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Performance of finite mixture distribution models to estimate

nursery habitat contributions to fish stocks

Edwin J Niklitschek, Audrey M Darnaude

Background. Otolith microchemistry applications of finite mixture distribution models (FMDM) describe

mixed stocks using three sets of parameters: proportional contributions (pi), baseline parameters (�i) and

number of contributing nursery origins (c#). Under ideal scenarios, c# is known and all potential sources

are sampled to produce source-based ^�i estimates. Hence, ^pi is the only parameter vector estimated

by FMDM from the mixed-data. If some/all nursery areas are unknown or not sampled, some or all �i and

c# need to be also estimated from the mixed-data. Our goal here was to assess bias and variability in

^pi, ^�i and ^c# when estimated by FMDM, under a range of data availability scenarios.

Methods. We used a comprehensive Sparus aurata dataset, tat contained otolith elemental ratios from

301 young of the year, sampled at four nursery origins, in three highly contrasting years. Using bootstrap

resampling (n=1000) we produced artificial source- and mixed-samples. Source-samples simulated

different scenarios where KU=0-4 nursery sources were excluded. We evaluated bias (BI) and variability

(VI) in ^pi by fitting FMDM to mixed-samples with true pi=0.1-0.4. Bias and variability in ^�i and ^c#

were, instead, assessed on balanced mixed stock-samples (pi=0.25). Estimations of ^c# were obtained

by fitting and comparing multiple FMDMs with c#=1-9.

Results. Accurate and precise ^pi estimates (BI<0.03, VI<0.07) were produced by FMDM when samples

from all origins were available (KU=0). BI and VI in ^pi tended to increase rapidly as KU increased,

yielding unreliable results for KU>1. BI and VI in ^�i were highly heterogeneous among cohorts and less

sensitive to KU. Relatively accurate ^�i estimates (BI<0.3) were produced for cohorts 2008 and 2010,

but highly biased ones for cohort 2011 (VI>0.53), at all scenarios. Variability in ^�i was relatively low

(VI<0.3) and insensitive to KU, across all cohorts. While ^c# tended to underestimate c# (BI=0.05 to -

2.06), its variability was relatively high (VI=0.24-1.14) across scenarios and cohorts. Both bias and

variability in ^c# were highly sensitive to KU.

Discussion. FMDM estimated accurate and unbiased ^pi and ^�i parameters when all origins were

known and sampled. FMDM performance decreased rapidly and all three set of estimated parameters

became unreliable when �2 origins were missing from nursery-samples. Large differences in BI and VI

among cohorts emphasized the need for extensive sampling of nursery origins. Being FMDM one default

method for mixed stock analysis, we strongly recommend exploring alternative FMDM implementations

and extreme caution when using results from FMDM, under incomplete sampling scenarios.
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ABSTRACT

Background. Otolith microchemistry applications of finite mixture distribution models (FMDM)

describe mixed stocks using three sets of parameters: proportional contributions  , baseline

parameters   and number of contributing nursery origins  . Under ideal scenarios,   is

known and all potential sources are sampled to produce source-based  estimates. Hence,   is

the only parameter vector estimated by FMDM from the mixed-data. If some/all nursery areas are

unknown or not sampled, some or all  and  need to be also estimated from the mixed-data.

Our goal here was to assess bias and variability in ,  and  when estimated by FMDM, under

a range of data availability scenarios.

Methods. We used a comprehensive Sparus aurata dataset, tat contained otolith elemental ratios 

from 301 young of the year, sampled at four nursery origins, in three highly contrasting years. 

Using bootstrap resampling (n=1000) we produced artificial source- and mixed-samples. Source-

samples simulated different scenarios where KU=0-4 nursery sources were excluded. We 

evaluated bias (BI) and variability (VI) in  by fitting FMDM to mixed-samples with true 

=0.1-0.4. Bias and variability in  and  were, instead, assessed on balanced mixed stock-

samples (\(p_i\)=0.25). Estimations of  were obtained by fitting and comparing multiple 

FMDMs with =1-9. 

