding of a labeled point. Promising work was 

done by Tusa et al. (2014) using a three class supervised pixel classification method based on Ga-

bor wavelet response. Other semi-supervised methods for similar problems have been proposed 

by Costa & Battista (2013) as well as Neal et al. (2015) to help experts label entire images. De-

spite these efforts, unsupervised segmentation on a full scale dataset remains an open problem 

and is beyond the scope of this work. We therefore settle for fixed-size patches around target 

points. Segmentation however has two expected benefits: it may improve classification accuracy 

by ignoring irrelevant background information, and would yield additional surface coverage data. 

Full image segmentation of contiguous regions of homogenous textures may overcome the chal-

lenge related to the ambiguous sampling method. A few reasons explain why unsupervised seg-

mentation remains difficult to apply. Firstly, the wide range of textures found in benthic images 

make segmentation methods difficult to parametrize. Secondly, ground truths often consists of 

single points which cannot be used to measure the accuracy of a segmentation method on a large 

scale dataset. Furthermore, quality metrics used for segmentation such as Dice index and Jaccard 

index do not consider that only a fraction of the coral's texture is sufficient to perform texture 

based recognition. Thirdly, given a point, it is difficult to segment a surrounding region in accord-

ance with the expertly labeled ground truth: labels found on coral boundaries where two objects 

meet are ambiguous and the resulting region may not reflect the expert’s intentions. 

Feature extraction has been the focus of much work. The dominant approach consists in a feature 

level fusion (i.e. concatenation of multiple feature vectors) of statistical features and global de-
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scriptors invariant to scale, orientation and illumination. These include intensity histogram statis-

tics, gray-level co-occurrence matrix (GLCM) statistics, Gabor wavelet response statistics, local 

binary patterns (LBP), hue histograms, etc. Such methods are well established for the texture 

recognition problem, and were applied several times to automated coral images annotation 

(Bewley et al. 2012; Bouchard 2011; Marcos et al. 2005; Prévost 2015; Shihavuddin et al. 2013). 

Though these feature representations are popular, none was shown to perform at an acceptable 

level on a full-scale natural scene image dataset. Recently, a powerful dictionary-based texture 

descriptor, textons, was proposed as a feature representation by Beijbom et al. (2012). The 

method was shown to achieve between 67% and 83% accuracy for a nine-class dataset of natural 

images with over one hundred thousand labeled points. Dictionary-based methods were further 

investigated by Bewley et al. (2015) using small patches represented with principal component 

analysis dimensionality-reduced intensity values. Their results, however, suggest that a simple 

LBP representation remains competitive with such methods. 

Classification was attempted using several classifiers such as nearest neighbors and neural net-

works (Marcos et al. 2005; Shihavuddin et al. 2013). However, the radial basis function (RBF) 

kernel support vector machines (SVM) has yielded much more promising results (Beijbom et al. 

2012; Bouchard 2011). These have been widely used for various texture recognition problems. 

SVMs have the distinct advantage of being very flexible: they can be trained for regression to 

produce a likelihood estimation, and they are known to perform well when assembled into a 

broader multi-classifier system. Score-level fusion of multiple SVM  has been applied to complex 

data in many fields to improve accuracy, including remote sensing (Waske & Benediktsson 2007) 

and biometrics (He et al. 2010). While this remains unexplored by previous work, a multi-classi-

fier modeling approach would be more appropriate given the challenge of modeling the high di-

versity of complex textures. 

Data 

The dataset was provided by the Australian Institute of Marine Science (AIMS) (Sweatman et al. 

2001). It contains 15,165 images of the Great Barrier Reef acquired between 2006 and 2012 over 

hundreds of unique transects. Image acquisition was performed underwater with a 6 mm lens at a 

distance of approximately 50 cm from the substrate, resulting in 25 x 34 cm ground coverage per 

image. Two different resolutions are used: 3,264 x 2,448 pixels for images from 2006 to 2010 and 

2,112 x 2,816 pixels for 2011 and 2012. No artificial light source was used, resulting in images of 

variable illumination and sharpness. 