Results. Accurate and precise  estimates (BI<0.03, VI<0.07) were produced by FMDM when 

samples from all origins were available (KU=0). BI and VI in  tended to increase rapidly as KU 

increased, yielding unreliable results for KU>1. BI and VI in  were highly heterogeneous among 

cohorts and less sensitive to KU. Relatively accurate  estimates (BI<0.3) were produced for 

cohorts 2008 and 2010, but highly biased ones for cohort 2011 (VI
>
0.53), at all scenarios. 
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Variability in  was relatively low (VI<0.3) and insensitive to KU, across all cohorts. While  

tended to underestimate  (BI=0.05 to -2.06), its variability was relatively high (VI=0.24-1.14) 

across scenarios and cohorts. Both bias and variability in  were highly sensitive to KU.

Discussion. FMDM estimated accurate and unbiased  and  parameters when all origins were 

known and sampled. FMDM performance decreased rapidly and all three set of estimated 

parameters became unreliable when ≥2 origins were missing from nursery-samples. Large 

differences in BI and VI among cohorts emphasized the need for extensive sampling of nursery 

origins. Being FMDM one default method for mixed stock analysis, we strongly recommend 

exploring alternative FMDM implementations and extreme caution when using results from 

FMDM, under incomplete sampling scenarios.

INTRODUCTION

Evaluating the contribution of different sources to a mixture is a common problem in ecology, 

biology and natural resource management (Kimura & Chikuni, 1987; Smouse, Waples & Tworek,

1990; Van Dongen, Lens & Molemberghs, 1999; Fleischman & Burwen, 2003; Manel, Gaggiotti 

& Waples, 2005; Phillips, Newsome & Gregg, 2005; Newman & Leicht, 2007). In fish ecology 

and fisheries management, for example, researchers are frequently interested in estimating the 

contribution from different nursery habitats (sources) to adult aggregations, demographic units or 

stocks (mixtures). This is a task that, beyond its inherent scientific interest, has practical 

relevance for both management and conservation purposes (Kerr, Cadrin & Secor, 2010). 

Assessing the accuracy and precision of parameters resulting from such mixture analysis is a 

fundamental, although often neglected, step, required to facilitate the incorporation of these 

results into modern management models (Kritzer & Liu, 2014).
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Mixture analysis in fish ecology and other disciplines relies heavily on the use of artificial and 

natural tags suitable for tracking or identifying the different sources (origins) contributing to a 

mixture (Gillanders, 2009). Within natural tags, the elemental and isotopic composition of teleost 

fish otoliths has been an increasingly common choice for this type of studies during the last 

decades (Kerr & Campana, 2014). They grow throughout lifetime by a regular deposition of 

calcium carbonate and protein layers, which, unlike bones, are not reabsorbed  (Panfili et al., 

2002). While calcium can be partially replaced by other metals (including Sr, Mn and Ba), 

dominant carbon and oxygen isotopes (12C and 16O) can be replaced by their less frequent 

alternatives 13C and 18O. When these substitutions are under weak internal control, they may 

reflect environmental and/or  physiological variability (Panfili et al., 2002), and the 

elemental/isotopic otolith signatures can be considered  “fingerprints” for the water masses 

inhabited by fish at carbonate deposition time  (Elsdon et al., 2008). As layering time can be often

inferred from the same otolith through ageing techniques, a retrospective identification of nursery

or feeding habitats, demographic units (~stocks) and/or migration patterns becomes possible  

(Campana & Thorrold, 2001; Rooker & Secor, 2004; Elsdon et al., 2008; Barnett-Johnson et al., 

2008; Arkhipkin, Schuchert & Danyushevsky, 2009; Darnaude et al., 2014; Niklitschek et al., 

2014).

Two main statistical approaches are commonly used to estimate the contribution of different 

sources to a mixture: discriminant functions (DF) and finite mixture distribution models (FMDM)

(Millar, 1990a; Koljonen, Pella & Masuda, 2005). DF include linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA), multinomial regression (MNR) and random 

forest analysis (RM), among several others (Edmonds, Caputi & Morita., 1991; Elsdon & 

Gillanders, 2003; Pella & Masuda, 2005; Mercier et al., 2011). DF focus on developing 

discriminant algorithms, which are fit (“trained”) using samples from known origins (sources), 
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and then applied to assign putative origins to new individuals sampled from the stock mixture of 

interest. As mixing proportions derived from DF are not model parameters, they lack of 

asymptotic standard errors. FMDM approaches focus, instead, on the estimation of mixing 

proportions, which are explicit model parameters whose standard errors can be derived from their

likelihood profile. Moreover, the source baseline parameters that describe each component are 

also explicit and fundamental parameters in FMDM, which increases the scientific interest for 

using this method in mixed stock analysis.

Described in detail by Everitt & Hand (1981), FMDM were probably introduced into fisheries 

science by Cassie (1954). Applications to mixed stock analysis were first presented by Fournier et

al. (1984) and increased largely after the HISEA software was made available by Millar (1990b). 

Recent applications and extensions to mixed stocks combining otolith chemistry and other natural

markers have been presented by Smith & Campana (2010) and Niklitschek et al. (2010). FMDM 

models follow the general form (Everitt & Hand, 1981),

which is defined by three groups of parameters: the number of components or sources ( ), the 

mixing proportions ( ) and the set of source baseline parameters  that characterize each source 

i, given the probability distribution function g(). As this function is frequently, although not 

necessarily, assumed multivariate normal,  can be decomposed in a vector of means ( ) and a 

covariance matrix ( ) for the response variables considered in the analysis. Translating this 

terms into the lexicon of otolith chemistry-based analysis of mixed stocks,  corresponds to the 

number of nursery or spawning sources,  to the proportional contribution made by each of these

sources to the mixed stock, and θi to the source baseline parameters describing the distribution of 

the elemental or isotopic ratios of interest, at each nursery source i.
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Traditional FMDM applications to mixed stock analysis tend to focus on estimating ,  given all 

potential nursery sources have been previously identified (i.e. c is known) and sampled to 

produce ex-ante θi  estimates (examples provided by Hamer, Jenkins & Gillanders, 2005; Crook &

Gillanders, 2006; Schloesser et al., 2010; Secor, Gahagan & Rooker, 2012). This approach 

requires the capability to collect juveniles at each nursery source (source-data), before they 

emigrate and mix with fish from other nursery sources (mixed-data). If such a sampling or a 

suitable surrogate to it, results impossible or incomplete, a simultaneous FMDM estimation of 

both  and (some or all)  parameters, is needed to be performed using the mixed-data 

(examples in Smouse, Waples & Tworek, 1990; Niklitschek et al., 2010; Smith & Campana, 

2010). Moreover, if the total number of sources ( ) is also unknown, all three sets of parameters

( ,  and ) may need to be estimated from the mixed-data. Such a simultaneous estimation, 

within a single FDMD fit, may lead however to identifiability issues (Everitt & Hand, 1981). 

Under this scenario, a model comparison approach can be used, instead, to evaluate a range of 

plausible  values by Akaike's (1973), Schwarz (1978)'s Bayesian or some other information 

criterion, as done, for example, by Niklitschek et al. (2014).

Although mixed-data based estimations of ,   and/or  may contain important risks of bias 

and spurious conclusions, this approach may represent the only option available to gain some 

information about mixed stocks suffering of incomplete identification and/or sampling of their 

sources. The magnitude of such risks has seldom been assessed (Wood et al., 1987) as no 

reference data exists to contrast the parameters estimated by the model. Indirect assessment 

approaches can be conducted, however, using simulated or empirical datasets whose true , 
  

and/or  parameters were actually known. In this article, we take advantage of a comprehensive 

spatio-temporal dataset containing individual otolith elemental signatures from young-of-the-year
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Sparus aurata collected in four separate nursery habitats (Mediterranean lagoons), in three highly

contrasting years (Tournois et al., 2013). By sub-setting and resampling this dataset we evaluate 

bias and uncertainty in , 
  and  as a function of (i) the number of nursery sources being 

identified and/or sampled for source baseline parameters estimation, and (ii) the inter-annual 

variability observed among  nursery sources.  