Each image was expertly hand labeled at five distinct points located at the following relative co-
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). This task was performed at five taxonomic 

rankings, from the highest to the lowest: group description, benthos description, family, genus, 

species description. To handle this multi-level annotation, we initially use the lowest species 

ranking, and then perform simple mapping to higher levels. This allows us to present results at all 

levels, while focusing our analysis to the broader group description level. The only exception is 

the benthos description rank, which does not follow a clear one-to-many tree-like mapping struc-

ture. While there are multiple possible solutions, overcoming this limitation is beyond the scope 

of this work. We have therefore ignored the benthos description level.  
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Across all taxonomic rankings, the number of samples per class is subject to an extreme variance. 

Many classes contain too few examples for practical machine learning. To overcome the imbal-

anced data challenge, a reasonable number of samples is required. Consequently, classes with less 

than 50 samples at the species rank were eliminated, therefore filtering out 0.83% of the data. 

This was done in previous work: Beijbom et al. (2012) discarded 4% of the Moorea labeled corals 

dataset for the same reason. Table 1 presents statistical data on the number of classes as well as 

the number of samples per class used in the filtered dataset at all four rankings of interest when 

performing mapping. Figure 1 shows examples of the 300x300 pixel patches used for twenty 

classes at the species level.   

Table 1. Statistics on the classes and the number of samples per class (spc) at every taxonomic 

rank in the filtered AIMS dataset. Classes with less than 50 samples at the species level were 

eliminated. 

 Group Family Genus Species 

Number of classes eliminated 1 12 63 148 

Number of classes used 6 30 54 76 

Mean spc 12,532   2,507    1,393 989 

Median spc 4,987    456    296 190 

 

METHOD 

We have presented the general challenges concerning benthic images as well as previously pro-

posed solutions at the preprocessing, feature extraction or classification levels. The errors caused 

by the ambiguous point sampling methods will be investigated in future work on segmentation, 

and we accept the error for now. Amongst the more difficult aspects of the coral classification 

task are the high intra-class variance and low inter-class variance. The data is complex and diffi-

cult to model using a single feature representation. Each class should be thought of as following a 

multi-modal distribution, where each mode may be significantly different than the previous. We 

hypothesize that, given the complexity of the textures, different modes within a single class re-

quire different features to be properly characterized. Previous work on feature extraction has 

shown that integrating new feature representations using feature-level fusion tends to increase ac-

curacy.  However, feature-level fusion has two main limitations. Firstly, the computational cost of 

training and testing a classifier increases dramatically with the size of the feature vector, thus 

making large vectors impractical. Secondly, classification accuracy does not necessarily consist-

ently improve as more features are added, even if these are uncorrelated and discriminant. This 

effect is known as the "curse of dimensionality", which we can observe here when combining too 

many features. 

Alternatively, we propose using a score-level fusion to aggregate the complex information from 

multiple feature representations. Our proposed method uses three state-of-the-art feature repre-

sentations: Local binary patterns combined with color information, textons, and a convolutional 

neural network-based feature. While we only use these three representations, the method can be 

easily extended to support additional ones. 
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A score-level fusion uses an aggregation function to combine the class-wise prediction likelihood 

estimation from multiple classifiers. The fusion process creates a fusion score as a by-product 

which can then be used to implement rejection. Because all class predictions come with their own 

score, a threshold can be set to reject lower score predictions, which are more likely to be errors 

than high score predictions.  