MATERIALS AND METHODS

DATA SET DESCRIPTION

Tournois et al.'s (2013) data set included 301 otolith samples from young-of-the-year YOY 

Sparus aurata, collected in three different years (=cohorts): 2008, 2010, and 2011, from four 

Mediterranean lagoons: Bages-Sigean, Mauguio, Salses-Leucate and Thau, all located in the Gulf

of Lions (NW Mediterranean Sea). Collection occurred in late summer, before YOY returned to 

mix with individuals from nearby lagoons in the open sea. Sampled lagoons differ in size, depth, 

freshwater input and degree of connection with the sea, leading to physical and chemical 

differences in the water and, therefore, in otolith signatures (Tournois et al., 2013). Nonetheless, 

these lagoons are strongly influenced by rainfall, wind and other environmental forces (Sarà, 

Leonardi & Mazzola, 1999; Martins et al., 2001), leading to high interanual variability in the 

degree of separation among their otolith signatures (Tournois et al., 2013). As a result, we 

consider this dataset might be representative of degrees of separation among sources that could 

be found in other species and populations.

The chemical composition of otolith samples performed by Tournois et al. (2013) was based in 

Solution Based Inductively Coupled Plasma Mass Spectrometry, including 43Ca and another 11 

elements. We selected seven of them for the current analysis series: 7Li, 11B, 25Mg, 85Rb, 86Sr, 89Y 

and 138Ba. All concentrations were expressed as elemental ratios to Ca, and standardized to 
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mean=0, and SD=1 to scale all elements equally and facilitate bias analysis. Three obvious 

outliers were discarded, working with a depurated sample size of 298 otoliths. Data was 

normalized using a multivariate Box-Cox (1964) 's transformation although it failed to fully 

normalize three of the seven elemental ratios.

RESAMPLING  AND GENERAL SIMULATION PROCEDURES

All analyses described below were conducted repeating the following general procedure: (1) a 

variable number (KU=0-4) of nursery sources was selected to be excluded from the source sample

to simulate five data availability scenarios where these sources were considered as “unknown”; 

(2) within each cohort mixed stock-data, a random bootstrap sample of 25 otoliths was selected 

from each of all “known” nursery sources to produce a balanced “source-sample”, which 

represented pre-migratory juvenile fish; (3) a similar bootstrap procedure was used to mix data 

from all sources into an artificial “mixed -sample” (n=300), which represented the mixed-stock 

formed once juvenile fish had emigrated from nursery sources; (4) Mixing proportions in the 

mixed-sample varied as detailed below; (5) the source-sample was used to estimate  for all 

“known” nursery sources; (6) FMDM was used to estimate  and   for “unknown” sources 

and/or , depending upon the simulation goal (see below). This six-steps sequence was labelled 

as a resampling run and was repeated 1000 times for each analysis, cohort and scenario. The 

bootstrap resampling approach was adopted here to reduce potential sample-size effects affecting 

conclusions about FMDM performance. 

 

MIXING PROPORTIONS OF KNOWN NURSERY SOURCES

We evaluated the performance (bias and variability) of FMDM when used to estimate mixing 

proportions ( ) of each nursery source i within mixed-samples (nj=100 for each cohort j) where 

Bages-Sigean, Mauguio, Salses-Leucate and Thau were set to contribute arbitrary proportions of 
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0.1, 0.2, 0.3 and 0.4, respectively. FMDM performance here was evaluated assuming the total 

number of nursery sources was known ( =4), under five different data availability scenarios (KU

=0-4 "unknown" sources). As a result, the FMDM was forced to estimate not only the four , but

also the KU missing source baseline parameters directly from the mixed-sample. Bias in  was 

indexed (BI) as the difference between estimated and true mixing proportions corresponding to 

each nursery source, within each cohort and data availability scenario. Variability in  (VI) was 

computed as the empirical standard error of  out of the 1000 resampling runs corresponding to 

each nursery source, cohort and scenario.  

SOURCE BASELINE PARAMETERS

Under the assumption of multivariate normal distribution, each estimated source baseline  was 

composed by a vector of means  and a covariance matrix , which described the multivariate 

distribution of the seven chemical elements measured in the otoliths included in the dataset. 