 

Figure 1. Ten samples per class for the first 20 classes from the AIMS dataset at the species de-

scription ranking. Histogram equalization was applied to enhance visualization. 
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Feature Extraction 

A combination of completed local binary patterns (CLPB) and color information inspired by pre-

vious work (Shihavuddin et al. 2013) is used as the first texture representation. We reduced com-

putational complexity and vector dimensionality by using simpler parameters, and eliminating 

most of the descriptors. These choices were made heuristically, as we found that fine optimization 

had a significant effect on the classification accuracy when using the vector by itself, but had al-

most none on the multi-classifier fusion results. We emphasize that our approach does not require 

fine optimization of any parameter to achieve reasonable performance. The following descriptors 

were combined in this first representation: 

1. CLBP were initially proposed by Guo et al. (2010) and use non-linear mapping functions 

to describe the local pattern around each pixel using binary codes. We used a sampling of 

eight neighbors at a distance of one pixel, and applied the uniform rotation-invariant 

mapping to reduce the bin count while achieving orientation invariance. The three histo-

grams (sign, center and magnitude) are aggregated by concatenating a 20 bin 2d center-

magnitude joint histogram with a 10 bin 1d sign histogram. This results in 30 CLBP bins. 

2. Hue and opponent angle histograms are powerful color descriptors tolerant to geometric 

and photometric variations proposed by Van De Weijer & Schmid (2006). Both hue and 

opponent angle values are averaged over blocs of 20 by 20 pixels, which are then quan-

tized into 16-bin histograms, resulting in 32 color feature bins. We found that applying 

the comprehensive image normalization (Finlayson et al. 1998) yielded better color fea-

tures, as inconsistent red channel attenuation causes inaccurate representations biased to-

wards the cyan color. 

 

Textons were applied to coral reef image annotation by Beijbom et al. (2012). A texton is a quan-

tized pixel response to a Gabor filter bank. Initially, a dictionary of textons is learned for quanti-

zation using clustering. Then, a texton feature vector can be computed in the form of a normal-

ized histogram of the textons found on the texture patch. We used the same 135-texton dictionary 

(Beijbom et al. 2012) trained using the Maximum Response (MR) Gabor filter bank, applied the 

same channel stretch image enhancement for color consistency, and used the Lab color space. We 

also extracted textons using four square patch sizes: 300, 165, 80 and 30 pixels similar to how it 

was done in the original work. This reportedly addresses part of the challenges related to the lack 

of segmentation and variable texture scale, and results in a 540-value feature representation. 

These patch sizes are free parameters in our system. However, we’ve observed that their optimi-

zation has very little impact. This was also the conclusion of the work by Prévost (2015). 

Deep convolution activation feature (DeCAF) is a transfer learning description method based on 

activation weights of the last convolution layer in a convolutional neural network (CNN). While 

transfer learning using CNNs is an active field a research, DeCAF was applied to texture recogni-

tion by Cimpoi et al. (2014), which demonstrated that a CNN trained for object recognition pro-

vided features able to describe textures that are statistically different, yet semantically alike. We 

applied this technique here as our third feature representation, using the CNN trained by 

Simonyan & Zisserman (2014) on the ImageNet object recognition dataset, made available by the 

MatConvNet library (Vedaldi & Lenc 2014). The 4,096 activation weights are extracted directly 
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from the last convolution layer, and normalized using the L1 norm. The extraction process re-

quires no additional training or parameter optimization. 

Classification 

To aggregate these multiple representations, we use a score-level fusion, as presented in figure 2. 

Each feature representation trains a one-against-one regression SVM that provides a probability 

estimate, or a score, for each possible class. We used the LIBSVM library to perform this task 

(Chang & Lin 2011). Grid search is performed on at most 60 samples per class from the training 

set to approximate the cost parameter as well as the gamma kernel parameter. The score outputs 

are then normalized and aggregated using a product fusion function and the maximum aggregated 

score value indicates the predicted class. We initially applied several fusion functions including 

sum, mean, product, maximum and vote, and found that the product function was consistently 

better on all tested datasets, even on benchmark texture datasets. We therefore settle for product 

fusion, which eliminates the need for costly adaptive fusion function selection. While product is 

not a commonly used fusion function, we explain its performance here by the high frequency of 

low score scores due to the high class count as well as the low inter-class variance. The resulting 

score from fusion can optionally be used for rejection thresholding, thereby further enhancing the 

prediction accuracy. 