Assessing bias and variability in  results a complex task which, we considered that exceeded 

the scope of this paper. Therefore, all bias and variability measures provided hereafter for  are 

strictly referred to , although we will not emphasize this point further to avoid making even 

more complex the current structure and nomenclature of this article. 

Bias and variability in FMDM-based   were assessed by producing multiple source-samples, to 

which all but KU “unknown” nursery sources contributed equally. Therefore,  corresponding to 

each of these KU=1-4 "unknown" origins were estimated by FMDM from the mixed-data, which 

included equal proportions of all nursery sources, with nij=25, for each nursery i and cohort j. 

Bias for  was indexed (BI) as the square root of the euclidean distance between the vectors of 

predicted ( ) and true ( ) means for all seven elemental ratios, within each nursery source (i) 
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and cohort (j). As all elemental ratios were previously standardized, bias units were equivalent to 

standard deviations. Variability in , was indexed as  , where  was the 

covariance matrix of all  within each nursery source (i), cohort (j) and scenario (k), and Q=7 

was the number of elemental ratios being described by . 

NUMBER OF CONTRIBUTING NURSERY SOURCES

Within each resampling run, we compared a range of FMDMs defined by a variable number of 

contributing nursery sources ( ), which ranged between a minimum ( =4-KU), naturally 

constrained to be equal or greater than KU , and a maximum defined arbitrarily as =9. KU 

was set to range between 0 and 4 unknown sources, whose source baselines were estimated 

directly from the mixture data at each FMDM fit. Source- and mixed-samples were built as 

described for the assessment of source baseline parameters. Schwarz (1978)'s Bayesian 

Information Criterion (BIC) was used to select the most informative  within each resampling 

run, which we addressed as the “predicted number or nursery sources” ( ). Bias was computed 

as BI= -4, and variability (VI) as the standard error of  computed from all resampling runs 

corresponding to each cohort and sampling scenario. 

FMDM PARAMETER ESTIMATION

All  and mixed-derived  were estimated by maximum likelihood, using the Expectation-

Maximization (EM) algorithm (Dempster, Laird & Rubin, 1977). FDMD solutions were 

constrained to produce definite positive covariance matrices, with det(Σ)>109. Source-derived  

were computed directly as the vector of means and the covariance matrix of elemental ratios 

found at each source-sample. Starting values for mixed-derived , when needed, were obtained 

trough a semi-supervised partition-among-centroids clustering procedure, implemented using the 
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R-package “vegclust” (De Cáceres, Font & Oliva, 2010). This clustering method allowed us to 

combine fixed centroids, that represented means from “known” nursery sources (present in the 

source-sample) and mobile centroids, that represented “unknown" nursery sources, only present 

in the mixed-sample. 

RESULTS

MIXING PROPORTIONS

While relatively unbiased and accurate  were obtained under the best two scenarios, bias in  

increased rapidly as KU  increased (Table 1, Figure 1). When all nursery sources were known and 

sampled (KU=0), BI below 0.03 and VI below 0.07 were observed across all cohorts. When one 

nursery source was excluded from nursery samples (KU =1), bias and variability in  increased to

BI ranges of 0.05-0.11 and VI ranges of 0.04-0.12, depending upon the cohort (Figure 1). 

However, for all KU >1 scenarios very unreliable and variable  were produced. Under such 

scenarios, even the rank order of  was often incorrect among nursery sources, within scenarios 

(Table 1). Moreover, bias in  at KU>2 scenarios were 1.3-2.5 higher than those computed for 

KU=0 (Figure 1). Variability in  also showed a rapid increase up to KU=2, becoming high, but 

relatively stable afterwards. 

Overall, bias and variability in  tended to be lower for cohort 2008, and higher for cohort 2011 

(Figure 1), matching the smallest and greatest degree of overlap in otolith elemental signatures 

among all four nursery sources (Figure 2). There was also an evident trend to observe positive 

bias at lower  values, and negative bias at higher  values, which was more pronounced as KU 

increased (Table 1)
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SOURCE BASELINE PARAMETERS

Source baseline parameters estimated by FMDM from mixed-samples showed to define 

multivariate normal distribution models useful to describe source-data, at least for cohorts 2008 

and 2011, under different data availability scenarios (Figure 2). However, matching the greater 

overlap among sources observed in 2011, the centroids, dispersion and orientation of predicted 

distributions for this cohort exhibited a much poorer fit to the actual data of this subset (Figure 2).

Bias in  was highly variable among cohorts, in terms of both their magnitude and their response

to data availability scenarios (Figure 3). As found for , bias in  was lower for cohort 2008, 

where BI remained below 0.35 across all scenarios, and higher for cohort 2011, where BI 

exceeded 0.53 across all scenarios. Bias in  tended to increase with KU in cohorts 2008 and 

2010, but failed to follow any evident trend in cohort 2011 (Figure 3).  Variability in  was much

less sensitive to data availability (KU) than bias in either  or , showing a moderate increase 

with KU, in cohorts 2008 and 2010, while a slightly decreasing trend in cohort 2011. Variability in

 was higher for cohorts 2010 and 2011 (VI>0.2) than for cohort 2008 (VI<0.15), across all 

treatments.

NUMBER OF CONTRIBUTING NURSERY SOURCES

FMDM-based  tended to underestimate the true value of  under most data availability 

scenarios (Figure 4). Only under the ideal scenario (KU=0), where all sources were represented in 

source-samples, the true value of  was predicted correctly in most simulations (76-94%) . 

Although a small (positive) bias (0.05-0.26) was produced at KU=0 by a few cases where =5, 

no predictions above 5 were observed. As for the remaining scenarios, the percentage of correct 

estimations decreased to 34-41% at KU=1, and to 6-21% at KU=4, i.e. the worst case scenario. 

Negative bias tended to increase as KU  increased (Figure 4), and, therefore, as  decreased. 
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Following such trend, the negative bias in #, that ranged between 0.24 and 0.56 at KU =1, became

0.6-2.1 at KU =4. Overall, bias tended to be higher at cohort 2011 (BI=-2.60-0.26) and lower at 

cohort 2008 (BI=-1.19-0.06). Variability in # was relatively high (VI=0.63-1.14) across all 

cohorts, increasing with KU, from a range of VI=0.24-0.49, at KU =0, to a range of VI=0.90-1.14 at

KU =4, depending upon the cohort being analysed. Following the general pattern observed in 

other parameters, variability in cohorts 2010 (VI=0.45-1.14) and 2011 (VI=0.49-1.0) tended to be

greater than in cohort 2008 (VI=0.24-0.90), particularly when the number of “unknown” sources 

was low. 

DISCUSSION

In this article, we had the opportunity to evaluate FMDM performance when used to estimate 

fundamental mixed stock parameters, under a range of data availability scenarios. Combining 

bootstrap resampling with a real-world dataset, whose parameters were known or manipulated, 

we managed to simulate multiple scenarios of interest. Using this particular dataset implied, 

however, some risk that our results might not be transferable to other stocks, affected by relevant 

differences in the number, degree of separation and/or data distribution of their mixed 

components. Nonetheless, we believe the large interanual variability observed in our dataset 

represented an important part of the variability that could be found in other stocks and 

geographical areas.

Mixing proportions estimated by FMDM showed high precision and accuracy for all cohorts 

under ideal scenarios where all nursery sources were known and previously sampled for juvenile 

fish in order to produce nursery-based source baseline parameters, which were then input as 

exogenous parameters to the FMDM. Sensitivity to incomplete sampling of nursery habitats was 

high, leading to unreliable results when two or more of the nursery areas were not included in 
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source-samples, and their corresponding baseline parameters were estimated from the mixed-

sample. Thus, while our results confirmed the suitability of FMDM for estimating mixing 

proportions at ideal or nearly ideal sampling situations, they provided a warning against 

extending the use of FMDMs to infer potential contributions when multiple nursery sources are 

“unknown" or had not been sampled to produce reliable source baseline parameter estimates. We 

have not considered here the intermediate case where some small level of sampling exist for 

some/all nurseries, for which an unconditional maximum likelihood or Bayesian approaches 

would be more adequate (Pella & Masuda, 2001).  