 

Figure 2. Our classification architecture using a score-level fusion of three texture representa-

tions: CLBP and color global descriptors (Des), Textons (Tex), and CNN activation weights 

(Dec). The other variables are the number of classes (M), the SVM scores (S), and the fusion 

score (F). 
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RESULTS AND ANALYSIS 

Classification Accuracy 

We ran a tenfold analysis on the filtered dataset of 75,195 patches at the species ranking with a 

RBF kernel SVM using each feature representation individually. Simple mapping to higher ranks 

is performed for other levels. Results are compared with the ones obtained using the proposed fu-

sion method, and are shown in table 2. Both the overall and average accuracies observed using 

three aggregated feature representations are consistently higher at all ranking levels. These results 

suggest that not all textures can be described using a single feature representation, and that multi-

ple representations are complimentary. 

Table 2. Results before rejection: accuracy (Acc) and class-wise average accuracy (Avg Acc) for 

each feature representations individually, as well as for the multi-classifier fusion. The number of 

classes at each ranking is specified in parenthesis. The standard deviation across all 10 folds is 

also reported. 

 Group Description 

(6) 

Family 

(30) 

Genus 

(54) 

Species Description 

(76) 

 Acc Avg Acc Acc Avg Acc Acc Avg Acc Acc Avg Acc 

CLBP+hue+OA 54.9±0.6 47.8±1.1 39.6±0.6 27.2±0.7 36.6±0.5 21.3±0.5 35.0±0.6 19.4±0.6 

Textons 61.5±0.9 55.1±1.5 45.8±0.9 35.7±1.0 42.9±0.8 29.9±0.9 40.6±0.9 26.9±1.2 

DeCAF 62.5±0.9 57.1±1.3 44.0±1.2 40.0±1.5 41.1±1.1 37.2±1.8 37.7±1.1 35.5±1.6 

Score-level fusion 71.7±0.5 66.2±1.2 59.4±0.9 46.8±1.4 56.7±0.9 41.0±1.6 54.5±0.9 37.8±1.5 

 

Despite this significant accuracy improvement, the reported error before rejection is higher than 

the expected human performance for the same task.  Much of the error can be explained by two of 

the challenges that have been ignored within the scope of this work. 

1. Ambiguous patches due the sampling methods cause background information to appear 

in patches, therefore increasing the variance for the distribution of all classes in feature 

space. This further increases the difficulty of separating classes. 

2. The ground truth used to measure the accuracy of our system is subject to expert errors, 

which is partially caused by patch ambiguity. The error should be seen as the disagree-

ment rate between a single expert and our automated system, which are both prone to er-

rors. Any level of performance above that of human would be insignificant, meaning that 

human performance is an upper bound to the measured accuracy of our automated sys-

tem. A better accuracy metric could be obtained by querying the expert on the correctness 

of predicted labels over a sample. In addition, there are many cases of very dark or light 

saturated regions presenting no significant texture information where the expert is able to 

infer the correct class heuristically based on adjacent or previously encountered areas. 

These cases are difficult to model using machine learning. 

In this work, we attempt to eliminate some of these errors through rejection by thresholding the 

post-fusion score. However, future work will investigate segmentation as a complimentary, but 

more appropriate solution. 
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Figure 3a presents the confusion matrix of the combined ten folds obtained at the coarsest group 

description ranking. The majority of the error comes from most classes being confused with hard 

corals, which is a complex class observed with many different textures and colors, and that occu-

pies large portion of the feature space. Consequently, most other classes tend to overlap with hard 

coral in feature space. The sponge class has the highest error and is mostly confused with algae 

and hard coral. This is partially explained by the low representation of the sponge class, which 

remains difficult to model. Moreover, sponges in this particular data are mostly encrusting forms 

and therefore harder to identify than in many other benthic datasets. We propose combining the 

algae, other and sponge classes into a single “other” class considering they are confused and their 

separation is of little interest. For research purposes, it is most important to monitor, and therefore 

identify, the hard coral class above all, as ecologically it is of greatest interest and as a reef 

builder is the main contributor to coral reef structure. The resulting confusing matrix is shown in 

figure 3b, and yields an improved accuracy of 78.7% over 10 folds. 