The effects of incomplete sampling of nursery habitats upon  tended to bias the most extreme 

mixing proportions towards intermediate values. Therefore, the smallest nursery contributions 

appeared overestimated, while the largest ones underestimated. This behaviour might be an 

artefact of the EM algorithm, which may have converged, sometimes, to unsatisfactory local 

maxima (Marin, Mengersen & Robert, 2005). While Bayesian versions of FMDM (Pella & 

Masuda, 2001) are an obvious option to be explored, few methods alternative to FMDM seem to 

be available for estimating mixing proportions under incomplete sampling scenarios. While 

unsupervised clustering, followed by discriminant analysis, has been used in absence of direct 

source-data (Arkhipkin, Schuchert & Danyushevsky, 2009; Schuchert, Arkhipkin & Koenig, 

2010), semi-supervised clustering  (De Cáceres, Font & Oliva, 2010) could be an obvious 

extension to cases where some source-data is available. Nonetheless, no independent assessments

of bias and variability seem to be available for clustering approaches applied to mixed stock 

analysis under incomplete sampling scenarios.

Baseline parameter estimates were relatively unbiased and accurate for two out of the three 

evaluated cohorts (2008 and 2010), particularly when no more than two of the four nursery 
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sources were simulated as “unknown”. Highly biased, although not so variable, baselines were 

estimated, in contrast, for cohort 2011 at all data availability scenarios. This largely 

heterogeneous situation among cohorts was likely related to large environmental variability in the

study area (Tournois et al., 2013), reflected in highly variable source-data distribution patterns 

among cohorts (Figure 2). These findings suggest that, under scenarios of large overlapping 

among nursery sources, such as the one observed for cohort 2011, classical FMDM approaches 

(as the one implemented by us) can be unsuitable to get reliable baseline parameter estimations. 

 

The performance of FMDM models when used to estimate the number of nursery sources was 

poor, exhibiting an evident trend to underestimate its true number in all cohorts. Since the 

magnitude of the underestimation was constrained by the number of known nursery sources, it 

results obvious that enhancing our knowledge about the minimum number of existing nursery 

sources would be a way to reduce the risk of underestimating their total number. Despite of this 

negative evaluation, FMDM might be still useful to estimate a lower limit for the number of 

contributing sources, and to provide a conservative evaluation of the potential existence of 

additional nursery sources, remaining to be identified in relatively well studied mixed stock. 

These later applications seem to be supported by our findings that indicate FDMD was rather 

robust to overestimation, even when all nursery sources were known and the model was not 

allowed to consider less than 4 nursery sources.

The large variability in otolith elemental signatures we found in this dataset reflected large 

interanual variability in nursery habitats (Tournois et al., 2013), which may be common to most 

shallow water and estuarine nursery areas (Secor, 2015). The high sensibility of FMDM model 

results to this variability highlights the need to assure true independence among individual 

samples being used to build baseline parameter estimates. This is the needed to avoid 
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confounding variability among nursery sources with variability among years, schools, sampling 

events or other sources of correlation, commonly neglected in fisheries and ecological studies 

(Zuur, Ieno & Smith, 2007). Moreover, the effects of these sources of correlation should be 

formally modelled and corrected through mixed models or equivalent approaches (Bolker et al., 

2009) in order to gain new insights about the mixed stock composition. A very intuitive step here 

would be, for example, to combine data from all three cohorts to improve the estimation of the 

total number of sources, using either mixed model or Bayesian approaches.  