 
 

a b 

Figure 3. (a) Confusion matrix (before rejection) of the combined 10 folds for our proposed 

method at the group description ranking. (b) Confusion matrix (before rejection) after merging 

the algae, other and sponge classes into a single “other” class. Both matrices present the normal-

ized prediction frequencies for all combination of real class (vertically) and predicted class (hori-

zontally). The class frequency is displayed on the right side. Each cell represents the frequency at 

which a sample of the real class is classified as the predicted class.  

Rejection 

We propose using the fusion score to implement rejection in our system. We focused most of our 

analysis on the modified four-class group description ranking, as it offers close to satisfactory 

performance, but rejection can be applied at all taxonomic rankings. Figure 4 presents the ROC 

curves obtained for each class when attempting to separate correct predictions from errors using a 

score threshold. Ideally, we would like to eliminate all errors (false acceptance, or FA) and retain 

all correct predictions (true acceptance, or TA). While errors cannot be perfectly eliminated, good 

threshold candidates for rejection become apparent. For instance, at least 50 % of the prediction 

errors can be eliminated for the abiotic and soft coral classes, while losing no more than 15 % of 
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correct predictions.  The ROC curve however does not provide details on the TA and FA fre-

quency, which are important to select good rejection thresholds. Figure 5 presents the class wise 

score probability density functions (PDF) for FAs and TAs. Rejection aims to find a score thresh-

old that best separates the two populations. The four PDFs suggest that rejection is not equally 

beneficial for all classes, and that class-specific thresholds are important to optimally eliminate 

errors. To find these class-specific thresholds, we applied two methods:  

1. Chow’s rule (Chow 1970) is a rejection rule based on best error-reject trade-off from the 

PDF. While this method minimizes the absolute error, its main disadvantage is the lack of 

control over the number of rejected samples, which could be problematic for biodiversity 

statistic. 

2. A greedy search algorithm is applied to minimize the absolute error with the desired re-

jection percentage as an exit condition. We used with method for two thresholds of 5% 

and 10% of the total data. 

Both of these methods require knowledge of the score PDF, which we estimate for each fold us-

ing the scores from the training data. Table 2 reports the accuracies obtained using various thresh-

olds. Moreover, we explore an alternative rejection application: a semi-supervised mode where 

most of the samples are automatically labeled, and the small rejected fraction is manually re-

viewed and corrected by an expert. This is done by setting the rejected samples to their ground 

truth label. The rationale is that blindly rejecting too many samples may lead to biased biodiver-

sity statistics. There are also many advantages to a semi-supervised mode in an operational set-

ting, such as online learning for improved and adaptive recognition. This is however beyond the 

scope of this work. 

 

Figure 4. Rejection ROC curves. Every point represents the impact of rejection (true acceptance 

rate, false acceptance rate) for a unique rejection threshold. 
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We have established that rejection can be used to enhance results. However, we do not draw con-

clusions on the “optimal” rejection threshold selection method. Rejection is flexible and has many 

practical applications. The task at hand should be considered when applying it. For instance, for 

locating examples of a specific rare species in a large dataset, 80 % of the data can be rejected for 

good results. However, for practical surface estimation, rejection needs to be tuned carefully 

based on the error for important classes such as hard coral to avoid a bias towards classes that are 

easier to recognize. In a semi-supervised collaborative annotation mode between our automated 

system and an expert user, bias is no longer an issue, but the rejection percentage needs to con-

sider the availability of human resources. The confusion matrices obtained with and without ex-

pert correction are presented in figure 6. 

 

Figure 5. Class-wise score distribution of true acceptance (blue) and false acceptance (orange). 

The curves were smoothed by quantizing data to twenty points. The log scale for the score is used 

for visualization purposes to account for the product fusion function. 

 

Table 2. Accuracies and Average Accuracies using different rejection thresholds at the group de-

scription level using 4 classes. Samples are either rejected and ignored (R) or rejected and manu-

ally corrected (R+C). The standard deviation across all 10 folds is also reported. 

  Greedy selection Chow’s rule 

 No 

Rejection 
5% R 5% R+C 10% R 

10% 

R+C 
 19.3% R 19.3% R+C 

Accuracy 78.7±0.5 81.3±0.6 82.3±0.5 83.3±0.5 84.9±0.5 85.6±0.6 88.3±0.7 

Average Acc. 79.5±0.9 80.1±1.0 81.7±0.9 81.3±1.0 83.8±0.9 82.5±1.6 86.9±1.4 
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Figure 6. Confusion matrices at the group ranking using the three proposed thresholds (from left 

to right: 5%, 10%, and 19.3% using Chow’s rule) for rejection without (top row) and with (bot-

tom row) manual correction of the rejected samples. See figure 3 for details. 

 

DISCUSSION 

Comparison between state-of-the-art methods 

While our results have demonstrated that combining multiple method through a score-level fusion 

yields consistently better results than using any single method, individual results from previously 

published state-of-the-art methods cannot be compared with each other. For a fair comparison, 

parameters of each method should be finely optimized for a given dataset in order to achieve 

maximum performance. For instance, we used a texton dictionary trained for the Moorea Labeled 

Coral dataset, which is unlikely to be the optimal dictionary for our dataset despite still perform-

ing reasonably well. 

Feature representations 

The three feature representations used in this work were selected based on the most promising 

state-of-the-art work on texture. This selection is however somewhat arbitrary. A better way of 

selecting feature representations could be to study the confusion matrix, and design features that 

are specifically good at discriminating classes that are currently confused. This could be done us-

ing unsupervised feature learning for example. 

Parameters 

Because large scale analysis is time consuming on regular hardware with limited resources, pa-

rameters selection is often an impractical process. We attempted to either eliminate or approxi-

mate heuristically every parameter selection step. The only exception is the SVM grid search 

model selection, which is efficiently approximated on about 6 % of the data. While fine optimiza-
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tion, in general, does improve results slightly, we empirically determined that its impact was neg-

ligible when applying score-level fusion. The lack of free parameter gives our system an out-of-

the-box applicability to new datasets, which is a highly desirable aspect in any operational setting, 

and makes it a good candidate for a practical solution to the large scale coral annotation problem. 

Cost of error 

Our work did not cover extensively the cost of error. While we considered hard corals to be par-

ticularly important, the exact cost of error for each class was not discussed. This aspect is beyond 

the scope of this work, but it is incorrect to assume that confusing two types of algae has the same 

weight as confusing sand with soft coral in a biodiversity study. Nonetheless, even without rejec-

tion, our results have shown that a hard coral texture patch has a high chance of being classified 

correctly. 

CONCLUSION 

We demonstrated that pooling multiple texture representations at the score level using multiple 

support vector machines yields more accurate results for automated coral reef annotation when 

compared to using a single method. We have combined three texture representations: a mix of 

global descriptors (CLBP, hue and opponent angle histograms), textons, and activation weights 

from a deep convolutional neural network trained for object recognition. Rejection was applied 

on the resulting fusion scores to eliminate ambiguous points, and improve accuracy. Our multi-

representation pooling system does not require fine tuning of any parameter to achieve reasonable 

performance, and can be extended to support additional representation designed specifically for a 

given dataset. 
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