In conclusion, our scrutiny of FMDM performance under incomplete sampling of nursery sources

yielded rather discouraging results. Large sensitivity to incomplete sampling scenarios was 

found, producing highly biased and/or variable results when more than one out of four nursery 

sources were missing from source-samples. This sensitivity exceeds what would be needed for 

applying FMDM to many mixed stocks where the number and location of their nursery habitats 

remain unknown, or where juvenile sampling remains logistically impossible. We have applied 

here a conditional maximum likelihood approach, based upon the EM algorithm, which is the 

most common method used in mixed stock analysis after Millar (1987). It must be acknowledged,

however, that there is a large variety of FMDM implementations, existing multiple options for 

improvement, within the FMDM framework (Marin, Mengersen & Robert, 2005). These options 

include the use of conditional approaches (see Pella & Masuda (2001) for definitions), 

optimization algorithms alternative to EM, such as the Metropolis–Hastings approximation, as 

well as the implementation of fully Bayesian approaches (Pella & Masuda, 2001; Marin, 

Mengersen & Robert, 2005; Smith & Campana, 2010). Although none of these avenues can 

assure higher degrees of success, the urgent need to enhance our understanding of exploited and 

threatened fish populations should be a powerful incentive to continue improving, developing and

evaluating the analytical methods required to achieve this goal.
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Table 1(on next page)

True and predicted values for the proportional contributions

True and predicted values for the proportional contribution (pi) of four different nursery

origins to three simulated mixed stocks (=cohorts) used to evaluate the performance of

Finite Mixture Distribution Models (FMDM). FMDM performance was evaluated under five

different data availability scenarios, defined by the number of �unknown� nursery origins

(NU), which were excluded from the nursery-samples used to define FMDM baseline

parameters.
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Nursery True Predicted values per scenario

Cohort  Origin  Value NU=0 NU=1 NU=2 NU=3 NU=4

2008 Bages-Sigean 0.10 0.10 0.13 0.16 0.17 0.20

Mauguio 0.20 0.21 0.21 0.20 0.21 0.24

Salses-Leucate 0.30 0.29 0.29 0.30 0.33 0.34

Thau 0.40 0.40 0.37 0.34 0.29 0.22

2010 Bages-Sigean 0.10 0.09 0.12 0.17 0.22 0.28

Mauguio 0.20 0.21 0.23 0.25 0.25 0.23

Salses-Leucate 0.30 0.30 0.29 0.27 0.24 0.26

Thau 0.40 0.40 0.36 0.31 0.28 0.24

2011 Bages-Sigean 0.10 0.11 0.15 0.20 0.27 0.32

Mauguio 0.20 0.21 0.23 0.27 0.27 0.27

Salses-Leucate 0.30 0.27 0.27 0.25 0.23 0.23

Thau 0.40 0.40 0.35 0.28 0.23 0.18

1

1

2

3

2
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1

Bias and variability in proportional contribution estimates

Bias (upper panel) and variability (lower panel) in estimated proportional contributions of four

nursery origins to artificial mixed stocks of Sparus aurata, in three contrasting cohorts. The

number of unknown nursery origins (KU) represent nursery origins being excluded from

source-samples to evaluate incomplete sampling effects upon bias and variability.
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2

Empirical and predicted distributions of elemental ratios in juvenile Sparus aurata

otoliths

Principal component diagrams representing the distribution of otolith elemental ratios in

juvenile Sparus aurata. Coloured points represent empirical means per nursery source and

cohort, corresponding to 1000 bootstrap samples (size=25). Ellipses represent 67%

confidence intervals defined by multivariate normal baselines estimated through finite

mixture distribution modelling (FMDM) under two data availability scenarios. Left panel

shows predicted distributions when only the nursery source of interest was estimated by

FMDM. Right panel shows predicted distributions when all nursery sources were

simultaneously estimated by FMDM
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3

Bias and variability in source baseline estimate

Bias (upper panel) and variability (lower panel) in estimated source baseline estimates for

four nursery origins contributing to artificial mixed stocks of Sparus aurata, in three

contrasting cohorts. The number of unknown nursery origins (KU) represent nursery origins

being excluded from source-samples and evaluated by finite mixture distribution modelling

from mixed-samples
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4

Predicted number of contributing sources

Predicted number of sources (nursery origins) contributing to simulated mixed-stock of

Sparus aurata (c#). Predictions obtained by comparing alternative finite mixture distribution

models (FMDM) that considered a range of c#=1-9. Different data availability scenarios

excluded KU=0-4 nursery sources from source-samples and forced FMDM to estimate all

parameters from mixed-samples. Relative frequencies computed after 1000 resampling runs

from available data (n=298), per tested scenario
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